Har

AU

monizing H

igh Performr

2
a

t

a

oMine

-Level Abstraction and
ce for Graph Mining

Daniel Mawhirter, Bo Wu
SOSP, October 30, 2019

https://www.mines.edu/

Graphs

Conference Website
sosp19.rcs.uwaterloo.ca

\)

* But the internet is big! (And so are other graph datasets)

http://www.sigops.org/
http://www.usenix.org/
http://www.sigops.org/sosp/sosp19/

2 o N i
: " 74 2% a o A & fa
Big Graphs 28 0" %2, g
* 2 Billion Facebook users af'g 3,_-:1--'-’ I e -
elle . . s i ;n"‘ ' = o T
* 3 Billion base pairs in human genome A AN S & R NN
e : 2 pd @ e A g
e 20 Billion internet connected devices he -2 AT oy N sya
gl . ; I " . 9 - ’ o u o
* Trillions of connections between them At e e T A a

* Many graph processing systems are
designed to optimize graph traversal
problems

* PowerGraph [OSDI'12], GraphChi
[OSDI’12], GraphX [OSDI’14], X-Stream
[SOSP’13]

* Running BFS on Friendster in X-Stream
takes 15s for just a linear-time traversal

https://www.google.com/url?sa=i&source=images&cd=&ved=2ahUKEwiiib7Tgb_lAhUtUt8KHZ3YBE4QjB16BAgBEAM&url=https%3A%2F%2Fwww.howwhowhat.com%2F&psig=AOvVaw1a_EohZyhiRbS6gqWtIqxn&ust=1572354093062178
https://pixabay.com/illustrations/dna-string-biology-3d-1811955/

Graph Mining
* Aims to discover structural patterns in a graph

* Examples:
» Motif Counting finds all subgraphs of a given size
» Frequent Subgraph Mining uses labels to further distinguish patterns

» Useful in anomaly/fraud detection, bioinformatics, large scale graph
comparison

Triangle Counting

VAN

Pattern

Dataset

Triangle Counting

Dataset

Triangle Counting is well-studied

COLORFUL TRIANC
AND A MAPREDUCE 1

("h

RASMUS PAGH AND CHARALA

1

3
€

Triangle Listing in Massive Networ!|

Shumo Chu
Nanyang Technological University, Singapore
shumo.chu@acm.org

ABSTRACT

Triangle listing is one of the fundamental algorithmic problems
whose solution has numerous applications especially in the anal-
ysis of complex networks, such as the computation of clustering
coefficient, transitivity, triangular connectivity, etc. Existing algo-
rithms for triangle listing are mainly in-memory algorithms, whose
performance cannot scale with the massive volume of today’s fast
growing networks. When the input graph cannot fit into main mem-

e bl Vatia e i s A s ALVe i bl i

Nanyang

In particul:
cycle of ler
of size 3).
many important
ing coefficient (
transitivity [35,
sures can be dir.....,

m—— PR sl TR M e L

Counting Triangles in Real-World
Networks using Projections

aralamnne B Tannralalaic

1/0-Efficient Algorithms on Triangle Listing and Counting

Xiaocheng Hu, Chinese University of Hong Kong
Yufei Tao, Chinese University of Hong Kong
Chin-Wan Chu Ng, Korea Advanced Institute of Science and Technology

This paper studies I/O-efficient algorithms for the triangle listing problem and the triangle counting problem,
whose solutions are basic operators in dealing with many other graph problems. In the former problem, given
an undirected graph G, the objective is to find all the cliques involving 3 vertices in G. In the latter problem,
the objective is to report just the number of such cliques, without having to enumerate them. Both problems
have been well studied in internal memory, but still remain as difficult challenges when G does not fit in
memory, thus making it crucial to minimize the number of disk I/Os performed. Although previous research
has attempted to tackle these challenges, the state-of-the-art solutions rely on a set of crippling assumptions
to guarantee good performance. Motivated by this, we develop a new algorithm that is provably I/O and CPU
efficient at the same time, without making any assumption on the input G at all. The algorithm uses ideas

CAaAptELLas LA Rl aAU ATUMAL VA Maaoev saUtassss

The aforementioned triangle-centered measures have a large num-
ber of important applications. In addition, triangle listing also has

