

An Analysis of Performance Evolution of Linux's Core Operations

Xiang (Jenny) Ren, Kirk Rodrigues, Luyuan Chen, Camilo Vega, Michael Stumm and Ding Yuan

How has kernel performance been evolving?

Studying Linux kernel's performance evolution

Most time consuming kernel functions

LEBench | microbenchmark

Test Name	Input
Context switch	N/A
fork	0, 12K writeable pages
Thread create	N/A
Page fault	in region of 1, 10K pages
read, write	1, 10, 12K pages
mmap, munmap	1, 10, 10K pages
send, recv	1, 96K bytes
select, poll, epoll	10, 1K file descriptors

Studying Linux kernel's performance evolution

Software setup

- Linux v3.0 to v4.20 (41 versions, covering 7 years)
- Ubuntu distribution, default configuration

Machine setup

LEBench run on 1 machine setup:
 2.40GHz Intel Xeon processor, 128GB 1866MHz DDR4 RAM, 960GB SSD

Result collection

K-best method to remove measurement outliers from 10K runs

Linux core functions' performance evolution

Linux core functions' performance evolution

Linux core functions' performance evolution

Linux Kernel Versions

Outline

Q: How has performance of Linux's core functions been evolving?

• Linux's core functions' performance displays high variance

Q: What causes performance fluctuations?

Q: What can we do about the root causes?

Outline

Q: How has performance of Linux's core functions been evolving?

• Linux's core functions' performance displays high variance

Q: What causes performance fluctuations?

Q: What can we do about the root causes?

Diagnosing performance root causes

Step 1 Investigate most significant performance change

→ Step 2 Disable the diagnosed root cause

Repeat until no more than 10% performance change

What causes performance fluctuations?

What causes performance fluctuations?

What causes performance fluctuations?

Outline

Q: How has performance of Linux's core functions been evolving?

Linux's core function performance displays high variance

Q: What causes performance fluctuations?

- Most performance variations explained by 11 root causes
- Root causes fall under security, functionality, and misconfiguration

Q: What can we do about the root causes?

Outline

- Q: How has performance of Linux's core functions been evolving?
 - Linux's core function performance displays high variance
- Q: What causes performance fluctuations?
 - Most performance variations explained by 11 root causes
 - Root causes fall under security, functionality, and mis-configuration

Q: What can we do about the root causes?

	Root Causes	Optimize	Configure
Sec Enh	Meltdown patch	0	
Security Enhance	Spectre patch	•	
Security Enhancements	Rand. SLAB freelist		
nts	Harden usercopy	•	
New	Fault around		
	Hugepages disabled		
Features	Cgroup mem. controller	0	
es	User pagefault handling		
Mis	Forced context tracking		
Misconfi	Missing CPU idle states		
igs	Outdated TLB Spec.		

- Optimized by Linux developers
- We found further optimization
- We found better configuration
- ☐ Misconfigs eventually fixed by Linux/Ubuntu developers

	Root Causes	Optimize	Configure
Sec Enh	Meltdown patch	0	
Security Enhance	Spectre patch	•	
Security Enhancements	Rand. SLAB freelist		
ents	Harden usercopy	•	
Nev	Fault around		
New Features	Hugepages disabled		
atur	Cgroup mem. controller	0	
es	User pagefault handling		
Mis	Forced context tracking		
Misconfigs	Missing CPU idle states		
figs	Outdated TLB Spec.		

- Optimized by Linux developers
- We found further optimization
- We found better configuration
- ☐ Misconfigs eventually fixed by Linux/Ubuntu developers

	Root Causes	Optimize	Configure
Sec Enh	Meltdown patch	0	
Security Enhance	Spectre patch	•	
Security Enhancements	Rand. SLAB freelist		
nts	Harden usercopy	•	
New	Fault around		
	Hugepages disabled		
Features	Cgroup mem. controller	0	
es	User pagefault handling		
Mis	Forced context tracking		
Misconfigs	Missing CPU idle states		
figs	Outdated TLB Spec.		

- Optimized by Linux developers
- We found further optimization
- We found better configuration
- ☐ Misconfigs eventually fixed by Linux/Ubuntu developers

Case study I: The Spectre patch's overhead

12

Case study I: The Spectre patch - Retpoline

- Spectre V2 exploits indirect branches to leak privileged data
 - Tricks branch predictor into speculatively execute arbitrary address
- Linux mitigates Spectre V2 with gcc patch Retpoline
- Retpoline replaces indirect branches with "thunk" instructions

Case study I: The Spectre patch's overhead

- Cost ~ 30-35 cycles per original indirect branch
- Heavily affects select/poll/epoll whose polling logic executes indirect branches

• 95% of select's slowdown caused by 3 branches in tight loops

Case Study I: Removing Retpoline's overhead

 We design a simple patch: replace the 3 indirect branches with direct branches, which are not vulnerable

```
for (;;) {
mask = (*f_{op} - poll)(f.file, wait);
if ((*f_op->poll) == sock_poll)
 mask = sock_poll(f.file, wait);
else if ((*f_op->poll) == pipe_poll)
  mask = pipe_poll(f.file, wait);
else if ((*f_op->poll) == timerfd_poll)
  mask = timerfd_poll(f.file, wait);
else
  mask = (*f_{op} - poll)(f.file, wait);
 . . .
```


