
Using Concurrent Relational Logic
with Helpers for Verifying the

AtomFS File System
Mo Zou1, Haoran Ding1, Dong Du1, Ming Fu2, Ronghui Gu3, Haibo Chen12

1 IPADS, Shanghai Jiao Tong University
2 Huawei Technologies Co. Ltd

3 Columbia University

File systems are buggy and underspecified

• 40% of FS patches fix bugs [Lu et al., FAST’13]
– 20% of the bugs are concurrency bugs

• Hard to eliminate due to many possible interleavings

• POSIX is vague about concurrent behavior
– E.g., unclear whether an operation should be atomic
– Hard to reason about higher-level applications

2

Approach: formal verification

• Concurrent implementation meets specification
– Under arbitrary interleavings

– Proof checked by proof assistant (Coq)

• Avoid large classes of bugs

• Specification serves as a precise interface

3

Verification efforts

• File system verification
– FSCQ project [SOSP’15,SOSP’17,Tej M.S. thesis]
– Yggdrasil [OSDI’16]
– Cogent [ASPOLOS’16]

• Concurrent system verification
– CertiKOS [OSDI’16]
– CSPEC [OSDI’18]

4

No fine-grained
concurrency

Not applicable
to FS

Goal: verify a fine-grained,
concurrent file system

Contributions
• CRL-H: Concurrent Relation Logic with Helpers for concurrent file systems

– Helper mechanism

– Proofs mechanically checked by Coq

• AtomFS: the first verified concurrent FS with fine-grained locking
– Fine-grained: per-inode lock (no crash-safety)

– Atomic interfaces

– Verified directly in C language

5

How to specify “correct”?

6

For a sequential file system, correct if sequential history is legal

Sequential
historySequential file system

Concurrent
execution mkdir(/a), succss

unlink(/b), failure

Concurrent file system

How to describe concurrent via sequential?

mkdir(/a), succss unlink(/b), failure

This work: “correct” means linearizability

7

Concurrent
execution mkdir(/a), succss

map to

Linearizability: describe concurrent via sequential

Correct if equivalent “sequential” history is legal

Sequential
history

linearization point (LP)---effect happens atomically

unlink(/b), failure

Prove linearizability via forward simulation

8

mkdir

Abstract MKDIR

C0 Ci Ci+1 Cn

A0 A1

LP
Concrete state

Equivalent
effect

Abstract state

multi steps multi steps

/

a

Abstract file system
as a tree

/
a

b

MKDIR(/a/b)
Define abstract

state and abstract
operation

Prove linearizability via forward simulation

9

mkdir

Abstract MKDIR

C0 Ci Ci+1 Cn

A0

LP
Concrete state

Abstract state

Decide linearization point

multi steps multi steps

effect

effect

Define abstraction relation
mkdir MKDIR

A1

Prove linearizability via forward simulation

10

C0 Ci Ci+1 Cn

A0 A1

LP

effect

effect

Abstraction relation

Construct linearization of abstract operation
following temporal order of LPs

Simulation proof

Linearizability

Proven by
Liang et al, PLDI’13
Filipovic, ESOP’09

Concurrent
execution mkdir(/a), success

unlink(/b), failure

Linearization

MKDIR(/a), success UNLINK(/b), failure

Strawman: fixed LP in critical section

mkdir(path)

11

/* error and corner cases
handling omitted*/

def mkdir(path)
split(path, dir, name);

// traverse path from root
look(root);
fat = locate(root, dir);

// fat’s lock is held
node = init();
insert(fat, name, node);

unlock(fat);

return success;

2. Pathname resolution

3. Lock-protected critical
section (where updates

happen)

4. Invocation returns

1. Invocation begins

Pattern of path-based operations

LP of mkdir

Strawman: fixed LP in critical section

mkdir(path)

12

begin lookup LP return

rename(src, dst)
begin lookup LP return

If fixed LP is correct and
implementation is linearizable

We can construct linearization
for any concurrent execution

Challenge: fixed LP could fail in linearization

mkdir(/a/b/c)
begin lookup

rename(/a,/d)
begin lookup LP success

LP success

13

/

a
b

Initially

Two threads

Challenge: fixed LP could fail in linearization

mkdir(/a/b/c)
begin lookup

rename(/a,/d)
begin lookup LP success

LP success

14

/

a
b

/

a
b

Initially mkdir traverses
to b

Two threads

Challenge: fixed LP could fail in linearization

mkdir(/a/b/c)
begin lookup

rename(/a,/d)
begin lookup LP success

LP success

15

/

a
b

/

a
b

Initially mkdir traverses
to b

/

d
b

rename finishes

Two threads

Challenge: fixed LP could fail in linearization

mkdir(/a/b/c)
begin lookup

rename(/a,/d)
begin lookup LP success

LP success

16

/

a
b

/

a
b

Initially mkdir traverses
to b

/

d
b

rename finishes

/

d
b

c
mkdir succeeds

Legal interleaving

Two threads

Challenge: fixed LP could fail in linearization

17

(Should be failure)

begin lookup

begin lookup LP success

LP success
mkdir(/a/b/c)

rename(/a,/d)

