Parallelism and operating systems

M. Frans Kaashoek

MIT CSAIL

With input from Eddie Kohler, Butler Lampson, Robert Morris, Jerry Saltzer, and Joel Emer

/33

Parallelism is a major theme at SOSP/OSDI

Real problem in practice, from day 1

Parallel programming is either:

@ a cakewalk: No sharing between computations

@ a struggle: Sharing between computations
» race conditions

deadly embrace

» priority inversion

» lock contention

>

v

SOSP/OSDI is mostly about avoiding struggling for programmers

Parallelism is a major theme before SOSP

An example: Stretch [IBM TR 1960]:
Several forms of

para”elism MULTIPROGRAMMING STRETCH: FEASIBILITY CONSIDERATIONS
@ User-generated by
parallelism E. F. Codd
. E. S. Lowry
@ /O parallelism E. McDonough
. C., A, Scalzi
@ Instruction-level
parallelism
ABSTRACT

The tendency towards increased parallelism in computers is

noted. Exploitation of this parallelism presents a number of new
problems in machine design and in programming systems. Minimum
requirements for successful concurrent execution of several indepen-
dent problem programs are discussed. These requirements are met
in the Stretch system by a carefully balanced combination of built-in
logic and programmed logic. Techniques are described which place

the burden of the Brogrammed logi: on system programs (supervisory
program and compiler) rather than on problem programs.

3/33

Three types of parallelism in operating systems

1. User parallelism
@ Users working concurrently with computer

2. 1/0 concurrency
@ Overlap computation with I/O to keep a processor busy

3. Multiprocessors parallelism
@ Exploit several processors to speedup tasks

The first two may involve only 1 processor

This talk: 4 phases in OS parallelism

Phases Period Focus

Time sharing 60s/70s Introduction of many ideas for parallelism
Client/server 80s/90s I/O concurrency inside servers

SMPs 90s/2000s Multiprocessor kernels and servers
Multicore 2005s-now All software parallel

Phases represent major changes in commodity hardware
In reality phases overlap and changes happened gradually
Trend: More programmers must deal with parallelism

Talk is not comprehensive

Phase 1: Time sharing

Many users, one computer
@ Often 1 processor

[IBM 7094, 1962]

Standard approach: batch processing

Run one program to completion, then run next

A pain for interactive debugging [SJCC 1962]:

In part, this effect has been due to the fact that as elementary problems become mastered on the computer, more complex problems
immediately become of interest. As a result, larger and more complicated programs are written to take advantage of larger and faster
computers. This process inevitably leads to more programming errors and a longer period of time required for debugging. Using current batch
monitor techniques, as is done on most large computers, each program bug usually requires several hours to eliminate, if not a complete day.
The only alternative presently available is for the programmer to amemE to dehuE di.mctlé at the COmPpULET, & Process which is grossly wasteful
of computer time and hampered seriously by the poor console communication usually available. Even 1f a typewrter 1s the console, there are
me sophisticated query and response programs which are vitally necessary to allow effective interaction. Thus, what is desired

is to drastically increase the rate of interaction between the programmer and the computer without large economic loss and also to make each
interaction more meaningful by extensive and complex system programming to assist in the man-computer communication.

Time-sliced at 8-hour shifts [http://www.multicians.org/thvv/7094.html]:

IBM had been very generous to MIT in the fifties and sixties, donating or discounting its biggest scientific
computers. When a new top of the line 36-bit scientific machine came out, MIT expected to get one. In the early
sixties, the deal was that MIT got one 8-hour shift, all the other New England colleges and universities got a shift,
and the Third shilt was available to IBM Ior its own Use. Une use 1BM made of 1ts share was yacht handicapping:
the President of IBM raced big yachts on Long Island Sound, and these boats were assigned handicap points by a
complicated formula. There was a special job deck kept at the MIT Computation Center, and if a request came in
to run it, operators were to stop whatever was running on the machine and do the yacht handicapping job
immediately.

