

KnightKing: A Fast Distributed Graph Random Walk Engine

Me: feel bad!

Ke Yang¹, Mingxing Zhang^{1, 2}, **Kang Chen**¹, Xiaosong Ma³, Yang Bai⁴, Yong Jiang¹

No visa ...

¹ Tsinghua University, ² Sangfor, ³ QCRI, ⁴ 4Paradigm

Graph Random Walk

□Input

- > Graph
- > Set of walkers
 - Placed at their starting vertices

□Each walker walks around

- > By randomly selecting an edge to follow
- > For given number of steps or till given termination condition

□Output

- > Computation during walk, and/or
- > Dump set of walk paths

Increasing Significance of Graph Random Walk

Intuitive way of extracting information from graphs

Applications

- □ Graph embedding
 - DeepWalk
 - > node2vec
- □Graph neural network
 - > PinGraph
 - > NetGAN
- □Graph processing
 - > Graph sampling
 - > Vertex ranking

. . .

Academia

~1700 papers published in 2018 on random walk (source: Microsoft Academia)

CLR	
DD	
ARCO	- Tr
ISS	
OLT	
NeurIPS	
PIN	
lig Data	
CDM:	
ICNN	

Industry

Used by major companies

Different Types of Random Walk Algorithms

algorithms: Sampling one edge according to *edge transition probability* (usually given in un-normalized manner)

Common to all walking

Probability uniform across edges

Probability varied across edges

Categories of random walk algorithms

Probability fixed during walk

Probability changes during walk and/or depends on walkers

Walk history-oblivious

Decision affected by recent steps

Sample Graph Random Walk Algorithms

Biased, static, first-order

Edge transition probability:

$$P(e) = weight(e)$$

The probability bars at this black vertex correspond to its edges' thickness

Biased, dynamic, second-order

Edge transition probability:

$$P(e) = weight(e) \cdot \alpha_{pq}$$

$$\alpha_{pq}(t,x) = \begin{cases} 1/p, & \text{if } d_{tx} = 0\\ 1, & \text{if } d_{tx} = 1\\ 1/q, & \text{if } d_{tx} = 2 \end{cases}$$

Three cases for α : depends on other end of edge: (1) (2) (3)

p and q constant hyper-parameters

Transition probability

$$(p = 0.5, q = 2)$$

Favoring return edge over new neighborhood

Edge Sampling Can Be Expensive

□ Edge sampling is essentially bulk of work

- □ Dynamic walk: spend lot of time on edge scans
 - > To re-compute edge probability distributions
 - > Save time by pre-computing and caching all possible transition probabilities?
- □Real-world graphs have highly skewed degree distribution
 - > Small subset of vertices attract majority of edges
 - > These hot spots become "walker traps": super easy to step in, very hard to walk out

Graph	Vertices	Edges (undirected)	Graph size	Index storage	Degree mean	Degree variance	Avg. # of edges checked per step
Twitter	41.7M	2.93B	22GB	980TB	70.4	6.4E6	92202
UK-Union	134M	9.39B	70GB	1481TB	70.3	3.0E6	47790

Pre-compute for node2vec

Our Work: Fast Graph Random Walk Engine

- □ KnightKing: effortlessly coordinates millions of walkers on large graphs
- ☐ First general-purpose engine for graph random walk
 - > To enable algorithm expression: Unified edge transition probability definition
 - > To speedup walks: Rejection-based, fast and exact edge sampling
 - > For programmers: Walker-centric programming model
 - > Common optimizations for different random walk algorithms
- **□** Distributed
 - > Scale out if needed
- □ Available at

github.com/KnightKingWalk

Unified Transition Probability Definition

- ■Key idea: decompose the probability definition to separate static and dynamic components
 - > Static: reflecting input graph properties, stays constant
 - > Dynamic: reflecting walker preferences or states

□ Examples

Edge transition probability:

$$P(e) = weight(e)$$

Edge transition probability:

$$P(e) = \alpha_{pq} \cdot weight(e)$$

 α_{pq} : depends on both graph
topology and walk history

$$P = weight(e) \cdot \alpha_{pq} \cdot P_{e}$$

$$\alpha_{pq}(t,x) = \begin{cases} 1/p, & \text{if } d_{tx} = 0 \\ 1, & \text{if } d_{tx} = 1 \\ 1/q, & \text{if } d_{tx} = 2 \end{cases}$$

$$P = weight(e) \cdot P_e \cdot P_e$$

(Static walk: trivial dynamic component)

