KVell:

-

Made in

v : e , Australia

) , _ : \ from 0%
; . ey Australian

redients

Single Machine Persistent KVs

Put(k, v)
Get(k)2> v

Scan(ky, k,) > [ky Vs, .., ky vyl

2/36

Bandwidth (MB/s)

Disks are much faster

Sequential Reads Sequential Writes

3000
2000
1000
0
O LA v o T nvm, oo
2010 2013 2016 2018

= SR s ,&
(X 2 nvim (inteD OPTANE 236

Random as fast as sequential

Random 4k = sequential reads Random 4k = sequential writes

» 3000 3000
SN
(a0
E 2000 2000
=
R
= 1000 1000
©
=
0 0) 0)
Q 2 nvm._, o l i nvm_, ooy
2010 2013 2016 2018

| = | o
— ST , _«
(&). g % (intel) OPTANE "

4/36

This Talk

Existing KVs not designed for fast drives

KVell: a new design for fast drives

5/36

Popular designs

Log Structured Merge Tree B+ Tree
(LSM)
=
Wr
“ RocksDB .mongo
@ oo @ ooneon

6/36

“~ RocksDB 50% GET, 50% PUT

(inte) OPTANE > Max |/O bandwidth

= 2000 Fmmmmmmm e —— 'f _______
=

3

i © Q.

CcC 0

8 @ 1000

o=

=

ks 0

=

O 10 20 30 40 50 60

Time (s)

7/36

RocksDB is CPU-bound

= 100

2

2 80

N

s 60

-

2 40

N

S 20
0

10

20

30
Time (s)

40

50

60

8/36

Popular design #1: LSM

RAM

9/36

Popular design #1: LSM

RAM

Data ordered by key

Disk in RAM and on disk

Popular design #1: LSM

RAM Updates buffered in RAM.

RAM flushed to disk

Disk

Popular design #1: LSM

RAM Updates buffered in RAM.

RAM flushed to disk

Disk] i
merged in the ordered main

structure (compaction)

12/36

“* RocksDB is CPU-bound

%CPU utilization

/

60% - merging + creating indexes of the disk structure

13/36

RocksDB’s performance fluctuates

2000
E
m 1000
<

0

Used I/O Bandwidth

Max I/O bandwidth

N
0) 30 60
Time (s)

Throughput

(KOps/s)

120

(@))
o

o

\

60

14/36

RocksDB’s performance fluctuates

Max I/O bandwidth

3 l

g e)

O 2000 [= = = = & = = =

2 -5 _ 120

2% Rl V\

© = 1000 o 8

o = o 60

o2 22

= 0 - 0

g 0 30 60 0 30 60
Time (s) Time (s)

1 flush = large backlog of work

15/36

Popular design #2: B+ Trees

%CPU utilization

/

60% - Contention on shared
data structures
=» low average throughput

120

Throughput
(KOps/s)
S

o

0 20 40 60
Time (s)

Large buffers
=» fluctuations

16/36

Lessons learned

x Ordering
=» low average throughput

x Contention

x Large buffers =¥ fluctuations

17/36

How to design an efficient KV for
very fast drives?

Key ideas

Data
(but sorted in memory)

19/36

Key ideas

Data
(but sorted in memory)

20/36

Key ideas

Data
(but sorted in memory)

21/36

Bandwidth (MB/s)

Key idea #1 — data unsorted on disk

Random 4k = sequential reads Random 4k = sequential writes

3000 3000
2000 2000
1000 1000
0 0
B @& v eee B & v e

22/36

Key idea #1 — data unsorted on disk

Unsorted data on disk

|

File 1

23/36

Key idea #1 —

In-memory ordered index (for scans)

Prefix(KO)

A

Prefix(K3)

o

Prefix(k)

Prefix(K4)

Prefix(K5)

Prefix(K2)

= [file, idx]

Unsorted data on disk

file

idx

24/36

Key idea #2 —

Sharding (static partitioning) - N independent workers

Worker 1

Worker 2

Key % 3 ==

Key % 3 ==

Worker 3

Key % 3 ==

25/36

Key idea #2 — no sharing

Workers have their own index and files

Worker 1

Worker 2

Worker 3

26/36

Key idea #3 —

Traditionally Put(k, v) —vrite—y "2EC ﬁé&%"a""qqm't?""_ﬁ

Cache

27/36

Key idea #3 —

Traditionally

KVell

Put(k, v)

—wite . Page | geiavedwrite |
Cache —

Page write -

Cache —

28/36

Implementation challenges

Syscall cost

Manage disk queue length

29/36

Evaluation

Machines:
4 cores, 32GB RAM, Optane 905P drive ()

Benchmark:
YCSB — 1KB items,

Competition:

“* RocksDB Ypebb'eSDB Wi &9 on 0N

30/36

N B O O
o O O O
o O O O

Throughput
(KOps/s)

o

Evaluation — YCSB

[0 RocksDB EPebblesDB O TokuMX O WiredTiger

m Kvell

20

Uniform

- HLHI Hlﬁﬂl HLHI . I

YCSBA YCSBB

50/50 95/5
read/write read/write

YCSBC YCSBD YCSBF

100%
read

95/5
read/write

50/50
read/ rmw

15
10

8|

YCSBE

95/5
scans/write

31/36

N B O O
o O O O
o O O O

Throughput
(KOps/s)

o

Evaluation — YCSB

O RocksDB EPebblesDB O TokuMX O WiredTiger B Kvell

20

b
[- o

KVell runs at disk BW
(75% of CPU time idle)

oA DR RETN DEN o] ,

YCSBA YCSBB YCSBC YCSBD YCSBF YCSBE
50/50 95/5 100% 50/50 95/5 95/5
read/write read/write read read/write read/write scans/write

32/36

R N
ol O

=
o

Throughput
(KOps/s)

o U

Evaluation — YCSB — Scans

60
i 5
S 40
_ %D Q_
o Q
£ = 20
YCSBE 0
95/5 0 60 120 180 240

scans/write Time (S)

[0 RocksDB EPebblesDB O TokuMX O WiredTiger B Kvell

Evaluation — YCSB — Scans

20

12

RocksDB drops to 1.8K
scans/s even on a read
mostly workload

Th

o LLE

N

YCSB
95/5

E

scans/write

[0 RocksDB E PebblesDB [0 TokuMX

Thyoughput

KOps/s)

(o)
o

N
o

o

60 120 180
Time (s)
0 WiredTiger B Kvell

240

34/36

In the paper

p— . Limitations:
= T R | * Indexes have to fit in memory
e e Suboptimal scans for small items

« AWS machine, 15GB/s, 5TB dataset

* Production workload

* Recovery time

Q

Conclusions & take away messages™§

* Ordering data is expensive
» Buffering creates big fluctuation

* Optimizing for CPU utilization is key

(To kvell: to feel happy and proud

V Code and scripts to reproduce results on AWS

36/36

https://github.com/BLepers/KVell

