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DEFINITION (In context of SOSP) 
• Virtualization is a property of operating systems that gives 

the illusion of efficiently running multiple independent 
computers known as virtual machines.  

•  The virtual machines be directly executed by (i.e., exactly 
mimic) the underlying physical machine, or they may 
comprise a more abstract system, parts, or all, of which 
are simulated by the physical machine.  

•  The part of the operating system that provides the virtual 
machine abstraction is commonly called a virtual machine 
monitor  or hypervisor. 



SOSP & VIRTUALIZATION 
• Virtual Machine Monitors 

• Layered Abstract Machines 

• OS Process as a Virtual Environment  

• Addressing Virtual Resources 

 

Note: referenced systems, papers are exemplars, not an exhaustive list. 



VIRTUAL MACHINE MONITORS 
• Origins in 1965 IBM M44/44X to explore page 

replacement algorithms 

• M44/44X allowed each “virtual machine” to have its own 
paging strategy to allow measurement and comparison 

• Evolved via CP/40 and CP/67 to VM/370 



IBM VM/370 
• Addressed three needs 

•  Time-sharing computer utility 
• Running legacy applications and their operating 

systems alongside new applications and systems 
• Developing and debugging new operating systems 

using same time-sharing environment as for 
applications 
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VIRTUALIZATION APPROACHES 
• Semi-formal model by Popek and Goldberg (1974) 

•  Notion of sensitive instructions which reveal processor state 

•  IBM 360/370 enabled pure virtualization 
•  Only privileged instructions in virtual supervisor mode have to be 

simulated by the VMM 

•  In contrast to hybrid virtualization  
•  Some unprivileged instructions have to be simulated in virtual 

supervisor mode in addition 
•  x86 only became pure with Intel VT-x / AMD SVM (2006) 



1975-1995 



1975-1995 
• IBM VM/370 continues... 

• Recursive virtual machines... 
• Lauer & Weyth,1973 
• CAP (Needham & Walker,1977) 

• Then... 



“SPECIAL EFFECT” VMMs 

• Hypervisor-based fault tolerance  
• (Schneider & Bressoud 1996) 

• ReVirt: enabling intrusion analysis...  
• (Dunlap, King, Cinar, Basrai & Chen 2002) 



HOSTED VMMs (TYPE 2) 
• Enable desktop OS coexistence 
• VMM runs as app on host OS 

• Often with associated kernel driver 
• Uses host OS services (file, network) 
• VMs run guest OS image 

• DEC-10 VMM for ITS (Galley, 1973) 
• VMWare Desktop for Windows (1999) 



NATIVE/BARE METAL VMMs (TYPE 1) 
• DISCO (Buignon, Devine, et al. 1997) 

• Hybrid virtualization with binary rewriting and shadowing 
in place of simulation 

• VMWare ESX Server (Waldspurger 2002) 
• System-wide resource multiplexing 
• Ballooning, Content-based Page Sharing 

• Xen (Barham et al. 2003) 
• Paravirtualization 



BENEFITS OF VIRTUAL MACHINES 
• Desktop virtualization 

•   OS coexistence 
•  Desktop checkpoint/restore, migration 

• Server virtualization 
•  Server consolidation  
•  Multi-tenancy with strong isolation  
•  Statistical multiplexing of resources across multiple virtual servers 
•  Management framework for server workloads 





LAYERED ABSTRACT MACHINES 
• Design and implement an operating system as a 

hierarchical series of abstract machines 
•  'THE’ multiprogramming system (Dijkstra, 1967) 

•  Layer 0: concurrency and interrupt handling (processes and 
semaphores) 

•  Layer 1: automatic memory paging 
•  Layer 2: operator’s console 
•  Layer 3: input-output 
•  Layer 5: Algol batch system 



WHY LAYER? 
• Build and test layer by layer 
• Structured (informal) proof of correctness 
 
• 1972, Liskov, Venus 

• 1980s, Comer, XINU 
 



LAYERING FOR SECURITY 
• US DoD Trusted Systems – Orange Book 

•  A1 – Verified design 
•  B2 – Structured protection 
•  B3 – Security domains (reference monitor) 

