
KnightKing: A Fast Distributed Graph 
Random Walk Engine

Ke Yang1, Mingxing Zhang1, 2, Kang Chen1, Xiaosong Ma3, Yang Bai4, Yong Jiang1

1 Tsinghua University, 2 Sangfor, 3 QCRI, 4 4Paradigm

1

No visa ...

Me: feel bad!



Graph Random Walk
Input 

 Graph

 Set of walkers

• Placed at their starting vertices

Each walker walks around
 By randomly selecting an edge to 

follow

 For given number of steps or till given 
termination condition

Output
 Computation during walk, and/or

 Dump set of walk paths

2

…



Increasing Significance of  Graph Random Walk

Graph embedding
 DeepWalk

 node2vec

Graph neural network
 PinGraph

 NetGAN

Graph processing
 Graph sampling

 Vertex ranking

~1700 papers published in 
2018 on random walk
(source: Microsoft Academia) 

3

Used by major companies
Applications

…

Academia Industry

…

Intuitive way of extracting information from graphs



Different Types of  Random Walk Algorithms

4

?

Common to all walking 
algorithms: Sampling one edge 
according to edge transition 
probability
(usually given in un-normalized 
manner)

Categories of  random walk algorithms

??

Unbiased

Probability uniform across edges

?

Biased

Probability varied across edges

??

Static

Probability fixed during walk

?

?

Dynamic
Probability changes during walk 
and/or depends on walkers

??

First-order

Walk history-oblivious

?

Higher-order

Decision affected by recent steps



Sample Graph Random Walk Algorithms

5

Edge transition probability:
𝑃 𝑒 = 𝑤𝑒𝑖𝑔ℎ𝑡(𝑒)

𝑒0 𝑒1 𝑒2 𝑒3

The probability bars at this 
black vertex correspond to its 
edges’ thickness

?

DeepWalk

Biased, static, first-order Biased, dynamic, second-order

?

node2vec

Edge transition probability:
𝑃 𝑒 = 𝑤𝑒𝑖𝑔ℎ𝑡(𝑒) ȉ 𝛼௣௤

𝛼௣௤ 𝑡, 𝑥 = ቐ

1/𝑝, 𝑖𝑓 𝑑௧௫ = 0
1,     𝑖𝑓 𝑑௧௫ = 1
1/𝑞, 𝑖𝑓 𝑑௧௫ = 2

Three cases for : depends on other end 
of edge: (1)       (2)        (3)

and constant hyper-parameters

𝑒0 𝑒1 𝑒2 𝑒3

Transition probability

(𝑝 = 0.5, 𝑞 = 2 )
Favoring return edge over 
new neighborhood



Edge Sampling Can Be Expensive

6

Edge sampling is essentially bulk of work

Dynamic walk: spend lot of time on edge scans
 To re-compute edge probability distributions

 Save time by pre-computing and caching all possible transition probabilities?

Real-world graphs have highly skewed degree distribution
 Small subset of vertices attract majority of edges

 These hot spots become “walker traps”: super easy to step in, very hard to walk out

Avg. # of edges 
checked per step

92202

47790

Graph

Twitter

UK-Union

Vertices

41.7M

134M

Degree 
variance

6.4E6

3.0E6

Index
storage

980TB

1481TB

Edges 
(undirected)

2.93B

9.39B

Graph
size

22GB

70GB

𝑒0 𝑒1 𝑒2 𝑒3

Degree 
mean

70.4

70.3

Pre-compute 
for node2vec



KnightKing: effortlessly coordinates millions of  walkers on large graphs

First general-purpose engine for graph random walk
 To enable algorithm expression: Unified edge transition probability definition

 To speedup walks: Rejection-based, fast and exact edge sampling

 For programmers: Walker-centric programming model

 Common optimizations for different random walk algorithms

Distributed
 Scale out if needed

Available at 

github.com/KnightKingWalk

7

Our Work: Fast Graph Random Walk Engine



Key idea: decompose the probability definition to separate static 
and dynamic components
 Static: reflecting input graph properties, stays constant

 Dynamic: reflecting walker preferences or states

Examples 

Unified Transition Probability Definition

8

Static           
component Dynamic           

component

Extension           
component

?

