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File systems are buggy and underspecified

• 40% of FS patches fix bugs [Lu et al., FAST’13]
– 20% of the bugs are concurrency bugs

• Hard to eliminate due to many possible interleavings

• POSIX is vague about concurrent behavior
– E.g., unclear whether an operation should be atomic
– Hard to reason about higher-level applications
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Approach: formal verification

• Concurrent implementation meets specification
– Under arbitrary interleavings

– Proof checked by proof assistant (Coq)

• Avoid large classes of bugs

• Specification serves as a precise interface
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Verification efforts

• File system verification
– FSCQ project [SOSP’15,SOSP’17,Tej M.S. thesis]
– Yggdrasil [OSDI’16]
– Cogent [ASPOLOS’16]

• Concurrent system verification
– CertiKOS [OSDI’16]
– CSPEC [OSDI’18]
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No fine-grained
concurrency

Not applicable
to FS

Goal: verify a fine-grained, 
concurrent file system



Contributions
• CRL-H: Concurrent Relation Logic with Helpers for concurrent file systems

– Helper mechanism

– Proofs mechanically checked by Coq

• AtomFS: the first verified concurrent FS with fine-grained locking
– Fine-grained: per-inode lock (no crash-safety)

– Atomic interfaces

– Verified directly in C language
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How to specify “correct”?
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For a sequential file system, correct if sequential history is legal

Sequential
historySequential file system

Concurrent
execution mkdir(/a), succss

unlink(/b), failure

Concurrent file system

How to describe concurrent via sequential?

mkdir(/a), succss unlink(/b), failure



This work: “correct” means linearizability
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Concurrent
execution mkdir(/a), succss

map to

Linearizability: describe concurrent via sequential

Correct if equivalent “sequential” history is legal

Sequential
history

linearization point (LP)---effect happens atomically

unlink(/b), failure



Prove linearizability via forward simulation

8

mkdir

Abstract MKDIR

C0 Ci Ci+1 Cn

A0 A1

LP
Concrete state

Equivalent
effect

Abstract state

multi steps multi steps

/

a

Abstract file system
as a tree

/
a

b

MKDIR(/a/b)
Define abstract

state and abstract
operation



Prove linearizability via forward simulation
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Prove linearizability via forward simulation
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C0 Ci Ci+1 Cn

A0 A1

LP

effect

effect

Abstraction relation

Construct linearization of abstract operation
following temporal order of LPs

Simulation proof

Linearizability

Proven by
Liang et al, PLDI’13
Filipovic, ESOP’09

Concurrent
execution mkdir(/a), success

unlink(/b), failure

Linearization

MKDIR(/a), success UNLINK(/b), failure



Strawman: fixed LP in critical section

mkdir(path)
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/* error and corner cases
handling omitted*/

def mkdir(path)
split(path, dir, name);

// traverse path from root
look(root);
fat = locate(root, dir);

// fat’s lock is held
node = init();
insert(fat, name, node);

unlock(fat);

return success;

2. Pathname resolution

3. Lock-protected critical
section (where updates

happen)

4. Invocation returns

1. Invocation begins

Pattern of path-based operations

LP of mkdir



Strawman: fixed LP in critical section

mkdir(path)
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begin lookup LP return

rename(src, dst)
begin lookup LP return

If fixed LP is correct and
implementation is linearizable

We can construct linearization
for any concurrent execution



Challenge: fixed LP could fail in linearization

mkdir(/a/b/c)
begin lookup

rename(/a,/d)
begin lookup LP success

LP success
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Two threads



Challenge: fixed LP could fail in linearization

mkdir(/a/b/c)
begin lookup

rename(/a,/d)
begin lookup LP success

LP success
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Challenge: fixed LP could fail in linearization

mkdir(/a/b/c)
begin lookup

rename(/a,/d)
begin lookup LP success

LP success

15

/

a
b

/

a
b

Initially mkdir traverses
to b

/

d
b

rename finishes

Two threads



Challenge: fixed LP could fail in linearization

mkdir(/a/b/c)
begin lookup

rename(/a,/d)
begin lookup LP success

LP success
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Initially mkdir traverses
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/

d
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d
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Challenge: fixed LP could fail in linearization
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(Should be failure)

begin lookup

begin lookup LP success

LP success
mkdir(/a/b/c)

rename(/a,/d)

