Using Concurrent Relational Logic
with Helpers for Verifying the
AtomFS File System

Mo Zou', Haoran Ding', Dong Du', Ming Fu?, Ronghui Gu3, Haibo Chen'2
1 IPADS, Shanghai Jiao Tong University
2 Huawei Technologies Co. Ltd
3 Columbia University

V2 HUAWEI

) File systems are buggy and underspecified

* 40% of FS patches fix bugs [Lu et al., FAST"13]

— 20% of the bugs are concurrency bugs
* Hard to eliminate due to many possible interleavings

* POSIXis vague about concurrent behavior
— E.g., unclear whether an operation should be atomic
— Hard to reason about higher-level applications

) Approach: formal verification

* Concurrent implementation meets specification
— Under arbitrary interleavings

— Proof checked by proof assistant (Coq)

* Avoid large classes of bugs

* Specification serves as a precise interface m

) Verification efforts

* File system verification
— FSCQ project [SOSP’15,SOSP’17,Tej M.S. thesis]
— Yggdrasil [OSDI’16]
— Cogent [ASPOLOS’16]

No fine-grained
concurrency

* Concurrent system verification
— CertiKOS[OSDI'16] } Not applicable
— CSPEC[OSDI'18] to FS

Goal: verify a fine-grained,
concurrent file system

) Contributions

* CRL-H: Concurrent Relation Logic with Helpers for concurrent file systems
— Helper mechanism

— Proofs mechanically checked by Coq

* AtomFS: the first verified concurrent FS with fine-grained locking
— Fine-grained: per-inode lock (no crash-safety)
— Atomic interfaces

— Verified directly in C language

) How to specify “correct’”?

[Sequential

mkdir(/a), succss unlink(/b), failure
history J

Sequential file system

For a sequential file system, correct if sequential history is legal \/
unlink(/b), failure

Concurrent
execution

Concurrent file system mkdir(/a), succss

How to describe concurrent via sequential?

) This work: “correct” means linearizability

Linearizability: describe concurrent via sequential

unlink(/b), failure

Concurrent ”
execution mkdir(/a), succss |
map to ‘ ? i
Sequential | r Y r~y
history

@ linearization point (LP)—-effect happens atomically

Correct if equivalent “sequential’ history is legal

) Prove linearizability via forward simulation

multi steps LP multi steps
mkdir C,, Jrrmmmmmen G o G e > C, Concrete state

Equivalent
effect

Abstract MKDIR Q Abstract state
MKDIR(/a/b .
0 (2lb) 0 Define abstract
e Q e state and abstract

operation
Abstract file system

as a tree .

) Prove linearizability via forward simulation

multi steps LP multi steps
mkdir co > Ci 1’ ci+1 > cn Concrete state
K\ 4 effect /)V
N | | V4
N V4
\\ //
Abstract MKDIR () Abstract state
effect

Decide linearization point

Define abstraction relation

mkdir ﬁ MKDIR

) Prove linearizability via forward simulation

Simulation proof

———————

unlink(/b), failure pmTmmmmm e .

i \
? : G g G ci+1'".> G, i
Concurrent ! i N f effc XK f
o : i I Abstraction relation I
execution mkdir(/a), success i i }Ii 1.; |
’ . I] e o H
i I AN effect 7
I : -------------------
[Linearization } ‘b S Proven by

Liang et al, PLDI’13

MKDIR(/a), success UNLINK(/b), failure Filipovic, ESOP’09

Construct linearization of abstract operation [Linearizability]
following temporal order of LPs

10

) Strawman: fixed LP in critical section

[* error and corner cases Pattern of path-based operations
mkdir(path) handling omitted*/
def mkdir(path) . .
split(path, dir, name); 1. Invocation begins

/[traverse path from root

look(root); » 2. Pathname resolution
fat = locate(root, dir);

/I fat’s lock is held -
node = init(); 3. Lock-protected critical

insert(fat, name, node); » section (where updates
happen)

LP of mkdir S

unlock(fat);

4. Invocation returns
return success; 11

) Strawman: fixed LP in critical section

begin lookup LP return
mkdir(path) O—0O—0O0—0
begin lookup LP return

rename(src, dst) O-’O—PO—’O

If fixed LP is correct and ‘ We can construct linearization
implementation is linearizable for any concurrent execution

