The network and the OS

David Clark
MIT CSAIL
October, 2015

From the specific to the cosmic
e Early issues were pragmatic and “mechanical”.

— How to structure and position the code that
implemented the protocols.

— Performance.

e Later issues were more fundamental:

— What does it mean for a machine to be connected to
the rest of the world?

— Security, availability

Structure

 To understand the issues of structure, must
understand what is distinctive about
implementing network protocols.

— Start there, then look at implications for the OS.

What is different about net I/0O?

Variable size units (packets and application data).
Malformed content and size.

Internet connected heterogeneous machines over
heterogeneous networks.

* First (and in some sense only) goal was interoperation.
e Byte order, 9 bit bytes, etc.

Unpredictable arrival/transmission.

Must be processed to demultiplex.
— Trustworthy processing.

A 1986 perspective

SOME GENERAL OBSERVATIONS ABOUT

PROTOCOLS
Our state of understanding in 1986: REL DRl T L 1
. . . AND CODE.
.A Sl Id e Of m I n e fro m th e tl m e ' E;’sgéMPLEMENTATIONS ARE OFTEN VERY

~THEY DO NOT PERFORM VERY WELL.

There was deep confusion as to how to
move from protocol specification to
protocol implementation.

WHAT IS THE CAUSE OF THESE PROBLEMS?

~THE PROTOCOL DESIGN?
~THE PROTOCOL IMPLEMENTATION?
~SOMETHING ELSE?

Implementing a protocol

 The stages in our understanding. What was the challenge?
— Implementing the state machine.
— Marshalling the packet fields.
— Dealing with errors.
— Processing 32 bit numbers.
— Copying the data.
— Dealing with congestion control.
— Dispatching the packet to correct connection.
— Dealing with layers

Where to put the software?

HOW PROTOCOLS FIT IN SYSTE#M

Protocol in the OS?
*Low overhead.
*Nasty programming environment.
*Run all the code at interrupt time?
Protocol in the application process?
*No asynchrony.
*Easy invocation.

PROCESS

PROTCCCL

PROCESS/ PROCESS INTERFACE

PROTCCOL

B PROCESS

PROCESS/
SYSTEM

SUPERVISOR §[

Protocol in a separate process? T
. .
* High cost to invoke.

*Asynchronous execution.

Waiting for events

* Protocols have an odd (by the thinking of the
day) structure.
— They wait for multiple events.
— A user event, a network event, a timer event.

* Many interprocess scheduling mechanisms
required the waiting process to wait on one

event.

Performance

e We had to learn the relative cost of different
actions.

— Processing a header.

— Scheduling a process/thread.
— Setting a timer.

— Taking an interrupt.

— Copying the data.

— Dispatching the packet.

Protocols can be
simple

Implementation of TCP
input routine for Xerox

Alto.

fit on one page.
— It does call subroutines...

tep.bepl 30-Apr-81 11:48:22 Page

/7
Tet tcpReceive(soc,pbi) be
17

[
let iip = Tv pbi>>INPBI.INHeader
Tet itp = iip + (iip>>INHeader.ih1 1shift 1)
Tet idp = itp + (itp>>dataOffset 1shift 1) // offset in words
Tet idatalng = iip>>INHeader.totallength - (iip>>INHeader.ihl Tshift 2) -

(itp>>datadffset 1shift 2)

/1 compute incoming tcp checksum

unless INCompareForeignPort(pbi,1v soc>>INSoc.foreignPort) return
if itp>>f.rst eq 1 then [cleanup("reset”);return
if itp>>f.syn eq 1 then // next line is:itpddsn = itpddsn + 1
DoubleIncrement(Tv itp>>sn,1)
test opening gr 1 //this code updates things based on incoming ack value
ifso if itp>>f.ack eq 1 then [
let diff = otp>>sn2 + odatalng - itp>dack2
if ¢iff eq -1 & otp>>f.fin then
[otp>>sn2 = otpd>dsn2 + 1;diff = 0;0tpd>>F.fin =
closing = closing + 1; if closing eq 3 then WI("Closed")]
if diff 1s 0 then
[otp>>f.rst = 1;DMove(1v otp>>sn,lv itp>dack)
DMove(1v otp>dack,1v itpd>sn); send = true; return]
if otp>>f.urg eq 1 then
[otp>durg = otpdourg - odatalng + diff
if otp>urg Te 0 then otp>>f.urg = 0

=0

if 4iff eq -otp>>f.fin then sendCount
if ¢iff 1s odatalng then
[for i =0 to diff - 1 do
0dp>>bti = odpd>bt(i + (odatalng - diff))
otp>>sn2 = otp>dsn2 + odatalng - diff;odataing = diff;