RENAME(/a, /d)
�success

MKDIR(/a/b/c)
�success

Map to abstract
operation

Not legal



Challenge: fixed LP could fail in linearization
begin lookup

begin lookup LP success

LP success
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Cannot obtain legal
linearization using fixed LPs

？

mkdir(/a/b/c)

rename(/a,/d)

�success
MKDIR(/a/b/c)

�success
RENAME(/a, /d)

Legal

Check other cases All failed cases involve rename



Observation: rename modifies other Op’s traversed path

• We call this phenomenon path inter-dependency

– Rename, only operation that can modify an internal inode
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LP

mkdir(/a/b/c)

rename(/a,/d)

LP

Path inter-
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Allowed by fine-grained
implementation

/

d

b



Should consider path inter-dependency in linearization
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RENAME(/a,/d)
break MKDIR(/a/b/c)’s
path integrity

Linearization strategy
(linearize at LPs) is insufficient

/

d

b

Fix linearization strategy to
consider path inter-dependency

Approach: also linearize when
path inter-dependency happens

RENAME(/a, /d) MKDIR(/a/b/c)

linearize before



Approach: linearize when path inter-dependency happens

• The LP of Op1 (e.g., mkdir) resides in another Op2 (e.g., rename)
– This kind of LP is called external linearization point

• For path-based Op, LP could be internal (“fixed LP”) or external
(triggered by rename)
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Concurrent
execution

Sequential
history

MKDIR(/a/b/c)
�success �success

RENAME(/a, /d)

mkdir(/a/b/c) success⤻

rename(/a, /d) success⤻

external LP

/
a

b
rename helps
commit mkdir

fixed LP

fixed LP



Helping: linearize abstract operations of other threads

• Helping: linearize abstract operations of other threads
[Liang et al, PLDI’13]
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Shared thread pool

Thread ID AopState

E.g., (mkdir, args) or
(mkdir end, ret)

t-1 (mkdir, args) t-1 (mkdir end, ret)
Helping

Current thread t-2: rename

… …

Exist logically in
abstract model

Linearized



rename

mkdir
create

root

stat

Help many

Decide helping set and order

File system-specific challenges
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• Which threads to help (for a rename)?

• Helping order?

• Handle recursive path inter-dependency



…

rename-1

rename-2

rename-3

Path inter-
dependency

Recursive path inter-dependency

File system-specific challenges
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• Which threads to help (for a rename)?

• Helping order?

• Handle recursive path inter-dependency



Helpers: extend helping with file system-specific notions
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Shared thread pool

Thread ID AopState Descriptor …

Helper metadata

Helper extensions

rename

mkdir
create

root

stat

Linearize
before

Should be helped

• Helper metadata provides global information
– E.g., add “lock path” in Descriptor to record traversed path

• Decide whether Op1 should be linearized before Op2

– E.g., rename can use “lock path” to decide which threads to help



Specifying and proving with CRL-H
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Rely; Guarantee; Invariant ⊢ {Pre ∗ (aop, args)} {Post ∗ (aop end, ret)}Code

Specification

Invariants R/G conditions
Abstraction

and Aops

Implementation
Concurrent file

system code

ProofInference rule

Simulation
with helpers

Linearizability

Import to Coq
modelled C

Local rely guarantee
for fine-grained
concurrency

Compile with
C compiler

Fuse/Kernel FS

Read paper
for details

CRL-H framework: Concurrent Relation Logic with Helpers



Specifying and proving with CRL-H
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Rely; Guarantee; Invariant ⊢ {Pre ∗ (aop, args)} {Post ∗ (aop end, ret)}Code
RENAME rename(args)
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CRL-H framework: Concurrent Relation Logic with Helpers



