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Machine Learning (ML) introduces a dangerous 
double standard for data protection 

Example: messaging app
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• Making individual training algorithms Differentially Privacy (DP) is good but insufficient, 
because old data is reused many times.


• No system exists for managing multiple DP training algorithms to enforce a global DP 
guarantee.
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Can we make Differential Privacy practical for ML 
applications? 
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• Enforces a global (εg,δg)-DP 
guarantee across all models ever 
released from a growing database.


• Tackles in practical ways two difficult 
DP challenges:

1. “Running out of budget”

2. “Privacy-utility tradeoff.”
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Motivation

Differential Privacy

Two practical challenges
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Evaluation

Sage design
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Differential Privacy (DP)
(Dwork+ '06)

• Developed to allow privacy-preserving statistical analyses on sensitive datasets (e.g., 
census, drug purchases, …).


• First (and only) rigorous definition of privacy suitable for this use case.
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Definition

• DP is a stability constraint on computations running on datasets: it requires that no 
single data point in an input dataset has a significant influence on the output.


• To achieve stability, randomness is added into the computation.
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Definition

• A randomized computation f: D → O, is (ε, δ)-DP if for any pair of datasets D and D' 
differing in one entry, and for any output set S ⊂ O:

P(f(D) ∈ S)  ≤ eε P(f(D') ∈ S) + δ

• DP is a stability constraint on computations running on datasets: it requires that no 
single data point in an input dataset has a significant influence on the output.


• To achieve stability, randomness is added into the computation.
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DP in ML

• Approach: make training algorithms DP.


• It prevents membership query and reconstruction attacks (Steinke-Ullman '14; 
Dwork+ '15; Carlini+ '18).


• DP versions exist for most ML training algorithms:


• Stochastic gradient descent (SGD) (Abadi+16, Yu+19).


• Various regressions (Chaudhuri+08, Kifer+12, Nikolaenko+13, Talwar+15).


• Collaborative filtering (McSherry+09).


• Language models (McMahan+18).


• Feature and model selection (Chaudhuri+13, Smith+13).


• Model evaluation (Boyd+15).


• Tensorflow/privacy implements several of these algorithms (McMahan+19).
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Evaluation

Sage design
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Challenge 1 - Running out of privacy budget
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Most DP work focuses on a fixed 
database model:

• Each model consumes some privacy 

budget.

• When the budget is exhausted, the 

data cannot be used anymore: the 
system can "run out of budget".



(εg, δg)-DP model(εg, δg)-DP model

21

Challenge 1 - Running out of privacy budget

(εg, δg)-DP model

ML platform (e.g. TFX)

global (εg, δg)-DP

Fixed Dataset

(ε, δ)-DP model

Privacy loss

Time

Most DP work focuses on a fixed 
database model:

• Each model consumes some privacy 

budget.

• When the budget is exhausted, the 

data cannot be used anymore: the 
system can "run out of budget".



(εg, δg)-DP model(εg, δg)-DP model

22

Challenge 1 - Running out of privacy budget

(εg, δg)-DP model

ML platform (e.g. TFX)

global (εg, δg)-DP

(ε, δ)-DP model

Privacy loss

Time

Most DP work focuses on a fixed 
database model:

• Each model consumes some privacy 

budget.

• When the budget is exhausted, the 

data cannot be used anymore: the 
system can "run out of budget".

Fixed Dataset



(εg, δg)-DP model(εg, δg)-DP model

23

Challenge 1 - Running out of privacy budget

(εg, δg)-DP model

ML platform (e.g. TFX)

global (εg, δg)-DP

(ε, δ)-DP model

Privacy loss

Time

Most DP work focuses on a fixed 
database model:

• Each model consumes some privacy 

budget.

• When the budget is exhausted, the 

data cannot be used anymore: the 
system can "run out of budget".

Fixed Dataset



24

Challenge 2 - Privacy/utility trade-off
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Sage block composition (challenge 1)
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platforms operate on a 
growing database.
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Privacy loss
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Privacy loss
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Privacy loss
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Privacy loss
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Privacy loss
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Why is this important?

• Controlling each block's privacy loss 

controls the global privacy loss.
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constantly renew the budget.
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Iterative training (challenge 2)



ML platform (e.g. TFX)
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• Adaptively trains on growing data 
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probability assessment of model 
accuracy.
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P(acc < τ) ≤ η over sampling of test set.
Statistical test for evaluation:

• Adaptively trains on growing data 
and/or privacy budgets.


• Release when w.h.p. model 
accuracy surpasses a target.


• Accounts for the impact of DP noise 
in TFX-evaluate to give high-
probability assessment of model 
accuracy.
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Sage Architecture
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Privacy loss

Time

Sage access control

global (εg, δg)-DP

release Models meet 
quality goal w.h.p

(ε, δ)-DP ML model 
(ε/2, δ/2)-DP 

model training
(ε/2, δ/2)-DP 

model validation retry

reject/timeout

Traditional access control

dataset, ε, δrequest dataset



Outline

Motivation

Differential Privacy

Two practical challenges

40

Evaluation

Sage design



Evaluation:

1. Benefits of block composition versus traditional DP 
composition.


2. Importance of iterative training and DP aware 
performance tests.


3. Continuous operation on multiple models and growing 
database.

41



1. Benefits of block composition versus traditional DP composition
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2. Importance of iterative training and DP aware performance tests
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Test methodology Non DP DP + UB Sage
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3. Continuous operation on multiple models and growing database
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• DP literature has mostly focused on individual ML algorithms running on 
static databases (which don’t incorporate new data).


• ML workloads operate on growing databases: models incorporate new data 
and (adaptively) reuse old data.


• Sage is the first to adapt DP theory and practice to ML workloads on growing 
databases, for data protection.


• Opens an exciting design space for efficient privacy resource allocation!