12

) Challenge: fixed LP could fail in linearization

Two threads begin lookup LP success

O mikdir(/afblc) IW
O rename(/a,/d)t

begin lookup LP success

©
O
Initially

13

) Challenge: fixed LP could fail in linearization

Two threads begin lookup LP success

O mkdir(/a/b/c) W
O rename(/a,/d)t

begin lookup LP success

Initially mkdir traverses
tob

14

) Challenge: fixed LP could fail in linearization

Two threads begin lookup LP success
O mkdir(/a/b/c) { |
© rename(/a,/d) I

begin lookup LP success

Initially mkdir traverses ~ rename finishes
tob

15

) Challenge: fixed LP could fail in linearization

Two threads begin lookup LP success
O mkdir(/a/b/c)]
© rename(/a,/d) I

lookup LP success

Initially mkdir traverses ~ rename finishes = mkdir succeeds
tob

Legal interleaving

16

) Challenge: fixed LP could fail in linearization
begin lookup

(O mkdir(/a/b/c)
O rename(/a,/d)

w

begin lookup LP success

Map to abstract

LP success

Not legal \

operation

RENAM E(/a, /d)
O success

MKDIR(/a/b/c)
O success

(Should be failure)

17

) Challenge: fixed LP could fail in linearization

begin lookup LP success

(O mkdir(/a/b/c)
O rename(/a,/d)

begin lookup LP

Legal .
Cannot obtain legal @ ’Q v

linearization using fixed LPs MKDIR(/a/b/c) RENAME(/a, /d)
O success O success

Check other cases s All failed cases involve rename

18

} Observation: rename modifies other Op’s traversed path

* We call this phenomenon path inter-dependency

— Rename, only operation that can modify an internal inode

mkdir(/a/b/c) ‘

rename(/a,/d)

Path inter-
dependency

Allowed by fine-grained
implementation 19

} Should consider path inter-dependency in linearization

[Linearization strategy break MKDIR(/a/b/c)’s

(linearize at LPs) is insufficient

p
} 0 RENAME(/a,/d)

path integrity
()
Fix linearization strategy to linearize before
ix linearization y —
[consider path inter-dependency} ﬁAME(/a, d) MKDIR(/a/b/c)

N

Approach: also linearize when
path inter-dependency happens

20

} Approach: linearize when path inter-dependency happens

0 mkdir(/a/b/c)~= success fixed LP
Concurrent e . *
execution @ rename(/a, /d) A success fixed LP
| ad
rename helps
external LP f """"" commit mkdir
[Sequential } F Y
history
MKDIR(/a/b/C) RENAM E(/a, /d) «
O success O success

* The LP of Op, (e.g., mkdir) resides in another Op, (e.g., rename)
— This kind of LP is called external linearization point

* For path-based Op, LP could be internal (“fixed LP””) or external

(triggered by rename)
21

} Helping: linearize abstract operations of other threads

* Helping: linearize abstract operations of other threads

[Liang et al, PLDI’13]

Exist logically in Shared thread pool /E-Q(J%i((ré‘i‘:cggdargest; or
abstract model Thread ID —>» AopState [
Current thread t-2: rename /Linearized

t-1 (mkdir, args)

t-1 (mkdir end, ret)

>
Helping

22

) File system-specific challenges

* Which threads to help (for a rename)?

* Helping order?
O root

rename

* Handle recursive path inter-dependency

mkdir

create
) stat

< Help many ™,

Decide helping set and order

23

) File system-specific challenges

* Which threads to help (for a rename)?

* Helping order?

* Handle recursive path inter-dependency -

rename-2 >
.‘ -- Path inter-

) dependency

. rename-3

Recursive path inter-dependency

24

} Helpers: extend helping with file system-specific notions

* Helper metadata provides global information

— E.g., add “lock path” in Descriptor to record traversed path

* Decide whether Op, should be linearized before Op,

— E.g., rename can use “lock path” to decide which threads to help

Helper metadata

Shared thread pool

Thread ID

O root

Linearize

>

AopState

Descriptor | mkdir |
'\ 5\ stat |

Helper extensions Should be helped

25

Read paper

) Specifying and proving with CRL-H | for details

CRL-H framework: Concurrent Relation Logic with Helpers

Rely; Guarantee; Invariant + {Pre * (aop, args)} Code {Post * (aop end, ret)}

! Specification

|
Implementation !
Concurrent file | | Local rely guarantee
|
|

Invariants R/G conditions Abstraction
and Aops | | system code for fine-grained
"""""""""""" concurrency

Import to Coq
modelled C

Inference rule g Proof

Simulation [Compile yvith }
with helpers C compiler

;i
Linearizability (Fuse/KerneI FS> 26

Read paper

) Specifying and proving with CRL-H | for details

CRL-H framework: Concurrent Relation Logic with Helpers

Rely; Guarantee; Invariant + {Pre * (aop, args)} Code {Post * (aop end, ret)}
RENAME

Specification

Invariants

R/G conditions

Abstraction

and Aops

Inference rule g Proof

Simulation
with helpers

i ~ -

Linearizability

Import to Coq
modelled C

Concurrent file
system code

C compiler

i
(Fuse/KerneI FS>

[Compile with }

rename(args)

