
 1 2015 M. Satyanarayanan SOSP-25 History Day

Memory and File Systems
SOSP-25 Retrospective

Mahadev Satyanarayanan

School of Computer Science

Carnegie Mellon University

 2 2015 M. Satyanarayanan SOSP-25 History Day

Four Drivers of Progress
The quest for scale from early 1950s

The quest for speed from early 1950s

The quest for transparency from early-1960s

The quest for robustness from mid- to late-1960s
(both system and human errors)

Complex Interactions

 3 2015 M. Satyanarayanan SOSP-25 History Day

The Quest for Scale

 4 2015 M. Satyanarayanan SOSP-25 History Day

Cost of Memory & Storage
(Source: John C. MacCallum http://jcmit.com)

Memory Prices ($ / MB)
~13 orders of magnitude since 1955

Flip-Flops 
Core ■

ICs on boards ▲

SIMMS ?

DIMMS ●

Big Drives 

Floppy Drives +

Small Drives x

Flash Memory -
SSD 

 5 2015 M. Satyanarayanan SOSP-25 History Day

Naming and Addressability
Consistently too few bits in addressing (12-bit, 16-bit, 18-bit, 32-bit, )

re-learned in DOS/ Win3.1 (memory extenders); hopefully 64 bits will last us a while

Semantic addressing
hierarchical name spaces, SQL, search engines

Content Addressable Storage (aka deduplication)
Venti (late 1990s), LBFS (early 2000s), many others since,
continuing concerns regarding collisions (Val Henson)

Capability-based
� short term (seconds, minutes, hours lifetime)

can be viewed as a form of caching expensive/cumbersome access checks

� long term (infinite life)
Hydra on C.mmp (mid 1970s) pushed this concept to the limit
Intel iAPX 432 (3 papers in SOSP 1981!)

 6 2015 M. Satyanarayanan SOSP-25 History Day

The Quest for Speed

 7 2015 M. Satyanarayanan SOSP-25 History Day

Processor-Memory Speed Gap
Source: �Computer Architecture, A Quantitative Approach� by Hennessy and Patterson

Processor speed doubles every 18 months
DRAM speed doubles every 10 years

What happened before
1980 when DRAM started dominating?

 8 2015 M. Satyanarayanan SOSP-25 History Day

Before 1980
Model Shipped Scientific

Performance
(KIPS)

Commercial
Performance
(KIPS)

CPU
Bandwidth
(MB/s)

Memory
Bandwidth
(MB/s)

Memory
Size (KB)

30 1965 10.2 29.0 1.3 0.7 864
40 1965 40.0 75.0 3.2 0.8 16256
50 1965 133.0 169.0 8.0 2.0 64512
65 1965 563.0 567.0 40.0 21.0 1281024
75 1966 940.0 670.0 41.0 43.0 2561024
91 1967 1900.0 1800.0 133.0 164.0 10244096

Model Shipped Processor
Cycle Time

Memory
Access Time

Memory
Size (KB)

155 1971 115 ns 2 ms 2562048
165 1971 80 ns 2 ms 5123072

IBM System/370 Source: Wikipedia

IBM System/360 Source: Wikipedia

 9 2015 M. Satyanarayanan SOSP-25 History Day

Creating an Illusion of Scale and Speed
Memory hierarchies

� scale appears to be that of slower but more scalable technology

� speed appears to be that of faster but less scalable technology

� essentially probabilistic in character (worst case can be bad)

Working set characterizes the goodness of fit

Exploiting parallel data paths for increased bandwidth
� striping
� sharding
� bit-torrent, etc

 10 2015 M. Satyanarayanan SOSP-25 History Day

Managing Data Across Levels
LRU and variants work amazingly well!

