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Four Drivers of Progress
The quest for scale from early 1950s

The quest for speed from early 1950s

The quest for transparency from early-1960s

The quest for robustness from mid- to late-1960s 
(both system and human errors)

Complex Interactions
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The Quest for Scale
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Cost of Memory & Storage
(Source: John C. MacCallum http://jcmit.com)

Memory Prices ($ / MB)
~13 orders of magnitude since 1955

Flip-Flops 
Core ■ 

ICs on boards ▲

SIMMS   ? 

DIMMS  ●

Big Drives 

Floppy Drives +

Small Drives x

Flash Memory -
SSD 
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Naming and Addressability
Consistently too few bits in addressing (12-bit, 16-bit, 18-bit, 32-bit, )

re-learned in DOS/ Win3.1 (memory extenders);   hopefully 64 bits will last us a while

Semantic addressing
hierarchical name spaces, SQL, search engines

Content Addressable Storage (aka deduplication)
Venti (late 1990s),  LBFS (early 2000s),  many others since,
continuing concerns regarding collisions (Val Henson)

Capability-based
� short term (seconds, minutes, hours lifetime)

can be viewed as a form of  caching expensive/cumbersome access checks

� long term (infinite life)
Hydra on C.mmp (mid 1970s) pushed this concept to the limit
Intel iAPX 432 (3 papers in SOSP 1981!)
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The Quest for Speed
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Processor-Memory Speed Gap
Source: �Computer Architecture, A Quantitative Approach� by Hennessy and Patterson

Processor speed doubles every 18 months
DRAM speed doubles every 10 years

What happened before
1980 when DRAM started dominating?
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Before 1980
Model Shipped Scientific 

Performance 
(KIPS)

Commercial 
Performance 
(KIPS)

CPU 
Bandwidth 
(MB/s)

Memory 
Bandwidth 
(MB/s)

Memory 
Size (KB)

30 1965 10.2 29.0 1.3 0.7 864
40 1965 40.0 75.0 3.2 0.8 16256
50 1965 133.0 169.0 8.0 2.0 64512
65 1965 563.0 567.0 40.0 21.0 1281024
75 1966 940.0 670.0 41.0 43.0 2561024
91 1967 1900.0 1800.0 133.0 164.0 10244096

Model Shipped Processor
Cycle Time

Memory
Access Time

Memory 
Size (KB)

155 1971 115 ns 2 ms 2562048
165 1971 80 ns 2 ms 5123072

IBM System/370 Source: Wikipedia

IBM System/360 Source: Wikipedia
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Creating an Illusion of Scale and Speed
Memory hierarchies

� scale appears to be that of slower but more scalable technology

� speed appears to be that of faster but less scalable technology

� essentially probabilistic in character (worst case can be bad)

Working set characterizes the goodness of fit

Exploiting parallel data paths for increased bandwidth
� striping
� sharding
� bit-torrent, etc
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Managing Data Across Levels
LRU and variants work amazingly well!  

Alas, a few workloads defeat LRU
� purely sequential access   zero temporal locality 

caching cannot help at all; only adds overhead

� purely random access  being smart is useless
ratio of cache size to total data size is all that matters

� these access patterns are observed in the real world
file scans in data mining, video/audio playback, hash-based data structures, 

Multi-decade quest for improvement over LRU for these workloads
ARC: adaptive replacement cache (Megiddo & Modha 2003) best so far
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The Quest for Transparency
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Transparency
�Indistinguishable from original abstraction�

� no application changes:  programs behave as expected
� no unpleasant surprises for users:  good user experience
� importance increases as hardware to human cost ratio shifts

Hugely important in industry, less important in academic research

Achieved by interposing new functionality at widely-used interfaces
� memory abstraction (hardware caches)
� POSIX distributed file systems
� x86 virtual machines

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Some Transparency Landmarks
Caching (not overlays or other software-visible abstractions)

� consistency of distributed caches
� strict consistency vs. weak / eventual consistency

Shared memory  in multiprocessor systems
� UMA: �uniform memory access�   (e.g. C.mmp and many others)

� NUMA: �non-uniform memory access� (e.g. Cm* and many others)

� NORMA: �no remote memory access� (Berkeley NOW project, and others)

Distributed Shared Memory
� hot topic in 1990s; long dormant
� it is coming back! (OSDI 2012: COMET)
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A Brief History of Caching
Demand paging was first known use of caching idea (1961)

Hardware caches (1968)
"Structural Aspects of the System/360 Model 

85, Part II: The Cache,�
J. S. Liptay, IBM Systems Journal,
Vol. 7, No. 1, 1968

Distributed file systems (~1983)
� AFS, NFS, Sprite, Coda

Web caching (mid 1990s)
� SQUID, Akamai (CDNs)