DeepWalk

Edge transition probability:
𝑃 𝑒 = 𝑤𝑒𝑖𝑔ℎ𝑡(𝑒)

ௗ ௘

?

node2vec

Edge transition probability:
𝑃 𝑒 = 𝛼௣௤ ȉ 𝑤𝑒𝑖𝑔ℎ𝑡(𝑒)

𝛼௣௤: depends on both graph 
topology and walk history

𝛼௣௤ 𝑡, 𝑥 = ቐ

1/𝑝, 𝑖𝑓 𝑑௧௫ = 0
1,     𝑖𝑓 𝑑௧௫ = 1
1/𝑞, 𝑖𝑓 𝑑௧௫ = 2

(Static walk: trivial dynamic component)
௣௤ ௘



Do edge scan only once, at beginning of run (pre-processing), 
followed by quick sampling

KnightKing adopts existing approaches
 Inverse Transform Sampling (ITS)

• Uniform sampling in 1-D space, corresponding to per-edge 
probabilities

• O(n) time and space to build index array
• time to sample edge using binary search

 Alias Method (see paper for details)
• A more sophisticated alias table: Splitting per-page probabilities 

into pieces and construct equal-sum buckets
• Uniform sampling of buckets, weighted sampling of edges within
• O(n) time and space to build alias table
• time to sample edge

Static Walk: Edge Scan Once and For All

𝑒0 𝑒1 𝑒2 𝑒3

9

1-D space for ITS sampling



 Key idea: rejection sampling
 Old way: survey all edges,  pluck one with appropriate probability
 Now: sample first, then check that and only that edge 

 Correctness: the probability of the edges being sampled is equivalent to the relative height of their bars.

 Efficiency: reduce sampling overhead, linear scan ( ௩ )  constant level ( ) 

 Incorporating static component: 
 𝑃௦ determines widths of bars

 𝑃ௗ determines heights of bars

Eliminating Edge Scans During Dynamic Walk

𝑒0 𝑒1 𝑒2 𝑒3

10

Envelope function2-D sampling area
(rectangular 
dartboard)

Rejected: walker has to throw again

Accepted: walker traverses the accepted edge

Sampling trial

𝑒0 𝑒1 𝑒2 𝑒3

Coordinates (x,y) of each trial
• x: lookup using ITS or alias method
• y: check using rejection sampling



Performance depends on efficiency of dartboard
 Tighter envelop, smaller white area, fewer trials

 Bad case: very few tall outliers push up entire envelope

• Worse for high-degree vertices

• E.g., node2vec, assigns high probability to single “return edge”

KnightKing optimization: folding 
 Optional APIs to identify transition probability outliers

Optimization: More Efficient Dartboard (I)

11

2

1

0.5

𝑒0 𝑒1 𝑒2 𝑒3

2

1

0.5

2

1

0.5

 Cut outliers, put cropped 
segments to right side of 
board as appendix area

appendix 
area

 Lower down envelope



Super tight envelope good? Wasteful too!
 NightKing never builds physical dartboard

 After each trial, edge sampled, dynamic compute bar height

• Could involve inter-node communication, expensive!