Alas, a few workloads defeat LRU
� purely sequential access  zero temporal locality

caching cannot help at all; only adds overhead

� purely random access  being smart is useless
ratio of cache size to total data size is all that matters

� these access patterns are observed in the real world
file scans in data mining, video/audio playback, hash-based data structures, 

Multi-decade quest for improvement over LRU for these workloads
ARC: adaptive replacement cache (Megiddo & Modha 2003) best so far

 11 2015 M. Satyanarayanan SOSP-25 History Day

The Quest for Transparency

 12 2015 M. Satyanarayanan SOSP-25 History Day

Transparency
�Indistinguishable from original abstraction�

� no application changes: programs behave as expected
� no unpleasant surprises for users: good user experience
� importance increases as hardware to human cost ratio shifts

Hugely important in industry, less important in academic research

Achieved by interposing new functionality at widely-used interfaces
� memory abstraction (hardware caches)
� POSIX distributed file systems
� x86 virtual machines


 13 2015 M. Satyanarayanan SOSP-25 History Day

Some Transparency Landmarks
Caching (not overlays or other software-visible abstractions)

� consistency of distributed caches
� strict consistency vs. weak / eventual consistency

Shared memory in multiprocessor systems
� UMA: �uniform memory access� (e.g. C.mmp and many others)

� NUMA: �non-uniform memory access� (e.g. Cm* and many others)

� NORMA: �no remote memory access� (Berkeley NOW project, and others)

Distributed Shared Memory
� hot topic in 1990s; long dormant
� it is coming back! (OSDI 2012: COMET)

 14 2015 M. Satyanarayanan SOSP-25 History Day

A Brief History of Caching
Demand paging was first known use of caching idea (1961)

Hardware caches (1968)
"Structural Aspects of the System/360 Model

85, Part II: The Cache,�
J. S. Liptay, IBM Systems Journal,
Vol. 7, No. 1, 1968

Distributed file systems (~1983)
� AFS, NFS, Sprite, Coda

Web caching (mid 1990s)
� SQUID, Akamai (CDNs)

Virtual machine state caching (early 2000s)
� Internet Suspend/Resume, Collective, Olive

Key-Value caches (mid 2000s)
� REDIS

John Fotheringham, CACM, 1961, pp 435-436

 15 2015 M. Satyanarayanan SOSP-25 History Day

Caching is Universal
User

Hardware
(on-chip, off-chip,

disk controllers, )

OS
(virtual memory,

file systems,
databases, )

Middleware
(WebSphere,
Grid tools, )

Distributed
Systems

(distrib. file sys,
Web, DSM, )

Applications
(Outlook, )

• Variable size more common

• More time for decision making

• More space for housekeeping

• More complex success criteria

• Less temporal locality

• Less spatial locality

• Higher cache advantage common

• Fixed size almost universal

• Fast, cheap decisions essential

• Miss ratio says it all (all misses equally bad)

• Greater temporal & spatial locality

Caveat: these are �soft� differences

 16 2015 M. Satyanarayanan SOSP-25 History Day

The Importance of Demand Fetch
Assumes ability to detect read operations

� ability to detect cache misses
� ability to interpose cache logic
� result is total transparency

In a file system this requires OS support
� distributed file systems (e.g AFS, Coda, )
� FUSE interface

Systems like DropBox cannot do this
� lack of OS support simplifies implementation
� improves portability of code across OSes
� DropBox needs complete replicas everywhere

(aka �sync solution�)

Without OS intercept

1. Even viewing one small file
requires whole replica

2. Every update has to be
propagated everywhere

 17 2015 M. Satyanarayanan SOSP-25 History Day

Cache Consistency Strategies
emulate one-copy semantics of memory

1. Broadcast invalidations

2. Check on Use

3. Callbacks

4. Leases

5. Skip Scary Parts

6. Faith-based Caching

7. Pass the Buck

Many variants over
the years, but these
lie at their core

Natural
consequence of
distribution +
caching

Crucial dimension
of transparency

Avoids changes
to application
software

Meets user
expectations of
system behavior

 18 2015 M. Satyanarayanan SOSP-25 History Day

The Quest for Robustness

 19 2015 M. Satyanarayanan SOSP-25 History Day

Coping With System Failures
ECC memory

Erasure coding

RAID (including mirroring)

Bad-block mapping

Wear-leveling of flash storage

Data replication and disaster recovery

Disconnected operation



 20 2015 M. Satyanarayanan SOSP-25 History Day

Coping With Human Error
Use of separate address spaces (threads vs. processes)

Easy retrospection of file systems by users
� periodic read-only snapshots (AFS)
� Apple Time Machine, Elephant File System, 

Why is memory distinct from file system?

