
VIRTUALIZATION
Andrew Herbert

Cambridge University
ANSA
Microsoft Research
EDSAC Replica Project

DEFINITION (In context of SOSP)
• Virtualization is a property of operating systems that gives

the illusion of efficiently running multiple independent
computers known as virtual machines.

•  The virtual machines be directly executed by (i.e., exactly
mimic) the underlying physical machine, or they may
comprise a more abstract system, parts, or all, of which
are simulated by the physical machine.

•  The part of the operating system that provides the virtual
machine abstraction is commonly called a virtual machine
monitor or hypervisor.

SOSP & VIRTUALIZATION
• Virtual Machine Monitors

• Layered Abstract Machines

• OS Process as a Virtual Environment

• Addressing Virtual Resources

Note: referenced systems, papers are exemplars, not an exhaustive list.

VIRTUAL MACHINE MONITORS
• Origins in 1965 IBM M44/44X to explore page

replacement algorithms

• M44/44X allowed each “virtual machine” to have its own
paging strategy to allow measurement and comparison

• Evolved via CP/40 and CP/67 to VM/370

IBM VM/370
• Addressed three needs

•  Time-sharing computer utility
• Running legacy applications and their operating

systems alongside new applications and systems
• Developing and debugging new operating systems

using same time-sharing environment as for
applications

CP

Control Program
Scheduling

Paging
Virtual Disks

Device allocation

Conversational
Monitor
System

RSCS MVT MVT
CMS CMS CMS CMS

Remote Spooling
and

Communication
Service

Other IBM OS

VIRTUALIZATION APPROACHES
• Semi-formal model by Popek and Goldberg (1974)

•  Notion of sensitive instructions which reveal processor state

•  IBM 360/370 enabled pure virtualization
•  Only privileged instructions in virtual supervisor mode have to be

simulated by the VMM

•  In contrast to hybrid virtualization
•  Some unprivileged instructions have to be simulated in virtual

supervisor mode in addition
•  x86 only became pure with Intel VT-x / AMD SVM (2006)

1975-1995

1975-1995
• IBM VM/370 continues...

• Recursive virtual machines...
• Lauer & Weyth,1973
• CAP (Needham & Walker,1977)

• Then...

“SPECIAL EFFECT” VMMs

• Hypervisor-based fault tolerance
• (Schneider & Bressoud 1996)

• ReVirt: enabling intrusion analysis...
• (Dunlap, King, Cinar, Basrai & Chen 2002)

HOSTED VMMs (TYPE 2)
• Enable desktop OS coexistence
• VMM runs as app on host OS

• Often with associated kernel driver
• Uses host OS services (file, network)
• VMs run guest OS image

• DEC-10 VMM for ITS (Galley, 1973)
• VMWare Desktop for Windows (1999)

NATIVE/BARE METAL VMMs (TYPE 1)
• DISCO (Buignon, Devine, et al. 1997)

• Hybrid virtualization with binary rewriting and shadowing
in place of simulation

• VMWare ESX Server (Waldspurger 2002)
• System-wide resource multiplexing
• Ballooning, Content-based Page Sharing

• Xen (Barham et al. 2003)
• Paravirtualization

BENEFITS OF VIRTUAL MACHINES
• Desktop virtualization

•  OS coexistence
•  Desktop checkpoint/restore, migration

• Server virtualization
•  Server consolidation
•  Multi-tenancy with strong isolation
•  Statistical multiplexing of resources across multiple virtual servers
•  Management framework for server workloads

LAYERED ABSTRACT MACHINES
• Design and implement an operating system as a

hierarchical series of abstract machines
•  'THE’ multiprogramming system (Dijkstra, 1967)

•  Layer 0: concurrency and interrupt handling (processes and
semaphores)

•  Layer 1: automatic memory paging
•  Layer 2: operator’s console
•  Layer 3: input-output
•  Layer 5: Algol batch system

WHY LAYER?
• Build and test layer by layer
• Structured (informal) proof of correctness

