
An Analysis of Performance Evolution
of Linux’s Core Operations

Xiang (Jenny) Ren, Kirk Rodrigues, Luyuan Chen, Camilo Vega, Michael Stumm and Ding Yuan

How has kernel performance been evolving?

Studying Linux kernel’s performance evolution

Most time consuming
kernel functions

LEBench | microbenchmark

3

Test Name Input

Context switch N/A

fork 0, 12K writeable pages

Thread create N/A

Page fault in region of 1, 10K pages

read, write 1, 10, 12K pages

mmap, munmap 1, 10, 10K pages

send, recv 1, 96K bytes

select, poll, epoll 10, 1K file descriptors

Studying Linux kernel’s performance evolution

Software setup

• Linux v3.0 to v4.20 (41 versions, covering 7 years)

• Ubuntu distribution, default configuration

Machine setup

• LEBench run on 1 machine setup:

2.40GHz Intel Xeon processor, 128GB 1866MHz DDR4 RAM, 960GB SSD

Result collection

• K-best method to remove measurement outliers from 10K runs

4K=5

lowest highestmeasurements …

5

Linux core functions’ performance evolution

B
a

s
e

lin
e

5

Linux core functions’ performance evolution

6

Linux core functions’ performance evolution

➔ 92% slower than v4.0 (baseline)
➔ 75% slower than v3.0 (earliest)

-20%

0%

20%

40%

60%

80%

100%

120%

140%

160%

Linux Versions

send & recv

➔ 67% encounter slowdown >50%
➔ 42% encounter slowdown >100%

Outline

Q: How has performance of Linux’s core functions been evolving?
• Linux’s core functions’ performance displays high variance

Q: What causes performance fluctuations?

Q: What can we do about the root causes?

7

Outline

Q: How has performance of Linux’s core functions been evolving?
• Linux’s core functions’ performance displays high variance

Q: What causes performance fluctuations?

Q: What can we do about the root causes?

7

Diagnosing performance root causes

8

➔ Step 1 Investigate most significant performance change

➔ Step 2 Disable the diagnosed root cause

Repeat until no more than 10% performance change

What causes performance fluctuations?

9

Root causes

What causes performance fluctuations?

9

Security
Enhancements

New
Features

Mis-
configurations

Root causes

What causes performance fluctuations?

9

Root causes

Outline

Q: How has performance of Linux’s core functions been evolving?
• Linux’s core function performance displays high variance

Q: What causes performance fluctuations?
• Most performance variations explained by 11 root causes

• Root causes fall under security, functionality, and misconfiguration

Q: What can we do about the root causes?

10

Outline

Q: How has performance of Linux’s core functions been evolving?
• Linux’s core function performance displays high variance

Q: What causes performance fluctuations?
• Most performance variations explained by 11 root causes

• Root causes fall under security, functionality, and mis-configuration

Q: What can we do about the root causes?

10

Many opportunities to improve performance

11

Root Causes Optimize Configure

Se
cu

rity
En

h
an

ce
m

e
n

ts

Meltdown patch

Spectre patch

Rand. SLAB freelist

Harden usercopy

N
ew

 Fe
atu

re
s

Fault around

Hugepages disabled

Cgroup mem. controller

User pagefault handling

M
isco

n
figs

Forced context tracking

Missing CPU idle states

Outdated TLB Spec.

○ Optimized by Linux developers

● We found further optimization

■ We found better configuration

□ Misconfigs eventually fixed by

Linux/Ubuntu developers

○

○

●

●

□
□
□

■
■

Many opportunities to improve performance

11

Root Causes Optimize Configure

Se
cu

rity
En

h
an

ce
m

e
n

ts

Meltdown patch

Spectre patch

Rand. SLAB freelist

Harden usercopy

N
ew

 Fe
atu

re
s

Fault around

Hugepages disabled

Cgroup mem. controller

User pagefault handling

M
isco

n
figs

Forced context tracking

Missing CPU idle states

Outdated TLB Spec.

