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Distributed Systems Are Subtle

[Mickens 2013]



The Alternative: Formal Verification
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Existing Verification Approaches

All existing approaches require the human to find an inductive invariant

We want to automatically find inductive invariants …
… by combining the power of Ivy and model checking
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Manual Effort

Verdi(Coq)
[PLDI’15]

IronFleet(Dafny)
[SOSP’15]

Ivy
[PLDI’16]

I4

AutomatedPerson-hoursPerson-monthsPerson-years Person-days



Protocol
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Distributed lock
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A few days
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Protocol
Traditional
approach Ivy I4

Lock server
500 lines
(Verdi) <1 hour

Distributed lock
A few days
(IronFleet) A few hours

Preview of Results
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Numbers come from Ivy [PLDI 2016]
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Induction on Distributed Protocol

Goal: prove that the safety property always holds

An execution:

6

. . .0 1 2 k k+1Initial 
state

Inductive proof
● Base case: prove initial state is safe
● Inductive step: if state k is safe, prove state k+1 is safe



Safety Property vs. Inductive Invariant

All states

Reachable 
states
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Safe states

Inductive 
invariant



I.e. No two nodes can hold the lock at the same time.

Inductive Invariants Are Complex
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Existing approaches rely on 
manual effort and human intuition

Strengthening Assertion
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I4: a new approach

Goal: Find an inductive invariant without relying on human intuition.

Insight: Distributed protocols exhibit regularity.

Implication: We can use inductive invariants from small instances to infer 
a generalized inductive invariant that holds for all instances.

10

• Behavior doesn’t fundamentally change as the size increases 
• E.g. distributed lock, Chord DHT ring, …



Leveraging Model Checking

J Fully automated

L Doesn’t scale to distributed systems

I4 applies model checking to small, finite instances …

… and then generalizes the result to all instances.
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Design of I4
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Generalize

Protocol_inv.ivy Ivy
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Violation
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Counterexample

Protocol.ivy

Increase Size

Create Small
(Finite) Instance
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Checker
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(Manual) Out ofmemoryInvariant generation 

on a finite instance
Invariant 

generalization



Finite state
machine
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Generalize
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Finite state
machine

Making The Model Checking Problem Easier
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Generalize

Protocol_inv.ivy Ivy

Prune Strengthening
Assertion
Violation

Safety
Property
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Correct 
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Protocol.ivy

Increase Size

Create Small
(Finite) Instance

Model
Checker

Out ofmemory Invariant 
generalization

Concretize
(Manual)Symmetry

E.g. FIRST is the node that sends the first message

FIRST = Node1



Invariant Generation on a Finite Instance
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GeneralizeProtocol.finv
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Generalizing The Inductive Invariant
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Invariant Generalization
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Generalize
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Generalize
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Evaluation

Lock Server
Leader Election
Distributed lock
Chord Ring
Learning Switch
Database Chain Consistency
Two-Phase Commit
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Blind Tests



Protocol Manual Effort
Total time

(sec)
Minimal

instance size
Lock server None 0.9 2 clients, 1 server

Leader election in ring <5min 6.2 3 nodes, 3 ids
Distributed lock <5min 159.6 2 nodes, 4 epochs

Chord ring <5min 628.9 4 nodes
Learning switch None 10.7 3 nodes, 1 packets

Database chain
Consistency

None 12.6
3 transactions,
3 operations,
1 key, 2 node

Two-Phase Commit None 4.3 6 nodes

Result Summary
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Conclusion
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Regularity of distributed protocols makes it possible to automatically 
infer inductive invariants of distributed protocols from small instances.

By combining the power of model checking and Ivy, I4 can verify a 
number of interesting protocols with little to no manual effort.

https://github.com/GLaDOS-Michigan/I4

Thanks

I’m looking for a research intern for next summer. If you’re interested, just contact me.

https://github.com/GLaDOS-Michigan/I4
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type node
type epoch

relation le(E:epoch, E:epoch)
relation locked(E:epoch, N:node)
relation transfer(E:epoch, N:node)
relation held(N:node)

individual zero : epoch
individual e : epoch
function ep(N:node) : epoch
individual first : node

after init {
held(X) := X:node = first;
ep(N) := zero;
ep(first) := e;
transfer(E,N) := false;
locked(E,N) := false

}


