
Snap: a Microkernel Approach to Host Networking
Michael Marty, Marc de Kruijf, Jacob Adriaens, Christopher Alfeld, Sean Bauer,
Carlo Contavalli*, Michael Dalton*, Nandita Dukkipati, William C. Evans, Steve
Gribble, Nicholas Kidd, Roman Kononov, Gautam Kumar, Carl Mauer, Emily Musick,
Lena Olson, Erik Rubow, Michael Ryan, Kevin Springborn, Paul Turner, Valas
Valancius, Xi Wang, and Amin Vahdat

Google-Madison and Google-Sunnyvale

* work performed while at Google

Summary

Snap: Framework for developing and deploying packet processing software
● Goals: Performance and Deployment Velocity
● Technique: Microkernel-inspired userspace approach

Snap supports multiple use cases:
● Andromeda: Network virtualization for Google Cloud Platform [NSDI 2018]
● Espresso: Edge networking [SIGCOMM 2017]
● Traffic shaping for Bandwidth Enforcement
● New: High-performance host communication with “Pony Express”

3x throughput efficiency (vs kernel TCP), 5M IOPS, and weekly releases

2

Outline

Motivation

Design

Evaluation

Experiences and Challenges

Conclusion

3

Motivation

Fleet-wide Snap Upgrades in One Year

Growing performance-demanding packet processing needs at Google

The ability to rapidly develop and deploy new features is just as important!

4

Monolithic (Linux) Kernel

Deployment Velocity:
● Smaller pool of software developers
● More challenging development environment
● Must drain and reboot a machine to roll out new version

○ Typically months to release new feature

Performance:
● Overheads from system calls, fine-grained

synchronization, interrupts, and more.

App 1

system calls

App 2

NIC

Kernel

Interrupts
softIRQs
locks

5

LibraryOS and OS Bypass

Networking logic in application binaries

Deployment Velocity:
● Difficult to release changes to the fleet

○ App binaries may go months between releases

Performance:
● Can be very fast
● But typically requires spin-polling in every application
● Benefits of centralization (i.e., scheduling) lost

○ Delegates all policy to NIC

Examples: Arrakis, mTCP, Ix, ZygOS, and more

App 1

Network
Library

fn call

NIC

App 2

Network
Library

fn call

6

Microkernel Approach

Hoists functionality to a separate userspace process

Deployment Velocity:
● Decouples release cycles from application and

kernel binaries
● Transparent upgrade with iterative state transfer

Performance:
● Fast! Leverages kernel bypass and many-core CPUs
● Maintains centralization of a kernel

○ Can implement rich scheduling/multiplexing policies

Snap ProcessApp 1

shared memory reads/writes

App 2

NIC

Microkernel
Network Module

Linux
Kernel

7

Outline

Motivation

Design

Evaluation

Experience and Challenges

Conclusion

8

Snap Architecture Overview

host applicationscloud VMs

Shaping
Engine

Virtualization
Engine

data plane

host kernel

OS-bypass NIC

hypervisor

 Transport
Engine

I/O

memory-mapped I/O

Engine APIs

off-host controllers

memory-mapped I/O

Network
Snap

Snap

Snap Engine
● Key dataplane element
● Implements packet processing

pipelines
● Unit of CPU scaling

Snap Engines implement a Run()
method invoked by Engine Threads

Principled Synchronization
● No blocking locks

on-host
control
stack

control plane

9

Snap Engine Scheduling Modes

Dedicated Cores
● Static provisioning of N cores to run engines
● Simple and best for some situations

Snap App Idle

c0 c1 c2 c3 c4 c5

10

Snap Engine Scheduling Modes

Dedicated Cores
● Static provisioning of N cores to run engines
● Simple and best for some situations
● Provisioning for the worst-case is wasteful
● Provisioning for the average case leads to high tail latency

⇒ Need dynamic provisioning of CPU resources

Snap App Idle

c0 c1 c2 c3 c4 c5

11

Snap Engine Scheduling Modes

Spreading Engines
● Bind each engine to a unique kernel thread
● Interrupts triggered from NIC or application to schedule on-demand
● Leverages new micro-quanta kernel scheduling class for tighter latency

Pros: Can provide the best tail latency Cons: scheduling pathologies and overhead

Snap Spreads

12

Snap Engine Scheduling Modes

Spreading Engines
● Bind each engine to a unique kernel thread
● Interrupts triggered from NIC or application to schedule on-demand
● Leverages new micro-quanta kernel scheduling class for tighter latency

Pros: Can provide the best tail latency Cons: scheduling pathologies and overhead

Compacting Engines
● Compacts engines to as few cores as possible
● Periodic polling of queuing delays to re-balance engines to more cores

Pros: Can provide the best CPU efficiency Cons: detecting queue build-up when many engines

Snap Spreads

Snap Compacts

13

High Performance Communication with Snap

Snap enabled us to build the “Pony Express” communication stack
● Goal: high performance at Google scale

Pony Express engines implement a full-fledged reliable transport and interface
● RDMA-like operation interface to applications

○ Two-sided for classic RPC
○ One-sided (pseudo RDMA) operations for avoiding invocation of application thread scheduler
○ Custom one-sided operations to avoid shortcomings of RDMA (i.e., pointer chase over fabric)

● Custom transport and delay-based congestion control (Timely)

Integrates into existing stacks (i.e., gRPC) and applications

Path towards seamless access of hardware offloads
14

Outline

Motivation

Design

Evaluation

Experience and Challenges

Conclusion

15

Evaluation -- Ping Pong Latency
2-node “TCP_RR”-style ping pong latency

16

Evaluation -- Throughput
2-node “TCP_STREAM”-style throughput. Single Pony Engine, Dedicated Core

17

Demonstration of One-sided IOPS in
Production

Reads

Atomics
Indirect Reads
(Batched) Writes

IO
P

S
Production Dashboard of One-sided IOPS

Hottest machine in one-minute intervals. Single Pony Express engine and core

18

Challenges with Dynamic Scaling

10 Pony Express Engines dynamically scheduled.

19

CPU Efficiency Tail Latency

Challenges with Dynamic Scaling

Spreading engines impacted by C-states and non-preemptible kernel activity

20

Conclusion

Snap: a Microkernel Approach to Host Networking

● Achieves the iteration-speed advantages of userspace dev and microservices
● With the performance gains of OS bypass
● With the centralization advantages of a traditional OS kernel
● And interoperates with application threading systems and the rest of Linux

21

