
Perspectives on System
Languages and Abstractions

Barbara Liskov
October 2015

MIT CSAIL

Abstractions for Structuring
Systems
  The early days

  Single machine systems
  Distributed systems

Single Machine Systems
  In the beginning: batch processing

  So:
  Multiprogramming
  Time sharing

“THE”
  E. W. Dijkstra, The structure of the

“THE”- Multiprogramming system
  CACM 68, SOSP 67, and EWD 196

  Strictly layered
  Independent users

Layer 0
  Processes and semaphores

  P and V operations

  Used for
  Critical sections
  IPC (“private” semaphores)

  No “deadly embrace”

Venus
  B. Liskov, The design of the Venus

operating system
  CACM 72 and SOSP 71

  A time-sharing system
  Processes and semaphores in microcode

The Structure of Venus
  Resources presented through “layers of

abstraction”
  Multiple operations
  Hidden state and resources
  Calls ran in process of caller

  E.g., a printer requestor

Two System Models
  Resources managed by resource

processes
  With IPC

  Resources managed by user processes
  With abstract data types (ADTs) and

procedure calls

These Models are Duals
  Lauer and Needham, On the duality of

operating system structures,
  Proc. 2nd International symp. on operating

systems, 78 and SIGOPS Review 79

  E.g., port == operation

Programming Issues
  Resource process multiplexing
  User process synchronization

  monitors
  C. A. R. Hoare, CACM 74, Monitors: an

operating system structuring concept

Monitors
  ADT with associated lock acquired

automatically
  Plus condition variables

  Wait c releases the monitor lock
  Signal c passes the lock

Monitors in Mesa
  Lampson and Redell, Experience with

processes and monitors in Mesa
  CACM 80 and SOSP 79

  Issues:
  Nested monitor problem
  “external” operations

Programming Languages
  Modula and later variants
  Concurrent Pascal
  Mesa

Distributed Systems
  Motivation

  Sharing on a LAN
  The dream of distributed computing

  But: how to structure?
  Clients and servers?
  Distributed heap?

Communication is Required
  Communication is hard

  “ … construction of communicating programs was
a difficult task, undertaken only by members of a
select group of communication experts.” (B&N,
Implementing remote procedure calls, TOCS 84)

Communication Issues
  Linking requests with replies
  Format of messages

  Heterogeneity vs. homogeneity

  Location independence
  Local vs. remote
  Finding/selecting remote servers

Remote Procedure Calls
  B. J. Nelson, Remote procedure call

  Xerox Parc TR CSL-81-9

  Birrell and Nelson, Implementing
remote procedure calls
  TOCS 84 and SOSP 83

RPC Motivation
  It’s clean and simple and general

  Local and remote calls look the same

  Issues in request/reply are similar

RPC (B&N, TOCS 84)

Doing More

Replica Client
Application Viewstamp

Replication
operation

result

Application Viewstamp
Replication

operation

result

RPC Issues
  Inherent expense

RPC Issues
  Call/reply too constraining

  Liskov and Shrira, Promises: Linguistic
support for efficient asynchronous
procedure calls in distributed systems,
PLDI 88

  Gifford and Glasser, Remote pipes and
procedures for efficient distributed
communication, TOCS 88

RPC Issues
  Semantics

  Exactly once if reply (B&N 84)
  Exactly once (Liskov and Scheifler,

Guardians and actions: Linguistic support
for robust, distributed programs, TOCS 83)

What Next?
  Perhaps we need new abstractions?

  Client/server with extended RPC?

  Perhaps we should be doing more
language design?

Perspectives on System
Languages and Abstractions

Barbara Liskov
October 2015

MIT CSAIL