]
ifnot [
if (itp>>f & 22b) ne 22b then [error(1);return] //must have Syn and Ack
if itp>>ack2 ne 1 then [error(2);return] // bad ack value
otp>>f = 30b // ack and eol
otp»sn2 = 1; send = true
DMove(1v otp>>ack,1v itp>>sn)
opening = 3
W1("0pen")
]

/7 next Vine is:diff = otp>dack - itp>dsn
Tet diff = DoubleDifference(1v otp>>ack,1v itp>sn
it diff 1s 0 then [Ws("X");return] // packet out of sequence
Ws("0")
if itp>>f.fin eq 1 then
[if closing eq 0 then [otp>>f.fin = 1;closing = closing + 1]
send = true
closing = closing + 1;if closing eq 3 then W1("Closed")]
it idatalng gr 0 then
for i = diff to idatalng - 1 do
tepProcessByte(idp>dbti)

send = true
otp>>window = otp>>window - idataing + diff

]
if diff le idatalng then
/7 next Tines are:otpddack = itpd>sn + idatalng + itp>>f.fin

[
DoubleIncrement(1v itpd>sn,idatalng + itp>>f.fin)
DMove(1v otp>>ack,1v itp>>sn)

return

Layers of protocol

* Link, IP, TCP, app.
e How should the code be structured?

— Obvious (but bad) idea: structure a layer as a process.
— Why? It takes (much) longer to schedule a process
than process a packet.

* Layering is a device for specification, not code
structure.

An example--TRIPOS

 TRIPOS (Cambridge University) was wonderful little OS
that used processes for most system functions. (The
micro-kernel philosophy.)
— Interprocess communication by pointer, not copy.
* highly efficient.
— Network code structured as three processes.
* Network, transport, remote login.
— 54 process wakeups to exchange a character.

— Recoding as one process: 10x smaller, 10x faster

The consequence of processes

MULTIPROCESS PROTOCOL IMPLEMENTATION

EXAMPLES OF PACKET "PIGGYBACKING"
WITH DIFFERENT LAYER INTERFACES

HOST NETWORK TERMINAL
SCREEN ki
|
VRTUSL VRTUAL
CRCUT 1 CROUT
.
i [w
| | !
; 2
Py
I | 3
|
| . 1
|
|
| 5
]]
|
SIPERVSOR
1
i @
! i 2
[7
3 |

Emerging ideas

* The Structuring of Systems Using Upcalls”
e David Clark, SOSP, 1985

IH

* “Layered Multiplexing Considered Harmfu

* David Tennenhouse, First International Workshop on
High Speed Networking, 1989

Some pictures of upcalls

Typical protocol structured using upcalls

ipplication

ransport

etwork

client
process

outgoing incoming
packets packets

interrupt
handler

Failure during upcall.

upper
layer

lower
layer

storage

Two problams:
- storage
- process

Solution:

- partition storage into "layer-wide" and per
client. Unlock former.

- discard process.

Fixing other performance problems

G. Varghese and T. Lauck. Hashed and hierarchical timing
wheels: data structures for the efficient implementation of a
timer facility. In Proceedings of the eleventh ACM Symposium
on Operating systems principles (SOSP '87). ACM, New York,
NY, USA,

Packet processing

Clark, D.D.; Romkey, J.; Salwen, H., "An analysis of TCP processing
overhead," in Local Computer Networks, 1988., Proceedings of the
13th Conference on , vol., no., pp.284-291, 10-12 Oct 1988

TCP packet receipt:
— Sender of data: 191-235 instructions
— Receiver of data, 186 instructions.
— Set a timer: 35 (used timing wheel algorithm)
— Internet protocol: ~60

A range of topics

Early issues were performance
Network software design
Homogeneity
Co-processing
Small machines

— From Alto, PC, (to loT).
Parallel machines
Alternative network semantics

High-level implications of connectivity to the world
— Security, availability, etc.
Virtual networks and virtual computers

Speed of light

The recurring structural issue

Networks have a distinct set of issues to solve.

— Resource allocation, security, managing delivery.
But they do not know what they are being used for. (The end to end
model).

— What is core and what is overlay?

TCP persists because we found no other general service model.
— The alternative is to push to the app the implementation of the desire semantics. (UDP.)
— But then app designer is implementing the protocol. See earlier part of talk.
— Is the protocol (e.g., transport) a core service?
The net cannot trust the host, the OS cannot trust the app, the app cannot
trust any of them, and the resulting system should have some sort of
reliability.

