
Haojun Ma, Aman Goel, Jean-Baptiste Jeannin
Manos Kapritsos, Baris Kasikci, Karem A. Sakallah

University of Michigan

I4: Incremental Inference of Inductive Invariants for

Verification of Distributed Protocols

Automated



1

Distributed Systems Are Subtle

[Mickens 2013]



The Alternative: Formal Verification

2



Existing Verification Approaches

All existing approaches require the human to find an inductive invariant

We want to automatically find inductive invariants …
… by combining the power of Ivy and model checking

3

Manual Effort

Verdi(Coq)
[PLDI’15]

IronFleet(Dafny)
[SOSP’15]

Ivy
[PLDI’16]

I4

AutomatedPerson-hoursPerson-monthsPerson-years Person-days



Protocol
Traditional
approach Ivy I4

Lock server
500 lines
(Verdi)

Distributed lock
A few days
(IronFleet)

Protocol
Traditional
approach Ivy I4

Lock server
500 lines
(Verdi) <1 hour Automated

Distributed lock
A few days
(IronFleet) A few hours < 5 min

Protocol
Traditional
approach Ivy I4

Lock server
500 lines
(Verdi) <1 hour

Distributed lock
A few days
(IronFleet) A few hours

Preview of Results

4

Numbers come from Ivy [PLDI 2016]



Outline

Verification of distributed systems

I4: a new approach

Design of I4

Evaluation

Conclusion
5



Induction on Distributed Protocol

Goal: prove that the safety property always holds

An execution:

6

. . .0 1 2 k k+1Initial 
state

Inductive proof
● Base case: prove initial state is safe
● Inductive step: if state k is safe, prove state k+1 is safe



Safety Property vs. Inductive Invariant

All states

Reachable 
states

7

Safe states

Inductive 
invariant



I.e. No two nodes can hold the lock at the same time.

Inductive Invariants Are Complex

8

Existing approaches rely on 
manual effort and human intuition

Strengthening Assertion



Outline

I4: a new approach

Design of I4

Evaluation

Conclusion
9



I4: a new approach

Goal: Find an inductive invariant without relying on human intuition.

Insight: Distributed protocols exhibit regularity.

Implication: We can use inductive invariants from small instances to infer 
a generalized inductive invariant that holds for all instances.

10

• Behavior doesn’t fundamentally change as the size increases 
• E.g. distributed lock, Chord DHT ring, …



Leveraging Model Checking

J Fully automated

L Doesn’t scale to distributed systems

I4 applies model checking to small, finite instances …

… and then generalizes the result to all instances.

11



Outline

Design of I4

Evaluation

Conclusion
12



Design of I4

13

Generalize

Protocol_inv.ivy Ivy

Prune Strengthening
Assertion
Violation

Safety
Property
Violation

Correct 
✓

Protocol.finv

Protocol.vmt

Counterexample

Protocol.ivy

Increase Size

Create Small
(Finite) Instance

Model
Checker

Concretize
(Manual) Out ofmemoryInvariant generation 

on a finite instance
Invariant 

generalization



Finite state
machine

14

Generalize

Protocol_inv.ivy Ivy

Prune Strengthening
Assertion
Violation

Safety
Property
Violation

Correct 
✓

Protocol.finv

Counterexample

Protocol.ivy

Increase Size

Create Small
(Finite) Instance

Model
Checker

Concretize
(Manual) Out ofmemory Invariant 

generalization
Invariant generation 
on a finite instance



Finite state
machine

Making The Model Checking Problem Easier

15

Generalize

Protocol_inv.ivy Ivy

Prune Strengthening
Assertion
Violation

Safety
Property
Violation

Correct 
✓

Protocol.finv

Counterexample

Protocol.ivy

Increase Size

Create Small
(Finite) Instance

Model
Checker

Out ofmemory Invariant 
generalization

Concretize
(Manual)Symmetry

E.g. FIRST is the node that sends the first message

FIRST = Node1



Invariant Generation on a Finite Instance

16

Generalize

Protocol_inv.ivy Ivy

Prune Strengthening
Assertion
Violation

Safety
Property
Violation

Correct 
✓

Protocol.finv

Finite state
machine

Counterexample

Protocol.ivy

Increase Size

Create Small
(Finite) Instance

Model
Checker

Concretize
(Manual) Out ofmemory Invariant 

generalization



17

GeneralizeProtocol.finv

Protocol.vmt

Counterexample

Protocol.ivy

Increase Size

Create Small
(Finite) Instance

Model
Checker

Concretize
(Manual) Out ofmemoryInvariant generation 

on a finite instance
Invariant 

generalization



Generalizing The Inductive Invariant

18

Protocol.finv

Protocol.vmt

Counterexample

Protocol.ivy

Increase Size

Create Small
(Finite) Instance

Model
Checker

Concretize
(Manual) Out ofmemoryInvariant generation 

on a finite instance

Generalize



Invariant Generalization

19

Generalize

Protocol_inv.ivy Ivy

Prune Strengthening
Assertion
Violation

Safety
Property
Violation

Correct 
✓

Protocol.finv

Protocol.vmt

Counterexample

Protocol.ivy

Increase Size

Create Small
(Finite) Instance

Model
Checker

Concretize
(Manual) Out ofmemoryInvariant generation 

on a finite instance



20

Generalize

Protocol_inv.ivy Ivy

Prune Strengthening
Assertion
Violation

Safety
Property
Violation

Correct 
✓

Protocol.finv

Counterexample

Protocol.ivy

Increase Size

Create Small
(Finite) Instance

Model
Checker

Concretize
(Manual) Out ofmemory

Finite state
machine



Outline

Evaluation

Conclusion
21



Evaluation

Lock Server
Leader Election
Distributed lock
Chord Ring
Learning Switch
Database Chain Consistency
Two-Phase Commit

22

Blind Tests



Protocol Manual Effort
Total time

(sec)
Minimal

instance size
Lock server None 0.9 2 clients, 1 server

Leader election in ring <5min 6.2 3 nodes, 3 ids
Distributed lock <5min 159.6 2 nodes, 4 epochs

Chord ring <5min 628.9 4 nodes
Learning switch None 10.7 3 nodes, 1 packets

Database chain
Consistency

None 12.6
3 transactions,
3 operations,
1 key, 2 node

Two-Phase Commit None 4.3 6 nodes

Result Summary

23



Outline

Conclusion
24



Conclusion

25

Regularity of distributed protocols makes it possible to automatically 
infer inductive invariants of distributed protocols from small instances.

By combining the power of model checking and Ivy, I4 can verify a 
number of interesting protocols with little to no manual effort.

https://github.com/GLaDOS-Michigan/I4

Thanks

I’m looking for a research intern for next summer. If you’re interested, just contact me.

https://github.com/GLaDOS-Michigan/I4


26

type node
type epoch

relation le(E:epoch, E:epoch)
relation locked(E:epoch, N:node)
relation transfer(E:epoch, N:node)
relation held(N:node)

individual zero : epoch
individual e : epoch
function ep(N:node) : epoch
individual first : node

after init {
held(X) := X:node = first;
ep(N) := zero;
ep(first) := e;
transfer(E,N) := false;
locked(E,N) := false

}