RENAME(/a, /d)
�success

MKDIR(/a/b/c)
�success

Map to abstract
operation

Not legal

Challenge: fixed LP could fail in linearization
begin lookup

begin lookup LP success

LP success

18

Cannot obtain legal
linearization using fixed LPs

？

mkdir(/a/b/c)

rename(/a,/d)

�success
MKDIR(/a/b/c)

�success
RENAME(/a, /d)

Legal

Check other cases All failed cases involve rename

Observation: rename modifies other Op’s traversed path

• We call this phenomenon path inter-dependency

– Rename, only operation that can modify an internal inode

19

LP

mkdir(/a/b/c)

rename(/a,/d)

LP

Path inter-
dependency

Allowed by fine-grained
implementation

/

d

b

Should consider path inter-dependency in linearization

20

RENAME(/a,/d)
break MKDIR(/a/b/c)’s
path integrity

Linearization strategy
(linearize at LPs) is insufficient

/

d

b

Fix linearization strategy to
consider path inter-dependency

Approach: also linearize when
path inter-dependency happens

RENAME(/a, /d) MKDIR(/a/b/c)

linearize before

Approach: linearize when path inter-dependency happens

• The LP of Op1 (e.g., mkdir) resides in another Op2 (e.g., rename)
– This kind of LP is called external linearization point

• For path-based Op, LP could be internal (“fixed LP”) or external
(triggered by rename)

21

Concurrent
execution

Sequential
history

MKDIR(/a/b/c)
�success �success

RENAME(/a, /d)

mkdir(/a/b/c) success⤻

rename(/a, /d) success⤻

external LP

/
a

b
rename helps
commit mkdir

fixed LP

fixed LP

Helping: linearize abstract operations of other threads

• Helping: linearize abstract operations of other threads
[Liang et al, PLDI’13]

22

Shared thread pool

Thread ID AopState

E.g., (mkdir, args) or
(mkdir end, ret)

t-1 (mkdir, args) t-1 (mkdir end, ret)
Helping

Current thread t-2: rename

… …

Exist logically in
abstract model

Linearized

rename

mkdir
create

root

stat

Help many

Decide helping set and order

File system-specific challenges

23

• Which threads to help (for a rename)?

• Helping order?

• Handle recursive path inter-dependency

…

rename-1

rename-2

rename-3

Path inter-
dependency

Recursive path inter-dependency

File system-specific challenges

24

• Which threads to help (for a rename)?

• Helping order?

• Handle recursive path inter-dependency

Helpers: extend helping with file system-specific notions

25

Shared thread pool

Thread ID AopState Descriptor …

Helper metadata

Helper extensions

rename

mkdir
create

root

stat

Linearize
before

Should be helped

• Helper metadata provides global information
– E.g., add “lock path” in Descriptor to record traversed path

• Decide whether Op1 should be linearized before Op2

– E.g., rename can use “lock path” to decide which threads to help

Specifying and proving with CRL-H

26

Rely; Guarantee; Invariant ⊢ {Pre ∗ (aop, args)} {Post ∗ (aop end, ret)}Code

Specification

Invariants R/G conditions
Abstraction

and Aops

Implementation
Concurrent file

system code

ProofInference rule

Simulation
with helpers

Linearizability

Import to Coq
modelled C

Local rely guarantee
for fine-grained
concurrency

Compile with
C compiler

Fuse/Kernel FS

Read paper
for details

CRL-H framework: Concurrent Relation Logic with Helpers

Specifying and proving with CRL-H

27

Rely; Guarantee; Invariant ⊢ {Pre ∗ (aop, args)} {Post ∗ (aop end, ret)}Code
RENAME rename(args)

Specification

Invariants R/G conditions
Abstraction

and Aops

Implementation
Concurrent file

system code

ProofInference rule

Simulation
with helpers

Linearizability

Import to Coq
modelled C

Local rely guarantee
for fine-grained
concurrency

Relational reasoning

Compile with
C compiler

Fuse/Kernel FS

Read paper
for details

CRL-H framework: Concurrent Relation Logic with Helpers

Specifying and proving with CRL-H

28

Rely; Guarantee; Invariant ⊢ {Pre ∗ (aop, args)} {Post ∗ (aop end, ret)}Code
RENAME rename(args)