Static Walk: Edge Scan Once and For All

- Do edge scan only once, at beginning of run (pre-processing), followed by quick sampling
- □ KnightKing adopts existing approaches
 - Inverse Transform Sampling (ITS)
 - Uniform sampling in 1-D space, corresponding to per-edge probabilities
 - O(n) time and space to build index array
 - $O(\log(n))$ time to sample edge using binary search
 - > Alias Method (see paper for details)
 - A more sophisticated alias table: Splitting per-page probabilities into pieces and construct equal-sum buckets
 - Uniform sampling of buckets, weighted sampling of edges within
 - O(n) time and space to build alias table
 - *O(1)* time to sample edge

Eliminating Edge Scans During Dynamic Walk

☐ Key idea: rejection sampling

- > Old way: survey all edges, pluck one with appropriate probability
- > Now: sample first, then check that and only that edge

2-D sampling area (rectangular dartboard)

- □ Correctness: the probability of the edges being sampled is equivalent to the relative height of their bars.
- □ Efficiency: reduce sampling overhead, linear scan $(O(|E_v|))$ → constant level (O(1))
- ☐ Incorporating static component:
 - > P_s determines *widths* of bars
 - $\triangleright P_d$ determines **heights** of bars

Coordinates (x,v) of each trial

- x: lookup using ITS or alias method
- v: check using rejection sampling

Optimization: More Efficient Dartboard (I)

□ Performance depends on efficiency of dartboard

- > Tighter envelop, smaller white area, fewer trials
- > Bad case: very few tall outliers push up entire envelope
 - Worse for high-degree vertices
 - E.g., node2vec, assigns high probability to single "return edge"

□KnightKing optimization: *folding*

> Optional APIs to identify transition probability outliers

- Cut outliers, put cropped segments to right side of board as appendix area
- Lower down envelope

Optimization: More Efficient Dartboard (II)

- ■Super tight envelope good? Wasteful too!
 - NightKing never builds physical dartboard
 - > After each trial, edge sampled, dynamic compute bar height
 - Could involve inter-node communication, expensive!

- □ KnightKing optimization: *lower-bound based early acceptance*
 - > Optional APIs to mark global lower-bound
 - > Most darts hit below lower-bound line

Walker-centric Programming Model and APIs

Graph engines: vertex-centric

- Vertex states
 - > Initial
 - > How to update
- □ Actions (update propagation)
 - > Message content generation
 - > State update upon receiving message
 - User-optional optimization
 - Enable push/pull hybrid mode (optional)
 - > Transparent optimizations by framework
- □ Termination condition

Random walk engine: walker-centric

- Walker states
 - > # of walkers
 - > Start positions and initial states
- Actions (walk)
 - > Edge transition probability
 - · Static and dynamic
 - · Envelope for rejection sampling
 - Queries for higher-order walks
 - > User-optional optimization
 - Outlier, lower-bound specification
 - > Transparent optimizations by framework
- □ Termination condition

System Design and Implementation

- □C++, core code about 2500 lines
- □ Design choices
 - ➤ BSP computation model, 1-D graph partitioning, CSR for in-memory graph storage, OpenMPI for message passing
- □ Pipeline and scheduling optimizations specifically targeting distributed graph random walk (see paper for details)
 - > Straggler problem
 - > Different walk speed
 - > More severe imbalance

Evaluation Setup

□Environment

- > 8-node cluster with 40Gbps InfiniBand interconnection
- > Each node has 2 8-core 2GHz Intel Xeon, 20MB L3 cache, and 94GB DRAM

□ Dataset

- > 4 real world graphs
- > Synthetic graphs with different metrics

□Applications

> DeepWalk, Personalized PageRank, meta-path random walk, node2vec

□ Baseline

- > Implement prior sample methods with full-edge-scan on Gemini [OSDI16]
 - significantly out-performs existing available single-algorithm random walk implementations

Benchmark and Overall Performance

Graph	LiveJournal	Friendster	Twitter	UK-Union
Vertices	4.85M	70.2M	41.7M	134M
Edges	69.0M	1.81B	1.47B	5.51B
Degree Variance	2.72E3	1.62E4	6.42E6	3.04E6

Our 4 test datasets

(|V| walkers, 80 steps each)

22 days

node2vec on weighted graph (base-10 log scale) (|V|) walkers, 80 steps each)

Graph Topology Sensitivity

KnightKing insensitive to graph topology, unlike existing method

Graph	Vertices	Degree mean	Degree variance
Truncated power-law	10 M	51~159	3.4E2~7.1E5
Several popular vertices	10 M	100~101	2.0E5~1.0E6

(b) Small number of million-edge vertices

Node2vec sampling overhead on synthetic graphs: <u>average number of edges</u> examined , per walker per step

Conclusion

- □ Dynamic, higher-order walks not as expensive as people previously believed
 - > Exact, constant-time sampling possible with rejection sampling
- ■People could use general-purpose random walk engine
 - > Just like we use graph engines
 - > Easy algorithm implementation, common optimizations
 - > Hidden communication/scheduling details

Thank you!

Check out at github.com/KnightKingWalk