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Put(k, v)

Get(k)→ v

Scan(kX, kY) → [kX vX , … , kY vY]

Single Machine Persistent KVs
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This Talk

Existing KVs not designed for fast drives

KVell: a new design for fast drives
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Popular designs

Log Structured Merge Tree
(LSM)

B+ Tree
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50% GET, 50% PUT
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is CPU-bound
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Popular design #1: LSM
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Popular design #1: LSM

Data ordered by key
in RAM and on disk
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Popular design #1: LSM

Updates buffered in RAM.

RAM flushed to disk
➔ Large sequential IO
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Popular design #1: LSM

Updates buffered in RAM.

RAM flushed to disk 
merged in the ordered main

structure (compaction)
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60% - merging + creating indexes of the disk structure
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1 flush = large backlog of work
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➔ fluctuations
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Lessons learned

Ordering

Contention

Large buffers

➔ low average throughput

➔ fluctuations
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How to design an efficient KV for 
very fast drives?
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Ordering

Key ideas

Data unsorted on disk
(but sorted in memory)
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Key ideas

Ordering

Contention

Data unsorted on disk
(but sorted in memory)

Shared-nothing
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Key ideas

Ordering

Contention

Large buffers

Data unsorted on disk
(but sorted in memory)

Shared-nothing

No buffering
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Key idea #1 – data unsorted on disk
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Key idea #1 – data unsorted on disk

Unsorted data on disk

Put( k, v )

k, v

File 1

File 2
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Prefix(k) 

Prefix(K2)

In-memory ordered index (for scans)

Prefix(K0)

Prefix(K3)

Prefix(K4) Prefix(K5)

➔ [file, idx]

k, v

file

idx

Unsorted data on disk

Key idea #1 – data ordered in memory
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Sharding (static partitioning) - N independent workers

Key idea #2 – no sharing

Worker 1 Worker 2 Worker 3

Key % 3 == 0 Key % 3 == 1 Key % 3 == 2
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Workers have their own index and files

Key idea #2 – no sharing

Worker 1 Worker 2 Worker 3
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Key idea #3 – no buffering

Put(k, v)
Page 

Cache
write delayed writeTraditionally
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Key idea #3 – no buffering

Put(k, v)
Page 

Cache
write delayed writeTraditionally

Page 
Cache

write
KVell Put(k, v)
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Implementation challenges

Syscall cost

Data structures

Manage disk queue length
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Evaluation

Machines:
4 cores, 32GB RAM, Optane 905P drive (500K IOPS, 2GB/s)

Benchmark: 
YCSB – 1KB items, 100M elements (100GB)

Competition:

PebblesDB
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In the paper

• Limitations:
• Indexes have to fit in memory
• Suboptimal scans for small items

• AWS machine, 15GB/s, 5TB dataset

• Production workload

• Recovery time

…
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Conclusions & take away messages

• Ordering data is expensive
• Buffering creates big fluctuation

• Optimizing for CPU utilization is key

https://github.com/BLepers/KVell
Code and scripts to reproduce results on AWS

To kvell: to feel happy and proud

https://github.com/BLepers/KVell