Local rely guarantee
for fine-grained
concurrency

Relational reasoning

27

Read paper

) Specifying and proving with CRL-H | for details

CRL-H framework: Concurrent Relation Logic with Helpers

Rely; Guarantee; Invariant + {Pre * (aop, args)} Code {Post * (aop end, ret)}
RENAME

Specification

Invariants

R/G conditions

Abstraction
and Aops

Inference rule g Proof

Simulation
with helpers

Linearizability

________________ GRRLSRREELLLLLL:

Implementation

Concurrent file
system code

C compiler

i
(Fuse/KerneI FS>

[Compile with }

rename(args)

Local rely guarantee
for fine-grained
concurrency

Relational reasoning
Inference rule

28

Read paper

) Specifying and proving with CRL-H | for details

CRL-H framework: Concurrent Relation Logic with Helpers

Rely; Guarantee; Invariant + {Pre * (aop, args)} Code {Post * (aop end, ret)}

RENAME =~ rename(args)

Specification Implementation

1 1

: o |
|
: . N Abstraction | ! 1 [Concurrentfile | ' Local rely guarantee
i | Invariants R/G conditions ;! | . .
! andAops |, 1 [systemcode || for fine-grained
e = —— d e ———— -
N\ concurrency

Import to Coq
modelled C

Inference rule g Proof

Relational reasoning

Inference rule

Simulation [Compile with }
with helpers

C compiler Correctness theorem

i
Linearizability (Fuse/KerneI FS> 29

Read paper

) Specifying and proving with CRL-H | for details

CRL-H framework: Concurrent Relation Logic with Helpers

Rely; Guarantee; Invariant + {Pre * (aop, args)} Code {Post * (aop end, ret)}

RENAME =~ rename(args)
Specification Implementation i
Concurrent file | | Local rely guarantee
systemcode | | for fine-grained
Immmmmmmmmmmmmm e OB ' —= " — concurrency
" Proof ‘_ Relational reasoning

v

Abstraction
and Aops

Invariants R/G conditions

Inference rule

Simulation [Compile with }
with helpers

C compiler Correctness theorem

30

L]
l C Ianguage modellng
Linearizability < /Kernel >I

) Invariants in proving AtomFS

Always
hold on

-

Abstract-concrete relation \ Filnding al! _and_
precise specification
) Non-bypassable invariant is difficult!
Invariants Good-FS-Tree

\ Helper-metadata-consistency
Necessary for

e s O Y simulation proof

Shared
—>
states
K \ Abstract & concrete tree Helper metadatj

31

) Operation bypassing leads to non-linearizability

Op-2 holds no
lock

OPFs

Op-1 bypasses Op-2

32

) Operation bypassing leads to non-linearizability

Read paper for a
concrete case

Path inter- Op-1 bypasses op-2
dependency and modifies the state
/ op-2 will use
Concurrent |
rename op-1
execution — P
Op-z | ‘ op—z A return

/ lllegal
Sequential i i
[history } Op-2 “# return RENAME Op-1 >

Construct a non-linearizable interleaving

33

) Lock coupling forbids operation bypassing

2. Release current

Forbid bypassing by
always holding a lock

Non-bypassable invariant to capture the
property

Cons: reduce parallelism

Pros: ensure linearizability
— Easier to reason about for users

Tradeoff between
performance and reasoning!

34

) Implementing CRL-H and AtomFS in Coq

* 1.5 years of effort, including building the framework and
proving AtomFS

* CRL-H, ~100k LOC
— Most can be reused

e AtomFS
— 673 lines of C code

AtomFS
63,099

— 2k lines of specification Proof

automation

— 60k lines of proof 24,387

35

} Evaluation: AtomFS achieves reasonable performance

* Single core performance

 Faster than DFSCQ (1.38x-2.52x)

— Avoid Haskell overhead

tmpfs == | | 3 3
I ex4 .1, B0

* Slower than ext4 and tmpfs
— FUSE overhead

— Simplified data strucutre

—_
W
T

Running time (seconds)

75| ~atomfs =@ | B]

largefile smallfile git-clone make-xv6 cp-gemu ripgrep

36

} Evaluation: AtomFS achieves reasonable performance

" AtomFS —@®—
ext4 ——

* Multicore scalability

* Better scalability than ext4

Eeattnes
/

— 6.39x lower throughput with 16cores ~ * * °mrainumber - * 1

— Not bypass VFS-level path lookup

Speedup
=S \S I OS Y e Ees

— Bottleneck: lock coupling traverse

* Worse performance than ext4

— Not implement optimizations Speedup on Fileserver
(compared to single core)

37

) Conclusion

* (CRL-H: specify and prove concurrent file systems
— Path inter-dependency and external LP challenge
— Helper mechanism

* AtomFsS: first verified concurrent FS with fine-grained locking
— Atomic interfaces
— Reasonable performance

https://ipads.se.sjtu.edu.cn/projects/atomfs Thanks!

N2 HuawEl JG

38

