
Parallelism and operating systems

M. Frans Kaashoek

MIT CSAIL

With input from Eddie Kohler, Butler Lampson, Robert Morris, Jerry Saltzer, and Joel Emer

1 / 33

Parallelism is a major theme at SOSP/OSDI

Real problem in practice, from day 1

Parallel programming is either:
a cakewalk: No sharing between computations
a struggle: Sharing between computations

I race conditions
I deadly embrace
I priority inversion
I lock contention
I ...

SOSP/OSDI is mostly about avoiding struggling for programmers

2 / 33

Parallelism is a major theme before SOSP

Several forms of
parallelism

User-generated
parallelism
I/O parallelism
Instruction-level
parallelism

An example: Stretch [IBM TR 1960]:

3 / 33

Three types of parallelism in operating systems

1. User parallelism
Users working concurrently with computer

2. I/O concurrency
Overlap computation with I/O to keep a processor busy

3. Multiprocessors parallelism
Exploit several processors to speedup tasks

The first two may involve only 1 processor

4 / 33

This talk: 4 phases in OS parallelism

Phases Period Focus

Time sharing 60s/70s Introduction of many ideas for parallelism
Client/server 80s/90s I/O concurrency inside servers
SMPs 90s/2000s Multiprocessor kernels and servers
Multicore 2005s-now All software parallel

Phases represent major changes in commodity hardware

In reality phases overlap and changes happened gradually

Trend: More programmers must deal with parallelism

Talk is not comprehensive
5 / 33

Phase 1: Time sharing

Many users, one computer
Often 1 processor

[IBM 7094, 1962]

6 / 33

Standard approach: batch processing

Run one program to completion, then run next

A pain for interactive debugging [SJCC 1962]:

Time-sliced at 8-hour shifts [http://www.multicians.org/thvv/7094.html]:

7 / 33

Time-sharing: exploit user parallelism

CTSS [SJCC 1962]
Youtube: “ctss wgbh” [https://www.youtube.com/watch?v=Q07PhW5sCEk, 1963]

8 / 33

Many programs: an opportunity for I/O parallelism

Multiprogramming [Stretch 1960, CTSS 1962]:
On I/O, kernel switches to another program
Later kernel resumes original program
Benefit: higher processor utilization

Kernel developers deal with I/O concurrency

Programmers write sequential code

Kernel

Process 1 Process 2

supervisor < 5K 36-bit-words

9 / 33

Challenge: atomicity and coordination

Example: the THE operating system [EWD123 1965, SOSP 1967]
Technische Hogeschool Eindhoven (THE)
OS organized as many “sequential” processes

I A driver is a sequential process

Consumer Producer

BufferProcess 1 Process 2

10 / 33

The THE solution: semaphores

[The “THE” multiprogramming system, First SOSP]
11 / 33

The THE solution: semaphores
Still in practice today

11 / 33

P & V?
passing (P) and release (V) [EWD35]

portmanteau try to reduce (P) and increase (V) [EWD51]

12 / 33

Time-sharing and multiprocessor parallelism
Early computers with several processors

For example, Burroughs B5000 [1961]

Much attention paid to parallelism:
Amdahl’s law for speedup [AFIPS 1967]
Traffic control in Multics [Saltzer PhD thesis, 1966]
Deadlock detection
Locking ordering
...

I.e., Most ideas that you will find in an intro OS text

Serious parallel applications
E.g., Multics Relational Database Store

I Ran on 6-processor computer at Ford

[GE 645, Multics Overview 1965]

13 / 33

Time-sharing on minicomputers: just I/O parallelism

Minicomputers had only one processor

Multiprocessor parallelism de-emphasized
Other communities develop processor
parallelism further (e.g., DBs).

For example: Unix [SOSP 1973]
Unix kernel implementation specialized
for uniprocessors
User programs are sequential

I Pipelines enable easy-to-use user-level
producer/consumer

$ cat todo.txt | sort | uniq | wc
273 1361 8983

$

[Mcllroy 1964]
14 / 33

Phase 2: Client/server computing

Computers inexpensive enough to give each
user her own

Local-area networks and servers allow users
to collaborate

[Alto, Xerox PARC, 1975]
15 / 33

Goal: wide range of services

Idea: allow non-kernel programmers to implement services by supporting servers at user
level

Kernel

App 1 App 2Server

16 / 33

Challenge: user-level servers must exploit I/O concurrency

Client 1

User-level server

Client 2

Client ...

Client n

Some of the requests involve expensive I/O

17 / 33

Solution: Make concurrency available to servers

Kernel

Parallelism App 1 App 2
File
server

Kernel exposes interface for server developers
Threads
Locks
Condition variables
...

18 / 33

Result: many high-impact ideas

New operating systems (Accent [SOSP 1981]/Mach [SOSP 1987], Topaz/Taos, V [SOSP
1983], etc.)

Support for multithreaded servers encourages microkernel design

Much impact: e.g., Pthreads [POSIX.1c, Threads extensions (IEEE Std 1003.1c-1995)]
Supported now by many widely-used operating systems

New programming languages (Mesa [SOSP 1979] , Modula2+, etc.)
If you have multithreaded programs, you want automatic garbage collection
Other nice features too (e.g., monitors, continuations)
Influenced Java, Go, ...