Triangle Counting is well-studied

s
y

HPEC

Cvpating

GraphChallenge

Motivation Challenges | Data Sets | Scenarios Champions

RASMUS

Triangle Listing

Shur
Nanyang Technologic
shumo.ch

ABSTRACT

Triangle listing is one of the funde
whose solution has numerous applic
ysis of complex networks, such as

coefficient, transitivity, triangular co
rithms for triangle listing are mainly
performance cannot scale with the n
growing networks. When the input gi

e sl Vatla i i e A

Home

Scenarios

Notional Scenarios for the 2017 HIVE Graph Challenge

In this era of big data, the rates at which these data sets grow continue to accelerate. The ability to manage and analyze the largest data sets
is always severely taxed. The most challenging of these data sets are those containing relational or network data. The HIVE challenge is
envisioned to be an annual challenge that will advance the state of the art in graph analytics on extremely large data sets. The primary focus
of the challenges will be on the expansion and acceleration of graph analytic algorithms through improvements to algorithms and their
implementations, and especially importantly, through special purpose hardware such as distributed and grid computers, and GPUs.
Potential approaches to accelerate graph analytic algorithms include such methods as massively parallel computation, improvements to
memory utilization, more efficient communications, and optimized data processing units.

The 2017 HIVE challenge is composed of two challenges: the first focuses on subgraph isomorphism and the second on community
detection. The baseline algorithms for the first challenge are recently developed algorithms that find triangles and k-trusses (J. Wang 2012).
The triangle counting algorithms can be considered as a special case of subgraph isomorphism where the subgraph of interest is restricted to
a triangle. Although these algorithms do not find matching subgraphs of a general description, they can be used as components in algorithms
that do. K-truss search algorithms can potentially support subgraph isomorphism algorithms through the characterization of a larger graph

and a entharanh af intaract Tnenncictant Ir_trice faatiirac nrawva that an ienmarnhiem dnac nat aviet hatumman turn ennharanhe whila anncictant

Inting

e triangle counting problem,
[n the former problem, given
5 in G. In the latter problem,
nerate them. Both problems
nges when G does not fit in
Although previous research
set of crippling assumptions
hat is provably I/O and CPU
11. The algorithm uses ideas

What about other patterns?

VAVS

Pattern

Dataset

What about other patterns?

Dataset

Prior General Mining Systems

* Arabesque[SOSP’15] and RStream[OSDI’18]
are two state-of-the-art graph mining

: Iteration 1: : Iteration 2: : Iteration 3:

systems I OneEdge | Two Edges | Three Edges
. _ ' ® o ' |
* Idea: Enumerate the embeddings (i.e., Target Pattern: ! ! !
subgraph instances) and run isomorphism Triangle = &——0 | :
tests ' 0—o0 ! |

* Arabesque is a distributed system that ' —@ f | A

implements an embedding-centric | @—@ | !
| | |

interface

e RStream runs on a single-machine and
supports disk-streaming

11

Single Thread Comparison

160
Single Threaded
140 |
. Rstream
120
(o))
€ 100
=
c 80
0
5 60
(&)
% 40
20 9.6
0.97 2.5 6.2

AUtO I\/| ine ° First of its kind topological compiler for graph mining
* Automates the manual algorithm design process

N _
B, € Adj(A) f 07}(/1 -(;/) {Ad_(A)) :
Cap € Adj(A) N Adj(B) or(By, : Adj
N AB for(Cyp : Adj(A) ...){
instances|clique,] += Dypc
:: I instances[rectangle] += D, })
Algorithms

Systems

13

Technigues

* Set Modeling
* Vertex M

* Adjacent(M)
*R € Adj(M)

Technigues

* Set Operations
* Begin from vertex A

A
* Di ices B-D
iscover vertices B € Adj(A)
* Insert missing edges to _ ,
encode all relationships E-EAGHA) € E AL D)
* Intersection (N) and C € Adj(A) N Adj(B)
Difference (—) are B-EAHED-EA A B AdHD)

sufficient, proof in paper D € Adj(C) — Adj(A) — Adj(B)

15

Technigues

* Scheduling space (permutations)

 Different orders imply different
order of operations

* All are correct, just with different
performance implications

* Choice of order is described in
the paper

16

AUtO I\/| ine ° First of its kind topological compiler for graph mining
* Automates the manual algorithm design process

N _
B, € Adj(A) f 07}(/1 -(;/) {Ad_(A)) :
Cap € Adj(A) N Adj(B) or(By, : Adj
N AB for(Cyp : Adj(A) ...){
instances|clique,] += Dypc
:: I instances[rectangle] += D, })
Algorithms

Systems

17

Map to low-levelcode X N

Ael AeV
B, € Adj(A) B, € Adj(A)
C,g € Adj(A) N Adj(B,) C,g € Adj(A) N Adj(B,)

Dasc € Adj(A) N Adj(B) N Adj(Cas) Dpc € Adj(Ba) N Adj(Cap) — Adj(A)
instances|clique_4] += Dypc instances|chordal] += Dy,

Map to low-levelcode X N

Ael
B, € Adj(A)