Time-sharing: exploit user parallelism

The basic technique for a time-sharing system is to have many persons simultaneously using the computer through
typewriter consoles with a time-sharing supervisor program sequentially running each user program in a short burst or
guantum of computation. This sequence, which in the most straightforward case is a simple round-robin, should occur
often enough so that each user program which is kept in the high-speed memory is run for a quantum at least once during
each approximate human reaction time (~.2 seconds). In this way, each user sees a computer fully responsive to even
single key strokes each of which may require only trivial computation; in the non-trivial cases, the user sees a gradual
reduction of the response time which is proportional to the complexity of the response calculation, the slowness of the
computer, and the total number of active users. It should be clear, however, that if there are n users actively requesting
service at one time, each user will only see on the average 1/n of the effective computer speed. During the period of high
interaction rates while debugging programs, this should not be a hindrance since ordinarily the required amount of
computation needed for each debugging computer response is small compared to the ultimate production need.

CTSS [SJCC 1962]
Youtube: “ctss wgbh” [https://www.youtube.com/watch?v=Q07PhW5sCEk, 1963]

Many programs: an opportunity for I/O parallelism

Multiprogramming [Stretch 1960, CTSS 1962]:

@ On I/O, kernel switches to another program
@ Later kernel resumes original program
@ Benefit: higher processor utilization

Kernel developers deal with 1/0 concurrency

Programmers write sequential code

Kernel

Processor

supervisor < 5K 36-bit-words

q = 16 n.s. (based on 1% switching overhead)

wq = 120 words (based on one IEM 1301 model
2 disc unit without seek or latency
times included)
ty £ Sﬂts (based on programs of (32k)2
words)

L, £ log, (1000/N) (based on t, =16 sec,)

6T .

I £ 8 (based on & maximum program size of
32K words)
9/33*

Challenge: atomicity and coordination

Example: the THE operating system [EWD123 1965, SOSP 1967]

@ Technische Hogeschool Eindhoven (THE)
@ OS organized as many “sequential” processes
» A driver is a sequential process

Buffer

Consumer Producer

10/33

The THE solution: semaphores

Finamlly I should like to thank the members of
the program committee who asked for more information
on the nxnch:onizing primitives and some justifica-
tion of my claim to be able to prove logical sound-
ness_a Er%or;. Tn onswer to this request the appendix

has been added, of which I hope that it gives the
desired information and justification.

Appendix
The Synchronizing Primitives.

Explicit mutual synchronization of parallel
sequential processes is implemented via so~called
"semaphores". They are special purpose integer
variables allocated in the universe in which the
processes are embedded, they are initialized (with
the value O or 1) before the parallel processes
themselves are started, After this initialization
the parallel processes will sccess the semaphores
only via two very specific operations, the so~called
synchronizing primitives., For historical reasons

they are called the P-operation and the V-operation.
[The “THE” multiprogramming system, First SOSP]

11/33

The THE solution: semaphores

Still in practice today

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

45
47

49

#include <linux/compiler.h>
#include <linux/kernel.h>
#include <linux/export.h>
#include <linux/sched.h>
#include <linux/semaphore.h>
#include <linux/spinlock.h>
#include <linux/ftrace.h>

static noinline

void __down(struct semaphore *sem);

static noinline

int __down_interruptible(struct semaphore *sem);

static noinline

int __down_killable(struct semaphore *sem);

static noinline

int __down_timeout(struct semaphore *sem, long timeout);

static noinline

Vi

void __up(struct semaphore *sem);

* down - acquire the semaphore
* @sem: the semaphore to be acquired

*

* Acquires the semaphore. If no more tasks are allowed to acquire the
* semaphore, calling this function will put the task to sleep until the

* semaphore is
*

released.

11/33

P&V?
passing (P) and release (V) [EWD35]

kan duren., We geven dit aen met een P (van Passering); vooruitlopend op latere

behoeften representeren we de statement "SX:= true" door "y(SX) -met de V van Vrij-

gave. (Deze terminologie is ontleend aan het spoorwegwezen: in een eerder stadium

heetten de gemeenschappelijke logische variabelen "Seinpalen" en als hun naam met

een S begint, dan is dat nog een reminiscentie daarsan.) De text van de programma's

portmanteau try to reduce (P) and increase (V) [EWD51]

1.1, Qe operatie V ("Verhoog").
De operatie V kan betrekking hebben op sen willekeurig aantal verschillende
seinpalen, dus bv. "V(S1,52,53)". Als deze operatie in een van de machines voarkomt

EW053 - 2
-in ons voorbeeld moeten den 51, S2 en 53 voor deze machine toegankelijke seinpalen

zijn- dan is het effect, dat alle opgegeven seinpalen in én ondeelbare handeling
met 1 verhoogd worden.