Single level stores have been proposed in the past
� but separation offers enhanced robustness
� well-formed open / read / write / close unlikely to be accidental
� contrast with wild memory write

 21 2015 M. Satyanarayanan SOSP-25 History Day

Are Classic File Systems Dead?

 22 2015 M. Satyanarayanan SOSP-25 History Day

Hot Topic Today
the death watch has begun

 23 2015 M. Satyanarayanan SOSP-25 History Day

Appears True at High Level
E.g. Android software focuses on Java classes and SQLite

� Android users never see a classic file system

� But, underneath the Dalvik VM, is the Linux native environment

� classic hierarchical file system continues to live on

This model may indeed become common

Will the lower layer vanish completely some day?

 24 2015 M. Satyanarayanan SOSP-25 History Day

Not a New Viewpoint!

 25 2015 M. Satyanarayanan SOSP-25 History Day

Why are File Systems Hierarchical?
Ken Thompson made radical changes in creating Unix

�why was the Unix file system so conventional and hierarchical?
�mere sentiment? lack of imagination?

�The Architecture of Complexity�
Herbert A. Simon, Proceedings of the American Philosophical Society,
Vol. 106, No. 6., Dec. 12, 1962, pp. 467-482.

�Empirically, a large proportion of the complex systems we observe in
nature exhibit hierarchic structure. On theoretical grounds we could expect
complex systems to be hierarchies in a world in which complexity had to
evolve from simplicity. In their dynamics, hierarchies have a property,
near-decomposability, that greatly simplifies their behavior.�

 26 2015 M. Satyanarayanan SOSP-25 History Day

Near-Decomposability
Key property of human-created hierarchical systems (Simon 1962)

Consequence of human cognitive limitations

Allows focus on immediate neighborhood (current directory + children)
� apparent shrinking of scale
� valuable to exploit in achieving scalability
� exploitable in concurrency control, failure resiliency, consistency, etc.

Hierarchical file systems reflect the limitations of human cognition

� without external tools, that�s the best organization for human minds

� �external tools�: e.g., SQL databases and search engines

 27 2015 M. Satyanarayanan SOSP-25 History Day

How Hierarchy Helps
Hierarchical file systems conflate search and access

� well-matched to limitations of human cognition,
� locality is an emergent property (temporal and spatial)
� locality is precious performance-wise for direct human exploration of data

Retrospective use of old unstructured data (e.g., decades later) 
� even the features for indexing may be unclear
� manual exploration may be necessary

Need for manual exploration (even if rare) 
� hierarchical file systems will not disappear
� but the hierarchical nature may remain deeply buried

 28 2015 M. Satyanarayanan SOSP-25 History Day

The Death of File Systems?
�� report of my death was an exaggeration�

	Memory and File Systems SOSP-25 Retrospective
	Four Drivers of Progress
	The Quest for Scale
	Cost of Memory & Storage (Source: John C. MacCallum http://jcmit.com)
	Naming and Addressability
	The Quest for Speed
	Processor-Memory Speed Gap
	Before 1980
	Creating an Illusion of Scale and Speed
	Managing Data Across Levels
	The Quest for Transparency
	Transparency
	Some Transparency Landmarks
	A Brief History of Caching
	Caching is Universal
	The Importance of Demand Fetch
	Cache Consistency Strategies emulate one-copy semantics of memory
	The Quest for Robustness
	Coping With System Failures
	Coping With Human Error
	Are Classic File Systems Dead?
	Hot Topic Today the death watch has begun
	Appears True at High Level
	Not a New Viewpoint!
	Why are File Systems Hierarchical?
	Near-Decomposability
	How Hierarchy Helps
	The Death of File Systems? “…report of my death was an exaggeration”