KnightKing optimization: lower-bound based early acceptance
 Optional APIs to mark global lower-bound

 Most darts hit below lower-bound line

Optimization: More Efficient Dartboard (II)

12

1

0.5

𝑒3𝑒0 𝑒1 𝑒2

Global lower-bound

Dart hits below lower-bound:
accept sample without checking 
bar height  



Walker-centric Programming Model and APIs

 Vertex states
 Initial
 How to update

 Actions (walk)
 Edge transition probability

• Static and dynamic
• Envelope for rejection sampling

 Queries for higher-order walks
 User-optional optimization

• Outlier, lower-bound specification
 Transparent optimizations by framework 

13

Random walk engine: walker-centricGraph engines: vertex-centric 

Gemini

 Actions (update propagation)
 Message content generation
 State update upon receiving message
 User-optional optimization

• Enable push/pull hybrid mode (optional)
 Transparent optimizations by framework

 Termination condition

Walker states 
 # of walkers
 Start positions and initial states

 Termination condition



C++, core code about 2500 lines

Design choices
 BSP computation model, 1-D graph partitioning, CSR for in-memory graph storage, OpenMPI

for message passing

Pipeline and scheduling optimizations specifically targeting distributed graph 
random walk (see paper for details)
 Straggler problem

 Different walk speed

 More severe imbalance

14

System Design and Implementation

0

5

10

15

20

25

1 21 41 61 81 101 121 141 161 181 201
Ac

tiv
e 

w
al

ke
rs

/v
er

tic
es

Iterations

BFS

node2vec



Environment
 8-node cluster with 40Gbps InfiniBand interconnection

 Each node has 2 8-core 2GHz Intel Xeon, 20MB L3 cache, and 94GB DRAM

Dataset
 4 real world graphs

 Synthetic graphs with different metrics

Applications
 DeepWalk, Personalized PageRank, meta-path random walk, node2vec

Baseline
 Implement prior sample methods with full-edge-scan on Gemini [OSDI16]

• significantly out-performs existing available single-algorithm random walk implementations

15

Evaluation Setup



Benchmark and Overall Performance

16

Graph LiveJournal Friendster Twitter UK-Union

Vertices 4.85M 70.2M 41.7M 134M

Edges 69.0M 1.81B 1.47B 5.51B

Degree Variance 2.72E3 1.62E4 6.42E6 3.04E6

Our 4 test datasets

node2vec on weighted graph (base-10 log scale)

170

1483

101095

1917205

15
79 49

189

1.E+0

1.E+2

1.E+4

1.E+6

LiveJournal Friendster Twitter UK-Union

Ti
m

e 
(s

ec
on

ds
)

Gemini KnightKing

( 𝑉 walkers, 80 steps each)

10^6

10^4

10^2

10^0

DeepWalk on weighted graph

18

193

102

234

3
30 17

63

0

50

100

150

200

250

LiveJournal Friendster Twitter UK-Union

Ti
m

e 
(s

ec
on

ds
)

Gemini KightKing

( 𝑉 walkers, 80 steps each)

Total run time
22 days

3 minutes



Graph Topology Sensitivity

17

0

1000

2000

3000

4000

5000

100 400 1600 6400 25600

Vertex degree upper bound

Full-scan

KnightKing

Ed
ge

s/
st

ep

0

2000

4000

6000

8000

10000

2 4 6 8 10

Popular vertices amount

Full-scan

KnightKing

Ed
ge

s/
st

ep
(a) Truncated power-law distribution (b) Small number of million-edge vertices

KnightKing insensitive to graph topology, unlike existing method

Node2vec sampling overhead on synthetic graphs: average number of edges 
examined , per walker per step

Graph Vertices Degree mean Degree variance

KnightKing pays near-constant 
overhead (0.8 edge examined w. 
optimizations)  

Fast growing overhead 
as graph grows skewed 

Just a few hot vertices, 
walkers move much slower

Truncated power-law 10 M 51~159 3.4E2~7.1E5

Several popular vertices 10 M 100~101 2.0E5~1.0E6



Dynamic, higher-order walks not as expensive as people previously believed
 Exact, constant-time sampling possible with rejection sampling

People could use general-purpose random walk engine
 Just like we use graph engines

 Easy algorithm implementation, common optimizations 

 Hidden communication/scheduling details

18

Conclusion

Check out at github.com/KnightKingWalk
Thank you! 


