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Summary

Snap:  Framework for developing and deploying packet processing software
● Goals:  Performance and Deployment Velocity
● Technique:  Microkernel-inspired userspace approach

Snap supports multiple use cases:
● Andromeda: Network virtualization for Google Cloud Platform [NSDI 2018]
● Espresso:  Edge networking    [SIGCOMM 2017]
● Traffic shaping for Bandwidth Enforcement     
● New:  High-performance host communication with “Pony Express”

3x throughput efficiency (vs kernel TCP), 5M IOPS, and weekly releases
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Motivation

Fleet-wide Snap Upgrades in One Year

Growing performance-demanding packet processing needs at Google

The ability to rapidly develop and deploy new features is just as important!
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Monolithic (Linux) Kernel

Deployment Velocity:
● Smaller pool of software developers
● More challenging development environment
● Must drain and reboot a machine to roll out new version

○ Typically months to release new feature

Performance:
● Overheads from system calls, fine-grained 

synchronization, interrupts, and more.

App 1

system calls

App 2

NIC

Kernel

Interrupts
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locks
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LibraryOS and OS Bypass

Networking logic in application binaries

Deployment Velocity:
● Difficult to release changes to the fleet

○ App binaries may go months between releases

Performance:
● Can be very fast
● But typically requires spin-polling in every application
● Benefits of centralization (i.e., scheduling) lost

○ Delegates all policy to NIC

Examples:   Arrakis, mTCP, Ix, ZygOS, and more

App 1
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Library
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Microkernel Approach

Hoists functionality to a separate userspace process

Deployment Velocity:
● Decouples release cycles from application and 

kernel binaries
● Transparent upgrade with iterative state transfer

Performance:
● Fast! Leverages kernel bypass and many-core CPUs
● Maintains centralization of a kernel

○ Can implement rich scheduling/multiplexing policies

Snap ProcessApp 1

shared memory reads/writes 

App 2

NIC

Microkernel
Network Module

Linux
Kernel
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Snap Architecture Overview

host applicationscloud VMs

Shaping 
Engine

Virtualization
Engine

data plane

host kernel

OS-bypass NIC

hypervisor

 Transport 
Engine

I/O

memory-mapped I/O

Engine APIs

off-host controllers

memory-mapped I/O

Network
Snap

Snap

Snap Engine
● Key dataplane element
● Implements packet processing 

pipelines
● Unit of CPU scaling

Snap Engines implement a Run() 
method invoked by Engine Threads

Principled Synchronization
● No blocking locks

on-host 
control
stack

control plane
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Snap Engine Scheduling Modes

Dedicated Cores
● Static provisioning of N cores to run engines
● Simple and best for some situations

Snap      App     Idle

c0 c1 c2 c3 c4 c5
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Snap Engine Scheduling Modes

Dedicated Cores
● Static provisioning of N cores to run engines
● Simple and best for some situations
● Provisioning for the worst-case is wasteful
● Provisioning for the average case leads to high tail latency

⇒  Need dynamic provisioning of CPU resources

Snap      App     Idle

c0 c1 c2 c3 c4 c5

11



Snap Engine Scheduling Modes

Spreading Engines
● Bind each engine to a unique kernel thread
● Interrupts triggered from NIC or application to schedule on-demand
● Leverages new micro-quanta kernel scheduling class for tighter latency

Pros: Can provide the best tail latency    Cons:  scheduling pathologies and overhead

Snap Spreads
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Snap Engine Scheduling Modes

Spreading Engines
● Bind each engine to a unique kernel thread
● Interrupts triggered from NIC or application to schedule on-demand
● Leverages new micro-quanta kernel scheduling class for tighter latency

Pros: Can provide the best tail latency    Cons:  scheduling pathologies and overhead

Compacting Engines
● Compacts engines to as few cores as possible
● Periodic polling of queuing delays to re-balance engines to more cores

Pros: Can provide the best CPU efficiency    Cons:  detecting queue build-up when many engines

Snap Spreads

Snap Compacts
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High Performance Communication with Snap

Snap enabled us to build the “Pony Express” communication stack
● Goal:  high performance at Google scale

Pony Express engines implement a full-fledged reliable transport and interface
● RDMA-like operation interface to applications

○ Two-sided for classic RPC
○ One-sided (pseudo RDMA) operations for avoiding invocation of application thread scheduler
○ Custom one-sided operations to avoid shortcomings of RDMA (i.e., pointer chase over fabric)

● Custom transport and delay-based congestion control (Timely)

Integrates into existing stacks (i.e., gRPC) and applications

Path towards seamless access of hardware offloads
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Evaluation -- Ping Pong Latency
2-node “TCP_RR”-style ping pong latency
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Evaluation -- Throughput
2-node “TCP_STREAM”-style throughput.  Single Pony Engine, Dedicated Core
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Demonstration of One-sided IOPS in 
Production

Reads

Atomics
Indirect Reads 
(Batched) Writes

IO
P

S
Production Dashboard of One-sided IOPS

Hottest machine in one-minute intervals.  Single Pony Express engine and core
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Challenges with Dynamic Scaling

10 Pony Express Engines dynamically scheduled.  
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Challenges with Dynamic Scaling

Spreading engines impacted by C-states and non-preemptible kernel activity
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Conclusion

Snap:  a Microkernel Approach to Host Networking

● Achieves the iteration-speed advantages of userspace dev and microservices
● With the performance gains of OS bypass
● With the centralization advantages of a traditional OS kernel
● And interoperates with application threading systems and the rest of Linux
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