Virtual machine state caching (early 2000s)
� Internet Suspend/Resume, Collective, Olive

Key-Value caches (mid 2000s)
� REDIS

John Fotheringham, CACM, 1961, pp 435-436
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Caching is Universal
User

Hardware
(on-chip, off-chip,

disk controllers, )

OS
(virtual memory, 

file systems,
databases, )

Middleware
(WebSphere,
Grid tools, )

Distributed 
Systems

(distrib. file sys,
Web, DSM, )

Applications
(Outlook, )

• Variable size more common

• More time for decision making

• More space for housekeeping

• More complex success criteria

• Less temporal locality

• Less spatial locality

• Higher cache advantage common

• Fixed size almost universal

• Fast, cheap decisions essential

• Miss ratio says it all (all misses equally bad)

• Greater temporal & spatial locality

Caveat: these are �soft� differences
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The Importance of Demand Fetch
Assumes ability to detect read operations

� ability to detect cache misses
� ability to interpose cache logic
� result is total transparency

In a file system this requires OS support
� distributed file systems (e.g AFS, Coda, )
� FUSE interface

Systems like DropBox cannot do this
� lack of OS support simplifies implementation
� improves portability of code across OSes
� DropBox needs complete replicas everywhere

(aka �sync solution�)

Without OS intercept

1. Even viewing one small file 
requires whole replica

2. Every update has to be 
propagated everywhere
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Cache Consistency Strategies
emulate one-copy semantics of memory

1. Broadcast invalidations

2. Check on Use

3. Callbacks

4. Leases

5. Skip Scary Parts

6. Faith-based Caching

7. Pass the Buck

Many variants over 
the years, but these 
lie at their core

Natural 
consequence of 
distribution + 
caching

Crucial dimension 
of transparency

Avoids changes 
to application 
software

Meets user 
expectations of 
system behavior
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The Quest for Robustness
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Coping With System Failures
ECC memory

Erasure coding

RAID (including mirroring)

Bad-block mapping

Wear-leveling of flash storage

Data replication and disaster recovery

Disconnected operation


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Coping With Human Error
Use of separate address spaces (threads vs. processes)

Easy retrospection of file systems by users
� periodic read-only snapshots (AFS)
� Apple Time Machine, Elephant File System, 

Why is memory distinct from file system? 

Single level stores have been proposed in the past
� but separation offers enhanced robustness
� well-formed open / read / write / close  unlikely to be accidental
� contrast with wild memory write
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Are Classic File Systems Dead?
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Hot Topic Today
the death watch has begun
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Appears True at High Level
E.g. Android software  focuses  on Java classes and SQLite

� Android users never see a classic file system

� But, underneath the Dalvik VM, is the Linux native environment

� classic hierarchical file system continues to live on

This model may indeed become common

Will the lower layer vanish completely some day?
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Not a New Viewpoint!
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Why are File Systems Hierarchical?
Ken Thompson made radical changes in creating Unix

�why was the Unix file system so conventional and hierarchical?
�mere sentiment?  lack of imagination?

�The Architecture of Complexity�
Herbert A. Simon, Proceedings of the American Philosophical Society,
Vol. 106, No. 6., Dec. 12, 1962, pp. 467-482.

�Empirically, a large proportion of the complex systems we observe in 
nature exhibit hierarchic structure.  On theoretical grounds we could expect 
complex systems to be hierarchies in a world in which complexity had to 
evolve from simplicity. In their dynamics, hierarchies have a property, 
near-decomposability, that greatly simplifies their behavior.�
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Near-Decomposability
Key property of human-created hierarchical systems (Simon 1962)

Consequence of human cognitive limitations

Allows focus on immediate neighborhood (current directory + children)
� apparent shrinking of scale
� valuable to exploit in achieving scalability
� exploitable in concurrency control, failure resiliency, consistency, etc.

Hierarchical file systems reflect the limitations of human cognition

� without external tools, that�s the best organization for human minds

� �external tools�:  e.g., SQL databases and search engines



 27 2015 M. Satyanarayanan SOSP-25 History Day

How Hierarchy Helps
Hierarchical file systems conflate search and access

� well-matched to limitations of human cognition, 
� locality is an emergent property (temporal and spatial)
� locality is precious performance-wise for direct human exploration of data

Retrospective use of old unstructured data (e.g., decades later)  
� even the features for indexing may be unclear
� manual exploration may be necessary

Need for manual exploration (even if rare) 
� hierarchical file systems will not disappear
� but the hierarchical nature may remain deeply buried 
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The Death of File Systems?
�� report of my death was an exaggeration�
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