•  The foundations of a provably secure operating system 
(PSOS)  (Feiertag, Neumann, SRI, 1979) 
•  Hierarchical Design Methodology, SPECIAL 
•  17 Nominal layers for verification, collapsed to 9 in the 

implementation 



MULTICS KERNEL DESIGN 
•  1977, MIT redesign and reimplementation of Multics to 

meet B2/B3 criteria (Schroeder, Clark & Saltzer, 1977) 
• Added additional layers to system in order to remove code 

from the Multics supervisor so it could be reduced to be a 
reference monitor suitable for inspection 

•  Type Extension: treat each module as a type manager 
•  Ensure type dependency graph does not contain cycles 
•  Often had to split original modules into upper and lower types 



LAYERS AND MODULES 
• 1976, Haberman et al., FAMOS 

• Modularization and hierarchy in a family of operating 
systems  

• Set of components for building a family of (related) 
operating systems 

• Explored conflict between layers and  
modules 

• Similar model to 
Multics type extension 



LAYERING AND NETWORKS 
• Abstraction layering is not unique to systems 
• Protocols defined as interacting peer entities at 
increasing levels of abstraction 

• But Open Systems Interconnection 7-layer model 
regarded as overblown 

• Virtualization by layering 
• Virtual Private Networks 
• Virtual LANs 



OBSERVATIONS 
• Most of these systems were done by 
people with a background in programming 
languages and formal specification and 
verification 

• Some claim layering leads to inefficiency 
but XINU gives good evidence otherwise 





VIRTUAL ENVIRONMENTS 
• A process is a program executing in a virtual 
environment (Saltzer, 1966) 

• 1950s & 60s – Tyranny of the instruction set 
• Each new machine required everything to be re-written 
• Emulate older machines e.g., IBM 360 – IBM 1400 

• Atlas Extracodes 
• Undefined instructions that execute subroutines in fast 

memory – e.g., supervisor calls, library functions 



LIBRARIES 
•  1970s Emergence of practical general purpose / systems 

programming languages 
•  1980s Unix marked transition to the standard library 

becoming the virtual environment 
•  High level abstract interface for applications 
•  Low level concrete interface for the library 

• UNIX (via Multics) gave us the byte stream as the 
universal virtual device abstraction replacing messy 
record-oriented structures of earlier systems 



DISTRIBUTED UNIX 
• Distributed single image implementations of UNIX 
virtual environment didn’t last, e.g. Locus (Popek, 
1981) 
• Caching/Scaling problems (see Satya on file systems) 
• Autonomy of network of workstations model outweighed 

benefits of centralized management 





NAMING VIRTUALIZED RESOURCES 
• Useful to have a uniform context [location] independent 

way of naming sharable [virtual] resources 
• Capabilities (see Lampson for security aspects) 

•  C-lists (Dennis, Van Horn 1966) 
•  Capability-based addressing (Fabry 74)  
•  Amoeba (Tanenbaum et al. 1986) 

• Grew out of Codewords / descriptors 
•  Rice R1, R2 (1959-71), B5000 (1963) 
•  Tagged Architectures (Feustal 1972)  



PLAN 9 
 

• Bell Labs 1991 
• Every resource is a file 
• Name spaces are mountable, stackable, ... 



ACCESSING VIRTUAL RESOURCES  
• Lots of arguments about how to access virtual 
resources  

• See Kaashoek, Liskov on threads vs events 
• Custom protocol vs optimized RPC vs TCP/IP 
• Active versus passive objects (OMG CORBA) 
• Workstations versus Processor Banks 

•  PARC, MIT Athena, CMU Andrew, Cambridge Distributed System 
•  GUI windows as virtual resources, e.g. X window system 



TALKING POINTS 
• More mileage from using virtualization to modify 
operating system semantics? 

• VMM ≠ TCB, especially for type 2 
• Revisit layered abstract machines as a systems 
design and implementation principle? 

• Prove systems correct by default? 
•  seL4 (Klein, Elpinstone, Heiser, Andronick, ..., 2009) 
•  Verve (Yang & Hawblitzel,  2010) 