• 1972, Liskov, Venus

• 1980s, Comer, XINU

LAYERING FOR SECURITY
• US DoD Trusted Systems – Orange Book

•  A1 – Verified design
•  B2 – Structured protection
•  B3 – Security domains (reference monitor)

•  The foundations of a provably secure operating system
(PSOS) (Feiertag, Neumann, SRI, 1979)
•  Hierarchical Design Methodology, SPECIAL
•  17 Nominal layers for verification, collapsed to 9 in the

implementation

MULTICS KERNEL DESIGN
•  1977, MIT redesign and reimplementation of Multics to

meet B2/B3 criteria (Schroeder, Clark & Saltzer, 1977)
• Added additional layers to system in order to remove code

from the Multics supervisor so it could be reduced to be a
reference monitor suitable for inspection

•  Type Extension: treat each module as a type manager
•  Ensure type dependency graph does not contain cycles
•  Often had to split original modules into upper and lower types

LAYERS AND MODULES
• 1976, Haberman et al., FAMOS

• Modularization and hierarchy in a family of operating
systems

• Set of components for building a family of (related)
operating systems

• Explored conflict between layers and
modules

• Similar model to
Multics type extension

LAYERING AND NETWORKS
• Abstraction layering is not unique to systems
• Protocols defined as interacting peer entities at
increasing levels of abstraction

• But Open Systems Interconnection 7-layer model
regarded as overblown

• Virtualization by layering
• Virtual Private Networks
• Virtual LANs

OBSERVATIONS
• Most of these systems were done by
people with a background in programming
languages and formal specification and
verification

• Some claim layering leads to inefficiency
but XINU gives good evidence otherwise

VIRTUAL ENVIRONMENTS
• A process is a program executing in a virtual
environment (Saltzer, 1966)

• 1950s & 60s – Tyranny of the instruction set
• Each new machine required everything to be re-written
• Emulate older machines e.g., IBM 360 – IBM 1400

• Atlas Extracodes
• Undefined instructions that execute subroutines in fast

memory – e.g., supervisor calls, library functions

LIBRARIES
•  1970s Emergence of practical general purpose / systems

programming languages
•  1980s Unix marked transition to the standard library

becoming the virtual environment
•  High level abstract interface for applications
•  Low level concrete interface for the library

• UNIX (via Multics) gave us the byte stream as the
universal virtual device abstraction replacing messy
record-oriented structures of earlier systems

DISTRIBUTED UNIX
• Distributed single image implementations of UNIX
virtual environment didn’t last, e.g. Locus (Popek,
1981)
• Caching/Scaling problems (see Satya on file systems)
• Autonomy of network of workstations model outweighed

benefits of centralized management

NAMING VIRTUALIZED RESOURCES
• Useful to have a uniform context [location] independent

way of naming sharable [virtual] resources
• Capabilities (see Lampson for security aspects)

•  C-lists (Dennis, Van Horn 1966)
•  Capability-based addressing (Fabry 74)
•  Amoeba (Tanenbaum et al. 1986)

• Grew out of Codewords / descriptors
•  Rice R1, R2 (1959-71), B5000 (1963)
•  Tagged Architectures (Feustal 1972)

PLAN 9

• Bell Labs 1991
• Every resource is a file
• Name spaces are mountable, stackable, ...

ACCESSING VIRTUAL RESOURCES
• Lots of arguments about how to access virtual
resources

• See Kaashoek, Liskov on threads vs events
• Custom protocol vs optimized RPC vs TCP/IP
• Active versus passive objects (OMG CORBA)
• Workstations versus Processor Banks

•  PARC, MIT Athena, CMU Andrew, Cambridge Distributed System
•  GUI windows as virtual resources, e.g. X window system

TALKING POINTS
• More mileage from using virtualization to modify
operating system semantics?

• VMM ≠ TCB, especially for type 2
• Revisit layered abstract machines as a systems
design and implementation principle?

• Prove systems correct by default?
•  seL4 (Klein, Elpinstone, Heiser, Andronick, ..., 2009)
•  Verve (Yang & Hawblitzel, 2010)