1.2. De aperatie P (“Prolaag).

12/33

Time-sharing and multiprocessor parallelism

Early computers with several processors
@ For example, Burroughs B5000 [1961]

Much attention paid to parallelism:
@ Amdahl’s law for speedup [AFIPS 1967]
@ Traffic control in Multics [Saltzer PhD thesis, 1966]
@ Deadlock detection
@ Locking ordering

° ...
l.e., Most ideas that you will find in an intro OS text Tommals
Serious parallel applications [GE 645, Multics Overview 1965]

@ E.g., Multics Relational Database Store

» Ran on 6-processor computer at Ford
13/33

Time-sharing on minicomputers: just I/O parallelism

Minicomputers had only one processor

Multiprocessor parallelism de-emphasized

@ Other communities develop processor
parallelism further (e.g., DBs).

For example: Unix [SOSP 1973] $ cat todo.txt | sort | unig | wc

. . , . 273 1361 8983
@ Unix kernel implementation specialized 5
for uniprocessors
@ User programs are sequential

» Pipelines enable easy-to-use user-level
producer/consumer

To put oy etrongest conesrns in s nllﬂ.ahelll
1. We chowld heve acme waya of ecupling progrsme Mks
&nzﬂ.en kEpge-—torew in annther‘ segrent when 14 hecomes khen. .
‘11 besomes Legsseery to masssge detm In encther waoy, i

18 ik the way of IO slgo.

[Mcllroy 1964]

14/33

Phase 2: Client/server computing

Computers inexpensive enough to give each
user her own

Local-area networks and servers allow users
to collaborate

[Alto, Xerox PARC, 1975]

15/33

Goal: wide range of services

Idea: allow non-kernel programmers to implement services by supporting servers at user

level

Kernel

16/33

Challenge: user-level servers must exploit I/O concurrency

Client 1

Client 2

User-level server

Client ...

Client n

Some of the requests involve expensive 1/0

17/33

Solution: Make concurrency available to servers

Kernel exposes interface for server developers

@ Threads

@ Locks

@ Condition variables
Qo ..

ree

{
Kernel

18/33

Result: many high-impact ideas

New operating systems (Accent [SOSP 1981])/Mach [SOSP 1987], Topaz/Taos, V [SOSP
1983], etc.)

@ Support for multithreaded servers encourages microkernel design

Much impact: e.g., Pthreads [POSIX.1c, Threads extensions (IEEE Std 1003.1c-1995)]
@ Supported now by many widely-used operating systems

New programming languages (Mesa [SOSP 1979] , Modula2+, etc.)

@ If you have multithreaded programs, you want automatic garbage collection
@ Other nice features too (e.g., monitors, continuations)
@ Influenced Java, Go, ...

19/33

Programming with threads

An introduction to programming with threads
[Birrell tutorial 1989]

This is fairly straightforward, but there are still some subtleties. Notice that when a
consumer returns from the call of “Wait” his first action after re-locking the mutex is to

check once more whether the linked list is empty. This is an example of the following
general pattern, which I strongly recommend for all your uses of condition variables.

WHILE NOT expression DO Thread. Wait(m,c) END;

Case study: Cedar and GVX window system
[SOSP 1993]:

@ Many threads
@ Written over a 10 year period, 2.5M LoC

Design patterns:
Table 4. Static Counts

Cedar GVX
Defer work 108 31% 71 33%
Pumps
General pumps 48 14% 33 14%
Slack processes 7 2% 2 1%
Sleepers 67 19% 15 6%
Oneshots 25 7% 11 5%
Deadlock avoid 35 10% 6 3%
Task rejuvenate 11 3% 0 0%
Serializers 5 1% 7 3%
Encapsulated fork 14 4% 5 2%
Concurrency
exploiters 3 1% 0 0%
Unknown or other? 25 1% 78 33%
TOTAL 348 100% 234 100%
Bugs:
WHILE NOT (condition) DO WAIT cv END
not the

IF NOT (condition) THEN WAIT cv

20/33

The debate: events versus threads T iiiirenlin/iice AL Tin

(for most purposes)
Handle 1/O concurrency with event handlers

@ Simple: no races, etc.