○ Optimized by Linux developers

● We found further optimization

■ We found better configuration

□ Misconfigs eventually fixed by

Linux/Ubuntu developers

○

○

●

●

□
□
□

■
■

Many opportunities to improve performance

11

Root Causes Optimize Configure

Se
cu

rity
En

h
an

ce
m

e
n

ts

Meltdown patch

Spectre patch

Rand. SLAB freelist

Harden usercopy

N
ew

 Fe
atu

re
s

Fault around

Hugepages disabled

Cgroup mem. controller

User pagefault handling

M
isco

n
figs

Forced context tracking

Missing CPU idle states

Outdated TLB Spec.

○ Optimized by Linux developers

● We found further optimization

■ We found better configuration

□ Misconfigs eventually fixed by

Linux/Ubuntu developers

○

○

●

●

□
□
□

■
■

Case study I: The Spectre patch’s overhead

12

Case study I: The Spectre patch - Retpoline

13

• Spectre V2 exploits indirect branches to leak privileged data
• Tricks branch predictor into speculatively execute arbitrary address

• Linux mitigates Spectre V2 with gcc patch Retpoline

• Retpoline replaces indirect branches with “thunk” instructions

jmp [rax]

Indirect branch thunk

Case study I: The Spectre patch’s overhead

• Cost ～30-35 cycles per original indirect branch

• Heavily affects select/poll/epoll whose polling logic
executes indirect branches

• 95% of select’s slowdown caused by 3 branches in tight loops

14

Case Study I: Removing Retpoline’s overhead

• We design a simple patch: replace the 3 indirect branches with
direct branches, which are not vulnerable

15

-
+
+
+
+
+
+
+
+ 0%

10%

20%

30%

40%

50%

60%

70%

non-optimized optimized

Select’s Slowdown from Retpoline

Many opportunities to improve performance

16

Root Causes Optimize Configure

Se
cu

rity
En

h
an

ce
m

e
n

ts

Meltdown patch

Spectre patch

Rand. SLAB freelist

Harden usercopy

N
ew

 Fe
atu

re
s

Fault around

Hugepages disabled

Cgroup mem. controller

User pagefault handling

M
isco

n
figs

Forced context tracking

Missing CPU idle states

TLB layout Specification

○ Optimized by Linux developers

● We found further optimization

■ We found better configuration

□ Misconfigs eventually fixed by

Linux/Ubuntu developers

○

○

●

●

□
□
□

■
■

Many opportunities to improve performance

16

Root Causes Optimize Configure

Se
cu

rity
En

h
an

ce
m

e
n

ts

Meltdown patch

Spectre patch

Rand. SLAB freelist

Harden usercopy

N
ew

 Fe
atu

re
s

Fault around

Hugepages disabled

Cgroup mem. controller

User pagefault handling

M
isco

n
figs

Forced context tracking

Missing CPU idle states

TLB layout Specification

○ Optimized by Linux developers

● We found further optimization

■ We found better configuration

□ Misconfigs eventually fixed by

Linux/Ubuntu developers

○

○

●

●

□
□
□

■
■

Case study II: The Meltdown patch’s overhead

17

Case study II: The Meltdown patch - KPTI

• The Meltdown exploit could leak kernel memory to userspace
• Exploits data left in cache by unauthorized loads

• Linux’s mitigation: Kernel Page Table Isolation (KPTI)

• KPTI keeps a separate page table for kernel and user space

18

User memory Kernel memory

One shared page table

Case study II: The Meltdown patch - KPTI

• The Meltdown exploit could leak kernel memory to userspace
• Exploits data left in cache by unauthorized loads

• Linux’s mitigation: Kernel Page Table Isolation (KPTI)

• KPTI keeps a separate page table for kernel and user space

18

User memory Kernel memory

User space

page table
Kernel space

page table

KPTI

Case study II: The Meltdown patch’s overhead

19

Page table pointer

TLB Flush

A round-trip to the kernel incurs:

➢2 page table pointer swaps

constant cost: ~400 cycles

➢2 TLB flushes

~700-6000 cycles (read tests)

Entering the kernel:

Leaving the kernel:

User page table Kernel page table

TLB Flush

User page table Kernel page table

Page table pointer

A round-trip to the kernel incurs:

➢2 page table pointer swaps

constant cost: ~400 cycles

➢2 TLB flushes

~700-6000 cycles (read tests)

Case study II: Optimizing the Meltdown patch

20

➢2 TLB flushes

~700-6000 cycles (read tests)

Linux dev optimized using h/w feature
- Process Context IDentifier (PCID):

User memory Kernel memory

User space

page table
Kernel space

page table

KPTI

• Tag kernel/user entries with diff PCIDs

• Allow both entries to coexist in the TLB

Many opportunities to improve performance

21

Root Causes Optimize Configure

Se
cu

rity
En

h
an

ce
m

e
n

ts

Meltdown patch

Spectre patch

Rand. SLAB freelist

Harden usercopy

N
ew

 Fe
atu

re
s

Fault around

Hugepages disabled

Cgroup mem. controller

User pagefault handling

M
isco

n
figs

Forced context tracking

Missing CPU idle states

TLB layout Specification

○ Optimized by Linux developers

● We found further optimization

■ We found better configuration

□ Misconfigs eventually fixed by

Linux/Ubuntu developers

○

○

●

●

□
□
□

■
■

Many opportunities to improve performance

21

Root Causes Optimize Configure

Se
cu

rity
En

h
an

ce
m

e
n

ts

Meltdown patch

Spectre patch

Rand. SLAB freelist

Harden usercopy

N
ew

 Fe
atu

re
s

Fault around

Hugepages disabled

Cgroup mem. controller

User pagefault handling

M
isco

n
figs

Forced context tracking

Missing CPU idle states

TLB layout Specification

○ Optimized by Linux developers

● We found further optimization

■ We found better configuration

□ Misconfigs eventually fixed by

Linux/Ubuntu developers

○

○

●

●

□
□
□

■
■

Case study III: Forced Context Tracking (FCT)

22

Case study III: Forced Context Tracking (FCT)

Reduced Scheduling Clock Ticks (RSCT)
• Send fewer/no scheduling interrupts to a core

Context Tracking
• Handles tasks done at scheduling interrupts
• Done during kernel entry/exit via system calls etc.

Forced Context Tracking (FCT)
• Adds 200-300ns for every kernel entry/exit
• Enabled by mistake in release versions

23

Depends on

Enables

Debugging

Case study III: Fixing FCT’s misconfiguration

24

FCT

EnabledRSCT

User:

slow

FCTEnabled

Dependency removed,

failed to disable FCT

Enabled

User:

still slow!

FCT

RSCT

Disabled

Misconfigured for 11 months

FCT: Forced Context Tracking

config file config file config file

Enabled

FCT enabled through

dependency

FCT finally disabled

RSCT: Reduced Scheduling Clock Ticks

EnabledRSCT

Additional evaluations

• Evaluated Redis, Apache, Nginx macrobenchmarks
• Experience very similar degrees of slowdown to LEBench

• Reproduced LEBench results on a different machine setup

25

Related Work

• OS Performance studies on different hardware architectures
[Ousterhout’90, Anderson’91, Rosenblum’95]

• OS microbenchmark (lmbench) & macrobenchmark suites (lkp)

• Linux performance regressions [Chen’07]

Our contribution:

• Systematic study of performance evolution of Linux’s core functions

26

Conclusion

• LEBench – a microbenchmark for core Linux functions

• Linux performance displays high variance over time

• 11 root causes explain most of the performance changes

• Much slowdown avoidable by optimizing and re-configuring

27

Thanks! https://github.com/LinuxPerfStudy/LEBench

B
a

s
e

lin
e