Specifying and proving with CRL-H
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Rely; Guarantee; Invariant ⊢ {Pre ∗ (aop, args)} {Post ∗ (aop end, ret)}Code
RENAME rename(args)
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Implementation
Concurrent file

system code
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Simulation
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Import to Coq
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concurrency
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CRL-H framework: Concurrent Relation Logic with Helpers



Specifying and proving with CRL-H
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Rely; Guarantee; Invariant ⊢ {Pre ∗ (aop, args)} {Post ∗ (aop end, ret)}Code
RENAME rename(args)

Specification

Invariants R/G conditions
Abstraction

and Aops

Implementation
Concurrent file

system code

ProofInference rule

Simulation
with helpers

Linearizability

Import to Coq
modelled C

Local rely guarantee
for fine-grained
concurrency

Relational reasoning
Inference rule
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Compile with
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Read paper
for details

CRL-H framework: Concurrent Relation Logic with Helpers



Specifying and proving with CRL-H

30

Rely; Guarantee; Invariant ⊢ {Pre ∗ (aop, args)} {Post ∗ (aop end, ret)}Code
RENAME rename(args)

Specification
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and Aops
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system code
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Simulation
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Linearizability
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CRL-H framework: Concurrent Relation Logic with Helpers



Invariants in proving AtomFS
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Shared
states

Abstract & concrete tree Helper metadata

Invariants

Always
hold on

Abstract-concrete relation

Non-bypassable invariant

Good-FS-Tree

Helper-metadata-consistency
…

Necessary for
simulation proof

Finding all and
precise specification

is difficult!



Operation bypassing leads to non-linearizability
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/

a

b

c

Op-2 holds no
lockOp-1

Op-1 bypasses Op-2



Operation bypassing leads to non-linearizability
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Op-1 bypasses op-2

and modifies the state
op-2 will use

Op-2 RENAME Op-1

op-2
rename op-1

op-2
Illegal

Construct a non-linearizable interleaving

return⤻

return⤻

Concurrent
execution

Sequential
history

Path inter-
dependency

Read paper for a
concrete case



Lock coupling forbids operation bypassing

• Non-bypassable invariant to capture the
property

• Cons: reduce parallelism

• Pros: ensure linearizability
– Easier to reason about for users
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/

a

b

c

Op-2
Op-1

Forbid bypassing by
always holding a lock

1. Acquire next

2. Release current

Tradeoff between
performance and reasoning!



Implementing CRL-H and AtomFS in Coq

• 1.5 years of effort, including building the framework and
proving AtomFS

• CRL-H, ~100k LOC
– Most can be reused

• AtomFS
– 673 lines of C code
– 2k lines of specification
– 60k lines of proof
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Basic 
libraries
34,820

Machine & 
logic

38,904
Proof 

automation
24,387

AtomFS
63,099



Evaluation: AtomFS achieves reasonable performance

• Single core performance

• Faster than DFSCQ (1.38x-2.52x)
– Avoid Haskell overhead

• Slower than ext4 and tmpfs
– FUSE overhead

– Simplified data strucutre
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Evaluation: AtomFS achieves reasonable performance

• Multicore scalability

• Better scalability than ext4
– Not bypass VFS-level path lookup
– Bottleneck: lock coupling traverse

• Worse performance than ext4
– 6.39x lower throughput with 16cores
– Not implement optimizations
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Conclusion

• CRL-H: specify and prove concurrent file systems
– Path inter-dependency and external LP challenge
– Helper mechanism 

• AtomFS: first verified concurrent FS with fine-grained locking
– Atomic interfaces
– Reasonable performance
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https://ipads.se.sjtu.edu.cn/projects/atomfs Thanks!