John Ousterhout

Sun Micresystems Laboratories

@ Fast: No extra stacks, no locks [Keynote at USENIX 1995]
High-performance Web servers use events
Javascript uses events Should You Abandon Threads?

v No: important for high-end servers (e.g. databases).

The response: Why Events Are A Bad Idea [HOtOS IX] | gut, avoid threads wherever possible:
@ Must break up long-running code paths e i ak ad

distributed systems, low-end servers.

@ “Stack ripping” = gﬂzﬁ:ﬂgej’:rﬁe‘;’iﬁf true CPU Event-Driven Handlers
@ No support for multiprocessor parallelism B i e e i I I I I I

in threaded application kernel: keep
most of code single-threaded. Threaded Kernel

21/33

Phase 3: Shared-memory multiprocessors (SMPs)

Processor

Processor

Processor

Processor

Cache

Cache

Cache

Cache

Mid 90s: inexpensive x86s multiprocessors showed up with 2-4 processors

Kernel and server developers had take multiprocessor parallelism seriously

@ E.g., Big Kernel Lock (BKL)
@ E.g., Events and threads

Memory

22/33

Much research on large-scale multiprocessors in phase 3

Scalable NUMA multiprocessors: BBN Butterfly, Sequent, SGl,
Sun, Thinking Machines, ...

Many papers on scalable operating systems:
@ Scalable locks [TOCS 1991]
@ Efficient user-level threading [SOSP 1991]
@ NUMA memory management [ASPLOS 1996]
@ Read-copy update (RCU) [PDCS 1998, OSDI 1999]
°
°

Scalable virtual machines monitor [SOSP 1997]
[VU, Tanenbaum, 1987]

23/33

Uniprocessor performance keeps doubling in phase 3

No real need for expensive parallel machine

IS PARALLEL COMPUTING DEAD?
Ken Kennedy, Director, CRPC

The announcement that Thinking Machines would seek Chapter 11 bankruptcy protection,
although not unexpected, sent shock waves through the high- performance computing community.
Coupled with the well-publicized problems of Kendall Square Research and the rumored problems
of Intel Supercomputer Systems Division, this event has led many people to question the long-
term viability of the parallel computing industry and even parallel computing itself. Meanwhile,
the dramatic strides in the performance of scientific workstations continues to squeeze the market
for parallel supercomputing. On several recent occasions, I have been asked whether parallel
computing will soon be relegated to the trash heaj msewemne\'cr
managers, if they talk of high-performance computing at all, seem to view it as a small and
relatively unimportant subcomponent of the National Information Infrastructure.

Is parallel computing really dead? At the very least, it is undergoing a major transition. With the

[http://www.crpc.rice.edu/newsletters/oct94/director.html]
Panels at HotOS/OSDI/SOSP

24/33

Phase 4: multicore processors

100,000

10,000

1,000

100

10

Clock speed (MHz)
Power (watts)
Cores per socket
Total Mcycles/s

'\ l l

1 s
1985 1990 1995 2000 2005 2010 2015

Achieving performance on commodity hardware requires exploiting parallelism

25/33

Scalable operating systems return from the dead

Several parallel computing companies switch to Linux a0
e
Linux Support for NUMA Hardware

Large count multiprocessors are being built with non-uniform memory access (NUMA) times - access times that are dependent upon where
within the machine a piece of memory physically resides. For optimal performance, the kernel needs to be aware of where memory is located,
and keep memory used as close as possible to the user of the memory. Examples of NUMA machines include the NEC Azusa, the IBM x440
and the IBM NUMAQ.