19 / 33

Programming with threads

An introduction to programming with threads
[Birrell tutorial 1989]

Case study: Cedar and GVX window system
[SOSP 1993]:

Many threads
Written over a 10 year period, 2.5M LoC

Design patterns:

Bugs:

20 / 33

The debate: events versus threads

Handle I/O concurrency with event handlers
Simple: no races, etc.
Fast: No extra stacks, no locks

High-performance Web servers use events
Javascript uses events

The response: Why Events Are A Bad Idea [HotOS IX]
Must break up long-running code paths
“Stack ripping”
No support for multiprocessor parallelism

[Keynote at USENIX 1995]

21 / 33

Phase 3: Shared-memory multiprocessors (SMPs)

Processor

Cache

Processor

Cache

Processor

Cache

Processor

Cache

Memory

Mid 90s: inexpensive x86s multiprocessors showed up with 2-4 processors

Kernel and server developers had take multiprocessor parallelism seriously
E.g., Big Kernel Lock (BKL)
E.g., Events and threads

22 / 33

Much research on large-scale multiprocessors in phase 3

Scalable NUMA multiprocessors: BBN Butterfly, Sequent, SGI,
Sun, Thinking Machines, ...

Many papers on scalable operating systems:
Scalable locks [TOCS 1991]
Efficient user-level threading [SOSP 1991]
NUMA memory management [ASPLOS 1996]
Read-copy update (RCU) [PDCS 1998, OSDI 1999]
Scalable virtual machines monitor [SOSP 1997]
... [VU, Tanenbaum, 1987]

23 / 33

Uniprocessor performance keeps doubling in phase 3

No real need for expensive parallel machine

[http://www.crpc.rice.edu/newsletters/oct94/director.html]

Panels at HotOS/OSDI/SOSP
24 / 33

Phase 4: multicore processors

1

10

100

1,000

10,000

100,000

1985 1990 1995 2000 2005 2010 2015

Clock speed (MHz)
Power (watts)
Cores per socket
Total Mcycles/s

Achieving performance on commodity hardware requires exploiting parallelism
25 / 33

Scalable operating systems return from the dead

Several parallel computing companies switch to Linux

26 / 33

Many applications scale well on multicore processors

0

5

10

15

20

25

30

35

40

1 6 12 18 24 30 36 42 48

N
or

m
al

iz
ed

th
ro

ug
hp

ut

Cores

gmake
Exim

But, more applications stress parallelism in operating systems
Some tickle new scalability bottlenecks
Exim contends on a single reference counter in Linux [OSDI 2010, SOSP 2013]

27 / 33

Cache-line fetches are expensive

L1/L2 L1/L2 L1/L2

L1/L2 L1/L2 L1/L2

L1/L2 L1/L2 L1/L2

L1/L2 L1/L2 L1/L2

L1/L2 L1/L2 L1/L2

L1/L2 L1/L2 L1/L2

L1/L2 L1/L2 L1/L2

L1/L2 L1/L2 L1/L2

DRAM DRAM

DRAM DRAM

Read cache line written by
another core: expensive!
100–10000 cycles
(contention)

For reference, a creat system
call costs 2.5K cycles

28 / 33

Avoiding cache-line sharing is challenging

Consider read-write lock

struct read_write_lock {
int count; // -1, write mode; > 0, read mode
list_head waiters;
spinlock wait_lock;

}

Problem: to acquire lock in read mode requires modifying count

Fetching a remote cache line is expensive
Many readers can cause performance collapse

29 / 33

Read-copy update (RCU) becomes popular

Readers read shared data without holding any lock
Mark enter/exit read section in per-core data structure

Writer makes changes available to readers using an atomic
instruction

Free node when all readers have left read section

Lots of struggling to scale software [Recent OSDI/SOSP papers]

30 / 33

What will phase 4 mean for OS community?

What will commodity hardware look like?
1000s of unreliable cores?
Many heterogeneous cores?
No cache-coherent shared memory?

How to avoid struggling for programmers?
Exploit transactional memory [ISCA 1993]?
Develop frameworks for specific domains?

I MapReduce [OSDI 2004], .., GraphX [OSDI 2014], ...

Develop principles that make systems scalable by design?
[SOSP 2013]

Barrelfish [SOSP 2009]

31 / 33

Stepping back: some observations

SOSP/OSDI papers had tremendous impact
Many ideas can be found in today’s operating systems and programming languages

Processes/threads have been good for managing computations
OS/X 10.10.5 launches 1158 threads, 308 processes on 4-core iMac at boot

Shared memory and locks have worked well for concurrency and parallelism

Events vs. threads – have both?

Rewriting OSes to make them more scalable has worked surprisingly well (so far)
From big kernel lock to fine-grained parallelism

32 / 33

Summary

Parallelism has moved up the software stack driven by changes
in commodity hardware

More and more programmers are writing parallel code

Today: to achieve performance on commodity hardware
programmers must use parallelism

Prediction: Many more SOSP/OSDI papers on parallelism

Phase 1: time sharing
(foundational ideas)
Phase 2: client/server
(concurrent servers)
Phase 3: SMPs
(parallel kernels and
servers)
Phase 4: multicore (all
applications parallel)

33 / 33

Summary

Parallelism has moved up the software stack driven by changes
in commodity hardware

More and more programmers are writing parallel code

Today: to achieve performance on commodity hardware
programmers must use parallelism

Prediction: Many more SOSP/OSDI papers on parallelism

Phase 1: time sharing
(foundational ideas)
Phase 2: client/server
(concurrent servers)
Phase 3: SMPs
(parallel kernels and
servers)
Phase 4: multicore (all
applications parallel)

33 / 33