	Root Causes	Optimize	Configure
Sec	Meltdown patch	0	
Security Enhance	Spectre patch	•	
Security Enhancements	Rand. SLAB freelist		
nts	Harden usercopy	•	
New	Fault around		
V Fe	Hugepages disabled		
Features	Cgroup mem. controller	0	
es	User pagefault handling		
Mis	Forced context tracking		
Misconfigs	Missing CPU idle states		
figs	TLB layout Specification		

- Optimized by Linux developers
- We found further optimization
- We found better configuration
- ☐ Misconfigs eventually fixed by Linux/Ubuntu developers

	Root Causes	Optimize	Configure
Security Enhance	Meltdown patch	0	
urity	Spectre patch	•	
Security Enhancements	Rand. SLAB freelist		
nts	Harden usercopy	•	
New	Fault around		
	Hugepages disabled		
Features	Cgroup mem. controller	0	
es	User pagefault handling		
Nis Nis	Forced context tracking		
Misconfigs	Missing CPU idle states		
figs	TLB layout Specification		

- Optimized by Linux developers
- We found further optimization
- We found better configuration
- ☐ Misconfigs eventually fixed by Linux/Ubuntu developers

Case study II: The Meltdown patch's overhead

Case study II: The Meltdown patch - KPTI

- The Meltdown exploit could leak kernel memory to userspace
 - Exploits data left in cache by unauthorized loads
- Linux's mitigation: Kernel Page Table Isolation (KPTI)
- KPTI keeps a separate page table for kernel and user space

Case study II: The Meltdown patch - KPTI

- The Meltdown exploit could leak kernel memory to userspace
 - Exploits data left in cache by unauthorized loads
- Linux's mitigation: Kernel Page Table Isolation (KPTI)
- KPTI keeps a separate page table for kernel and user space

Case study II: The Meltdown patch's overhead

Entering the kernel:

Leaving the kernel:

A round-trip to the kernel incurs:

➤ 2 page table pointer swaps constant cost: ~400 cycles

>2 TLB flushes

~700-6000 cycles (read tests)

Case study II: Optimizing the Meltdown patch

Linux dev optimized using h/w feature - Process Context IDentifier (PCID):

- Tag kernel/user entries with diff PCIDs
- Allow both entries to coexist in the TLB

A round-trip to the kernel incurs:

➤ 2 page table pointer swaps constant cost: ~400 cycles

→2 TLB flushes

~700-6000 cycles (read tests)

	Root Causes	Optimize	Configure
Sec	Meltdown patch	0	
Security Enhance	Spectre patch	•	
Security Enhancements	Rand. SLAB freelist		
nts	Harden usercopy	•	
New	Fault around		
	Hugepages disabled		
Features	Cgroup mem. controller	0	
es	User pagefault handling		
Nis	Forced context tracking		
Misconfigs	Missing CPU idle states		
figs	TLB layout Specification		

- Optimized by Linux developers
- We found further optimization
- We found better configuration
- ☐ Misconfigs eventually fixed by Linux/Ubuntu developers

	Root Causes	Optimize	Configure
Sec Enh	Meltdown patch	0	
Security Enhance	Spectre patch	•	
Security Enhancements	Rand. SLAB freelist		
nts	Harden usercopy	•	
New	Fault around		
v Fe	Hugepages disabled		
Features	Cgroup mem. controller	0	
es	User pagefault handling		
Nis	Forced context tracking		
Misconfigs	Missing CPU idle states		
figs	TLB layout Specification		

- Optimized by Linux developers
- We found further optimization
- We found better configuration
- ☐ Misconfigs eventually fixed by Linux/Ubuntu developers

Case study III: Forced Context Tracking (FCT)

Case study III: Forced Context Tracking (FCT)

Reduced Scheduling Clock Ticks (RSCT)

• Send fewer/no scheduling interrupts to a core

Context Tracking

Enables

Debugging

- Handles tasks done at scheduling interrupts
- Done during kernel entry/exit via system calls etc.

Forced Context Tracking (FCT)

- Adds 200-300ns for every kernel entry/exit
- Enabled by mistake in release versions

Case study III: Fixing FCT's misconfiguration

RSCT: Reduced Scheduling Clock Ticks

FCT: Forced Context Tracking

Misconfigured for 11 months

FCT enabled through dependency

Dependency removed, failed to disable FCT

FCT finally disabled

Additional evaluations

- Evaluated Redis, Apache, Nginx macrobenchmarks
 - Experience very similar degrees of slowdown to LEBench
- Reproduced LEBench results on a different machine setup

Related Work

- OS Performance studies on different hardware architectures [Ousterhout'90, Anderson'91, Rosenblum'95]
- OS microbenchmark (Imbench) & macrobenchmark suites (Ikp)
- Linux performance regressions [Chen'07]

Our contribution:

Systematic study of performance evolution of Linux's core functions

Conclusion

LEBench - a microbenchmark for core Linux functions

- Linux performance displays high variance over time
- 11 root causes explain most of the performance changes
- Much slowdown avoidable by optimizing and re-configuring

Thanks!

https://github.com/LinuxPerfStudy/LEBench

Linux Kernel Versions