The 2.5 Linux kernel includes many enhancements in support of NUMA machines. Data structures and macros are provided within the kernel
for determining the layout of the memory and processors on the system. These enable the VM subsystem to make decisions on the optimal
placement of memory for processes. This topology information is also exported to user-space via sysfs.

In addition to items that have been incorported into the 2.5 Linux kernel, there are NUMA features that have been developed that continue to be
supported as patchsets. These include NUMA enhancements to the scheduler, multipath I/O and a user-level API that provides user control over
the allocation of resources in respect to NUMA nodes.

This page provides links to information about the various Linux on NUMA projects. Discussions related to Linux on NUMA take place on the
lse-tech mailing list and on the linux kernel mailing list.

26/33

Many applications scale well on multicore processors

40 -
35
30 [~
25 [~
20 [~
15
10

gmake
Exim

Normalized throughput

| | | | | | | |
1 6 12 18 24 30 36 42 48
Cores

But, more applications stress parallelism in operating systems
@ Some tickle new scalability bottlenecks
@ Exim contends on a single reference counter in Linux [OSDI 2010, SOSP 2013]

27/33

Cache-line fetches are expensive

L1/L2

L1/L2

L1/L2

L1/L2

DRAM

L1/L2

L1/L2

L1/L2

L1/L2

DRAM

L1/L2 L1/L2
L1/L2 L1/L2
L1/L2 L1/L2
L1/L2 L1/L2

DRAM

L1/L2

L1/L2

L1/L2

L1/L2

DRAM

L1/L2

L1/L2

L1/L2

L1/L2

Read cache line written by
another core: expensive!
100—10000 cycles
(contention)

For reference, a creat system
call costs 2.5K cycles

28/33

Avoiding cache-line sharing is challenging

Consider read-write lock

struct read _write_lock {

int count; // -1, write mode; > 0, read mode
list_head waiters;

spinlock wait_lock;

Problem: to acquire lock in read mode requires modifying count
@ Fetching a remote cache line is expensive
@ Many readers can cause performance collapse

29/33

Read-copy update (RCU) becomes popular

Readers read shared data without holding any lock
@ Mark enter/exit read section in per-core data structure A
Writer makes changes available to readers using an atomic S

instruction
@ Free node when all readers have left read section

Lots of struggling to scale software [Recent OSDI/SOSP papers]

30/33

What will phase 4 mean for OS community?

What will commodity hardware look like?
@ 1000s of unreliable cores?
@ Many heterogeneous cores?
@ No cache-coherent shared memory?

How to avoid struggling for programmers?

@ Exploit transactional memory [ISCA 1993]?
@ Develop frameworks for specific domains?

» MapReduce [OSDI 2004], .., GraphX [OSDI 2014, ...

L,, Intef* Core™ i7
@ Develop principles that make systems scalable by design?
[SOSP 2013]

31/33

Stepping back: some observations

SOSP/OSDI papers had tremendous impact

@ Many ideas can be found in today’s operating systems and programming languages

Processes/threads have been good for managing computations
@ OS/X 10.10.5 launches 1158 threads, 308 processes on 4-core iMac at boot

Shared memory and locks have worked well for concurrency and parallelism

Events vs. threads — have both?

Rewriting OSes to make them more scalable has worked surprisingly well (so far)
@ From big kernel lock to fine-grained parallelism

32/33

Summary

Parallelism has moved up the software stack driven by changes
in commodity hardware

@ More and more programmers are writing parallel code

Today: to achieve performance on commodity hardware
programmers must use parallelism

@ Phase 1: time sharing
(foundational ideas)

@ Phase 2: client/server
(concurrent servers)

@ Phase 3: SMPs
(parallel kernels and
servers)

@ Phase 4: multicore (all
applications parallel)

33/33

Summary

Parallelism has moved up the software stack driven by changes
in commodity hardware

@ More and more programmers are writing parallel code

Today: to achieve performance on commodity hardware
programmers must use parallelism

Prediction: Many more SOSP/OSDI papers on parallelism

@ Phase 1: time sharing
(foundational ideas)

@ Phase 2: client/server
(concurrent servers)

@ Phase 3: SMPs
(parallel kernels and
servers)

@ Phase 4: multicore (all
applications parallel)

33/33

