
KVell: the Design and
Implementation of a Fast
Persistent Key-Value Store

Baptiste Lepers

Oana Balmau

Karan Gupta

Willy Zwaenepoel

2/36

Put(k, v)

Get(k)→ v

Scan(kX, kY) → [kX vX , … , kY vY]

Single Machine Persistent KVs

3/36

0

1000

2000

3000

2010 2013 2016 2018

Disks are much faster

0

1000

2000

3000

2010 2013 2016 2018

B
an

d
w

id
th

 (
M

B
/s

) Sequential Reads Sequential Writes

2016 201820132010

4/36

0

1000

2000

3000

2010 2013 2016 2018

Random as fast as sequential

0

1000

2000

3000

2010 2013 2016 2018

B
an

d
w

id
th

 (
M

B
/s

) Random 4k ≈ sequential reads

2016 201820132010

Random 4k ≈ sequential writes

5/36

This Talk

Existing KVs not designed for fast drives

KVell: a new design for fast drives

6/36

Popular designs

Log Structured Merge Tree
(LSM)

B+ Tree

7/36

50% GET, 50% PUT

0

1000

2000

0 10 20 30 40 50 60

Time (s)

U
se

d
 I/

O
 B

an
d

w
id

th

(M
B

/s
)

Max I/O bandwidthMax I/O bandwidth

Average used
I/O bandwidth

8/36

is CPU-bound

0

20

40

60

80

100

0 10 20 30 40 50 60

Time (s)

%
C

P
U

 u
ti

liz
at

io
n

9/36

Popular design #1: LSM

10/36

Popular design #1: LSM

Data ordered by key
in RAM and on disk

11/36

Popular design #1: LSM

Updates buffered in RAM.

RAM flushed to disk
➔ Large sequential IO

12/36

Popular design #1: LSM

Updates buffered in RAM.

RAM flushed to disk
merged in the ordered main

structure (compaction)

13/36

60% - merging + creating indexes of the disk structure

%
C

P
U

 u
ti

liz
at

io
n

is CPU-bound

14/36

0

60

120

0 30 60

Time (s)

Th
ro

u
gh

p
u

t
(K

O
p

s/
s)

0

1000

2000

0 30 60

Time (s)

U
se

d
 I/

O
 B

an
d

w
id

th

(M
B

/s
)

Max I/O bandwidth

’s performance fluctuates

15/36

0

60

120

0 30 60

Time (s)

Th
ro

u
gh

p
u

t
(K

O
p

s/
s)

0

1000

2000

0 30 60

Time (s)

U
se

d
 I/

O
 B

an
d

w
id

th

(M
B

/s
)

Max I/O bandwidth

’s performance fluctuates

1 flush = large backlog of work

16/36

0

60

120

0 20 40 60

Time (s)

Th
ro

u
gh

p
u

t
(K

O
p

s/
s)

Popular design #2: B+ Trees

Large buffers
➔ fluctuations

60% - Contention on shared
data structures

➔ low average throughput

%
C

P
U

 u
ti

liz
at

io
n

17/36

Lessons learned

Ordering

Contention

Large buffers

➔ low average throughput

➔ fluctuations

18/36

How to design an efficient KV for
very fast drives?

19/36

Ordering

Key ideas

Data unsorted on disk
(but sorted in memory)

20/36

Key ideas

Ordering

Contention

Data unsorted on disk
(but sorted in memory)

Shared-nothing

21/36

Key ideas

Ordering

Contention

Large buffers

Data unsorted on disk
(but sorted in memory)

Shared-nothing

No buffering

22/36

Key idea #1 – data unsorted on disk

0

1000

2000

3000

2010 2013 2016 2018

0

1000

2000

3000

2010 2013 2016 2018

B
an

d
w

id
th

 (
M

B
/s

) Random 4k ≈ sequential reads Random 4k ≈ sequential writes

23/36

Key idea #1 – data unsorted on disk

Unsorted data on disk

Put(k, v)

k, v

File 1

File 2

24/36

Prefix(k)

Prefix(K2)

In-memory ordered index (for scans)

Prefix(K0)

Prefix(K3)

Prefix(K4) Prefix(K5)

➔ [file, idx]

k, v

file

idx

Unsorted data on disk

Key idea #1 – data ordered in memory

25/36

Sharding (static partitioning) - N independent workers

Key idea #2 – no sharing

Worker 1 Worker 2 Worker 3

Key % 3 == 0 Key % 3 == 1 Key % 3 == 2

26/36

Workers have their own index and files

Key idea #2 – no sharing

Worker 1 Worker 2 Worker 3

27/36

Key idea #3 – no buffering

Put(k, v)
Page

Cache
write delayed writeTraditionally

28/36

Key idea #3 – no buffering

Put(k, v)
Page

Cache
write delayed writeTraditionally

Page
Cache

write
KVell Put(k, v)

29/36

Implementation challenges

Syscall cost

Data structures

Manage disk queue length

30/36

Evaluation

Machines:
4 cores, 32GB RAM, Optane 905P drive (500K IOPS, 2GB/s)

Benchmark:
YCSB – 1KB items, 100M elements (100GB)

Competition:

PebblesDB

31/36

0

200

400

600

800

YCSB A YCSB B YCSB C YCSB D YCSB F

RocksDB PebblesDB TokuMX WiredTiger Kvell

YCSB E

Th
ro

u
gh

p
u

t
(K

O
p

s/
s)

0

5

10

15

20

Uniform

50/50
read/write

95/5
read/write

100%
read

95/5
scans/write

Evaluation – YCSB

95/5
read/write

50/50
read/ rmw

32/36

0

200

400

600

800

YCSB A YCSB B YCSB C YCSB D YCSB F

RocksDB PebblesDB TokuMX WiredTiger Kvell

YCSB E

Th
ro

u
gh

p
u

t
(K

O
p

s/
s)

0

5

10

15

20

Uniform

50/50
read/write

95/5
read/write

100%
read

95/5
scans/write

Evaluation – YCSB

KVell runs at disk BW
(75% of CPU time idle)

50/50
read/write

95/5
read/write

33/36

YCSBE
0

5

10

15

20

95/5
scans/write

Evaluation – YCSB – Scans

0

20

40

60

0 60 120 180 240

Th
ro

u
gh

p
u

t
(K

O
p

s/
s)

Th
ro

u
gh

p
u

t
(K

O
p

s/
s)

Time (s)

RocksDB PebblesDB TokuMX WiredTiger Kvell

34/36

YCSBE
0

5

10

15

20

95/5
scans/write

Evaluation – YCSB – Scans

0

20

40

60

0 60 120 180 240

Th
ro

u
gh

p
u

t
(K

O
p

s/
s)

Th
ro

u
gh

p
u

t
(K

O
p

s/
s)

Time (s)

RocksDB drops to 1.8K
scans/s even on a read

mostly workload

RocksDB PebblesDB TokuMX WiredTiger Kvell

35/36

In the paper

• Limitations:
• Indexes have to fit in memory
• Suboptimal scans for small items

• AWS machine, 15GB/s, 5TB dataset

• Production workload

• Recovery time

…

36/36

Conclusions & take away messages

• Ordering data is expensive
• Buffering creates big fluctuation

• Optimizing for CPU utilization is key

https://github.com/BLepers/KVell
Code and scripts to reproduce results on AWS

To kvell: to feel happy and proud

https://github.com/BLepers/KVell