Specification

Invariants R/G conditions
Abstraction

and Aops

Implementation
Concurrent file

system code

ProofInference rule

Simulation
with helpers

Linearizability

Import to Coq
modelled C

Local rely guarantee
for fine-grained
concurrency

Relational reasoning
Inference ruleCompile with

C compiler

Fuse/Kernel FS

Read paper
for details

CRL-H framework: Concurrent Relation Logic with Helpers

Specifying and proving with CRL-H

29

Rely; Guarantee; Invariant ⊢ {Pre ∗ (aop, args)} {Post ∗ (aop end, ret)}Code
RENAME rename(args)

Specification

Invariants R/G conditions
Abstraction

and Aops

Implementation
Concurrent file

system code

ProofInference rule

Simulation
with helpers

Linearizability

Import to Coq
modelled C

Local rely guarantee
for fine-grained
concurrency

Relational reasoning
Inference rule
Correctness theorem

Compile with
C compiler

Fuse/Kernel FS

Read paper
for details

CRL-H framework: Concurrent Relation Logic with Helpers

Specifying and proving with CRL-H

30

Rely; Guarantee; Invariant ⊢ {Pre ∗ (aop, args)} {Post ∗ (aop end, ret)}Code
RENAME rename(args)

Specification

Invariants R/G conditions
Abstraction

and Aops

Implementation
Concurrent file

system code

ProofInference rule

Simulation
with helpers

Linearizability

Import to Coq
modelled C

Local rely guarantee
for fine-grained
concurrency

Relational reasoning
Inference rule
Correctness theorem
C language modeling

Compile with
C compiler

Fuse/Kernel FS

Read paper
for details

CRL-H framework: Concurrent Relation Logic with Helpers

Invariants in proving AtomFS

31

Shared
states

Abstract & concrete tree Helper metadata

Invariants

Always
hold on

Abstract-concrete relation

Non-bypassable invariant

Good-FS-Tree

Helper-metadata-consistency
…

Necessary for
simulation proof

Finding all and
precise specification

is difficult!

Operation bypassing leads to non-linearizability

32

/

a

b

c

Op-2 holds no
lockOp-1

Op-1 bypasses Op-2

Operation bypassing leads to non-linearizability

33

Op-1 bypasses op-2

and modifies the state
op-2 will use

Op-2 RENAME Op-1

op-2
rename op-1

op-2
Illegal

Construct a non-linearizable interleaving

return⤻

return⤻

Concurrent
execution

Sequential
history

Path inter-
dependency

Read paper for a
concrete case

Lock coupling forbids operation bypassing

• Non-bypassable invariant to capture the
property

• Cons: reduce parallelism

• Pros: ensure linearizability
– Easier to reason about for users

34

/

a

b

c

Op-2
Op-1

Forbid bypassing by
always holding a lock

1. Acquire next

2. Release current

Tradeoff between
performance and reasoning!

Implementing CRL-H and AtomFS in Coq

• 1.5 years of effort, including building the framework and
proving AtomFS

• CRL-H, ~100k LOC
– Most can be reused

• AtomFS
– 673 lines of C code
– 2k lines of specification
– 60k lines of proof

35

Basic
libraries
34,820

Machine &
logic

38,904
Proof

automation
24,387

AtomFS
63,099

Evaluation: AtomFS achieves reasonable performance

• Single core performance

• Faster than DFSCQ (1.38x-2.52x)
– Avoid Haskell overhead

• Slower than ext4 and tmpfs
– FUSE overhead

– Simplified data strucutre

36

 0

 2.5

 5

 7.5

 10

 12.5

 15

 17.5

 20

largefile smallfile git-clone make-xv6 cp-qemu ripgrep

R
u
n
n
in

g
 t

im
e

(s
ec

o
n
d
s)

dfscq
atomfs
tmpfs

ext4

Evaluation: AtomFS achieves reasonable performance

• Multicore scalability

• Better scalability than ext4
– Not bypass VFS-level path lookup
– Bottleneck: lock coupling traverse

• Worse performance than ext4
– 6.39x lower throughput with 16cores
– Not implement optimizations

37

Speedup on Fileserver
(compared to single core)

 1

 2

 3

 4

 5

 6

 7

 8

 2 4 6 8 10 12 14 16

S
p
ee

d
u

p

Thread Number

AtomFS
ext4

Conclusion

• CRL-H: specify and prove concurrent file systems
– Path inter-dependency and external LP challenge
– Helper mechanism

• AtomFS: first verified concurrent FS with fine-grained locking
– Atomic interfaces
– Reasonable performance

38

https://ipads.se.sjtu.edu.cn/projects/atomfs Thanks!

