KVell:

-

Made in

v : e , Australia

) , _ : \ from 0%
; . ey Australian

redients




Single Machine Persistent KVs
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Bandwidth (MB/s)

Disks are much faster

Sequential Reads Sequential Writes
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Random as fast as sequential

Random 4k = sequential reads Random 4k = sequential writes
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This Talk

Existing KVs not designed for fast drives

KVell: a new design for fast drives
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Popular designs
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“~ RocksDB 50% GET, 50% PUT
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RocksDB is CPU-bound
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Popular design #1: LSM

RAM
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Popular design #1: LSM

RAM

Data ordered by key

Disk in RAM and on disk




Popular design #1: LSM

RAM Updates buffered in RAM.

RAM flushed to disk

Disk




Popular design #1: LSM

RAM Updates buffered in RAM.

RAM flushed to disk

Disk ] i
merged in the ordered main

structure (compaction)
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“* RocksDB is CPU-bound

%CPU utilization
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60% - merging + creating indexes of the disk structure
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RocksDB’s performance fluctuates
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RocksDB’s performance fluctuates

Max I/O bandwidth
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Popular design #2: B+ Trees

%CPU utilization
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60% - Contention on shared
data structures
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Lessons learned

x Ordering
=» low average throughput

x Contention

x Large buffers =¥ fluctuations
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How to design an efficient KV for
very fast drives?



Key ideas

Data
(but sorted in memory)
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Key ideas

Data
(but sorted in memory)
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Key ideas

Data
(but sorted in memory)
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Bandwidth (MB/s)

Key idea #1 — data unsorted on disk

Random 4k = sequential reads Random 4k = sequential writes
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Key idea #1 — data unsorted on disk

Unsorted data on disk
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File 1
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Key idea #1 —

In-memory ordered index (for scans)

Prefix(KO)
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Key idea #2 —

Sharding (static partitioning) - N independent workers

Worker 1

Worker 2

Key % 3 ==
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Worker 3
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Key idea #2 — no sharing

Workers have their own index and files

Worker 1

Worker 2

Worker 3
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Key idea #3 —

Traditionally Put(k, v) —vrite—y  "2EC ﬁé&%"a""qqm't?""_ﬁ

Cache
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Key idea #3 —

Traditionally

KVell

Put(k, v)
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Implementation challenges

Syscall cost

Manage disk queue length
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Evaluation

Machines:
4 cores, 32GB RAM, Optane 905P drive ( )

Benchmark:
YCSB — 1KB items,

Competition:

“* RocksDB Ypebb'eSDB Wi &9 on 0N
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Evaluation — YCSB
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Evaluation — YCSB — Scans
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In the paper

p— . Limitations:
= T R | * Indexes have to fit in memory
e e  Suboptimal scans for small items

« AWS machine, 15GB/s, 5TB dataset

* Production workload

* Recovery time



Q

Conclusions & take away messages™§

* Ordering data is expensive
» Buffering creates big fluctuation

* Optimizing for CPU utilization is key

( To kvell: to feel happy and proud

V Code and scripts to reproduce results on AWS
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https://github.com/BLepers/KVell