Cig € Adj(A) N Adj(B,)
DABC AdJ(CAB)
instances|clique_4] += Dypc

instances|chordal] += Dy

19

Map to low-levelcode X N

AevV
B, € Adj(A)
Cap € Adj(A) N Adj(B,)
Cp € Adj(B,) — Adj(A)
Dapc € Cap N Adj(Cyp)
B
instances|clique_4] += Dygc
instances|chordal] += Dg,

Map to low-levelcode X N

for vO 1n V:
for vl in Adj (A):

yvOyl = Adj(v0) N Adj(vl)

nlyl = Adj (vl) - Adj (v0)

for v2 : yOvyl:
vOyly2 = yOyl N Adj (v2)
nlyly2 = nOyl N Adj(v2)
counter 0 += yOylyZ2.size ()
counter 1 += nOylyZ2.size ()

Map to low-levelcode X N

Graph g(file);

fpragma omp parallel for <
for(vidType— 0; vO < n vertices; v 0++) {
for(vidType: g.Ad7j (v0)) {

VertexSet yOyl = g.Adj(v0) & g.Ad]j(vl);
VertexSet HEfi>: g.Adj (vl) - g.Adj(v0);

Parallelization

for (vidType vOyl) {
VertexSet yOyly2 = y0Oyl & Adj(v2); Data Reuse
VertexSet Vz = nUyT dj (v2);

record
record\

(v0, vl, vz, yOyly2);
(vO, v1, v2, nOyly2);

} _ VertexSets no longer needed
} once they go out of scope

22

AP| (Automating the Whole Process)

Basic APIs:

Pattern definePattern(Edgel] edgelist);
Program countPatterns(Pattern[] patterns);
Program enumeratePatterns(Pattern[] patterns);

Application-Level APIs:
Program CC(int size);
Program MC (int size);
Program FSM(int size, int support);

23

Fvaluation

e 2x 10-core Intel Xeon E5-2630 v4 CPUs (40 threads), 64gb memory

Graph Vertices Edges Domain
CiteSeer 3264 4536 Publication citation
MiCo 96638 1080156 Co-authorship
Patents 3.8M 16.5M US Patents
LiveJournal-1 4.8M 42.9M Social network
Orkut 3.1M 117.2M Social network
UK-2005 39.5M 783M Web graph
Youtube 1.1M 3M Social network
LiveJournal-2 4M 34.7M Social network
GSH-2015 988.5M 25.7B Web graph

24

Performance (Size 3)

CiteSeer MiCo Patents

AutoMine 0.01 0.04 0.14

Triangle Counting RStream 0.01 2.5 9.6
Arabesque 38.1 43.1 114.9

AutoMine 0.016 /012 Y\ 0.5
Motif RStream 0.13 \ 1666.9 } 1149.1

S———

Arabesque 40.6 51.7 116

AutoMine 0.02 0.039 3.9

Frequent Subgraph 5k | RStream 0.087 2.54 36.3

Arabesque 41.6 120.8 F

25

Performance vs Rstream (Larger Graphs)

__1E+6

% _ NAutoMine RStream |
= 1E+4

|_

.5 1E+2

2
1E-2

7 7 *’
o 1E+0 § §§§ m§
TC Tc

3-MC TC 3-MC TC 3-MC 3-MC TC 3-MC

LiveJournal-1 Orkut UK-2005 LiveJournal-2 Youtube

Performance vs Rstream (FSM-4)

1E+6

%%%Ww

N
S N
2 %
(a'et
N NN
W %
< —
3 7
= N
Z 7
<t N O N
Lodom oy

(S) swil uonndaxy

5K

1K 5K 300 500 1K 5K 300 500 1K

300 500

MiCo Patents

CiteSeer

27

Space need (bytes)

Intermediate Data

1E+12
1E+9
1E+6
1E+3
1E+0

AutoMine

Patents

RStream

CiteSeer

MiCo

3-MC

CiteSeer

28

ime(S)

5 1E+0

@)

Q \

X

N N .
6-CC 7-CC 8-CC 6-CC

Performance (Large Cliques)

\

\
\

uuuuuuu

-
1

OOOOO

Performance vs ASAP [OSDI"18]

14
1
1

Execution Time (S)

O N & OO0 ON

AutoMine

ASAP

1.1
0.016 0

CiteSeer

2.8
0.12

T T T

MiCo

Youtube

LivelJournal-2

Conclusions

* Manual algorithms may be much faster than graph mining systems
* Manual algorithm design doesn’t scale to larger patterns

* AutoMine harmonizes the high-level abstraction and high
performance for graph mining through automated algorithm and

code generation
e Can we extend this idea to other domains?

AutoMine

Daniel Mawhirter Bo Wu
dmawhirt@mymail.mines.edu bwu@mines.edu

mailto:dmawhirt@mymail.mines.edu
mailto:bwu@mines.edu
https://www.mines.edu/

