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DNN Training
DNN training is compute-hungry and time-consuming

Training can be scaled out by data parallelism or model parallelism

ResNet50 Training Time
1 TPUv3 10 hours
1024 TPUv3 1.28 minutes

BERT Training Time
16 TPUv3 81 hours
1024 TPUv3 76.19 minutes

https://arxiv.org/pdf/1904.00962.pdfhttps://mlperf.org/training-results-0-6
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Data Parallel DNN Training
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PS Dependency Graph

Dependency:
• Backward depends on forward
• Push depends on backward

• Pull depends on push
• Forward depends on pull

Framework engines execute the graph according to the dependencies
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P3, TicTac: partition tensors and change tensor transmission order

Communication Scheduling

40% improvement

Problem: FIFO strategy does not overlap communication with computation well
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P3, TicTac: partition tensors and change tensor transmission order

Communication Scheduling

40% improvement

Problem: FIFO strategy does not overlap communication with computation well



P3 and TicTac:
• Coupled with specific framework implementations, e.g., P3 for MXNet PS and 

TicTac for TensorFlow PS.
• Heuristic scheduling with empirical results

Limitations of Existing Work

TCP
RDMA

ML frameworks Communication architectures Network protocols

PS

Allreduce

Many different setups in distributed DNN training:



P3 and TicTac:
• Coupled with specific framework implementations, e.g., P3 for MXNet PS and 

TicTac for TensorFlow PS.
• Heuristic scheduling with empirical results

Limitations of Existing Work

TCP
RDMA

ML frameworks Communication architectures Network protocols

PS

Allreduce

Many different setups in distributed DNN training:How to do communication scheduling:
1. Work in all setups
2. Minimal modifications
3. Scheduling Optimality 



Observation: The dependency graph structure is intrinsic for DNN training,
regardless of training frameworks, communication architectures, or network
protocols

One Unified Scheduling System for ALL

ByteScheduler: A generic tensor scheduling framework

• One unified scheduler framework that abstracts tensor scheduling from various 
frameworks, communication architectures and network protocols

• One principled scheduling algorithm that is guided by theory and works in real-
world 
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• Imperative framework (e.g., PyTorch) and declarative framework (e.g., 
TensorFlow)

Challenge 1: Different ML Frameworks

• Global barrier between iterations (e.g., TensorFlow, PyTorch), causing any 
scheduling of push/all-reduce ineffective
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Challenge 2: Different Runtime Environments
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The overhead of scheduling & tensor partitioning is different for different system 
setups and network conditions

How to balance the performance gain with scheduling overhead? The system
parameters (e.g., partition size) are likely to be affected by different runtime 
configurations, e.g., bandwidths, DNNs



Outline

1. Background and Motivation

2. ByteScheduler Design

3. Evaluation
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Unified Scheduler Across Frameworks

DNN definition

Graph execution

Communication
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ByteScheduler Architecture
Plugin: Wrap each 

communication 
operation as a 

CommTask

Core: Partition 
and schedule 
CommTasks



CommTask: A wrapped communication operation, e.g., push one tensor, all-
reduce one tensor

CommTask APIs implemented in framework plugins:

• partition(size): partition a CommTask into SubCommTasks with tensors no 

larger than a threshold size
• notify_ready(): notify Core about the readiness of a CommTask

• start(): start a CommTask by calling the underlying push/pull/all-reduce

• notify_finish(): notify Core about the completion of a CommTask
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CommTask: A Unified Abstraction



A Dependency Proxy is an operator to get the scheduling control from the 
frameworks to the Core
Dependency Proxy:
• Trigger CommTask.notify_ready() via a callback
• Wait to finish until Core calls CommTask.start()
• Generate completion signal using CommTask.notify_finish()
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Dependency Proxy: Get the Scheduling 
Control 
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Out-of-engine communication: Start the actual communication outside engine
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Layer-wise out-of-engine dependencies: Build correct dependency for each layer
by adding a Proxy to block forward computation

Dependency Proxy: Crossing the Global Barrier
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Out-of-engine communication: Start the actual communication outside engine

Layer-wise out-of-engine dependencies: Build correct dependency for each layer
by adding a Proxy to block forward computation

Dependency Proxy: Crossing the Global Barrier



Optimal scheduling for minimizing the time for each iteration:

• For PS, prioritize !"#ℎ% over !"#ℎ&, and !"''% over !"''&, ∀) < +
• For all-reduce, prioritize ,''-./"0.% over ,''-./"0.&, ∀) < +
• Assuming infinitely small partition size and immediate preemption 

without overhead
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Optimal Scheduling Theorem

In practice, partitioning and preemption have overhead



Stop-and-wait approach in previous work can not fully utilize network 
bandwidth
• Send a single tensor and wait for its ACK
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Credit-based Preemption
• Work like a sliding window and the credit is the window size
• Allow multiple tensors in a sliding window to be sent concurrently

Credit-based Preemption

Credit size is an important system parameter
• Pro: higher bandwidth utilization
• Con: less timely preemption due to FIFO communication stack



Optimal partition size and credit size are affected by many factors, e.g., network
bandwidths, number of workers, DNN models, CPU and GPU types

We use Bayesian Optimization for auto-tuning
• Work with general objective function
• Minimize the overhead, i.e., the number of sampled points
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Auto-tuning Partition Size and Credit Size
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1. Background and Motivation
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3. Evaluation



Testbed: 16 machines, each with 8 Tesla V100 GPUs and 100Gbps bandwidth

Implementation: MXNet PS and all-reduce (based on Horovod), PyTorch (based on 

Horovod), TensorFlow PS

Comparison:
• Baseline: vanilla ML frameworks
• Linear scaling: vanilla training speed on 1 machine multiplied by the number of 

machines
24

Evaluation



• Up to 171% improvement and close to linear scaling
25

Scalability of ByteScheduler

MXNet PS RDMA

VGG16 (97%-125%) ResNet50 (9%-15%) Transformer (70%-171%)



• Up to 196% improvement compared to the baseline

MXNet PS RDMA
(97%-125%)

TensorFlow PS RDMA
(170%-196%)

PyTorch NCCL TCP
(7%-13%)
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ByteScheduler for Multiple Frameworks

VGG16



• Consistent speedup in all bandwidth settings 

• Without auto-tuning, the training speed is lower

VGG16 (79%-132%) ResNet50 (10%-64%) Transformer (67%-70%)
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ByteScheduler Adapts to Different Bandwidths

MXNet PS RDMA



ByteScheduler: A generic communication scheduler for distributed DNN 
training acceleration
• Unified abstraction for tensor scheduling

• Multiple training framework support, with minimal code change to existing 

frameworks

• Principled tensor scheduling design with parameter autotuning 
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Conclusion



Q&A
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https://github.com/bytedance/byteps/tree/bytescheduler/bytescheduler
Source code:

https://github.com/bytedance/byteps/tree/bytescheduler/bytescheduler

