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Machine Learning (ML) introduces a dangerous
double standard for data protection

Example: messaging app
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Example: messaging app

ML should only captures general trends from the data, but often
captures specific information about individual entries in the dataset.

ML platform (e.g. TFX)
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Example: messaging app

Language models over users’ emails leak secrets.

(Carlini+ '18)
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Example: messaging app

Membership in a training set can be inferred

through prediction APIs. (Shokri+17)
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Example: messaging app

Recommenders leak information across users.

(Calandrino'11)
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Example: messaging app

» Making individual training algorithms Differentially Privacy (DP) is good but insufficient,
because old data is reused many times.

* No system exists for managing multiple DP training algorithms to enforce a global DP
guarantee.
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Example: messaging app

» Making individual training algorithms Differentially Privacy (DP) is good but insufficient,
because old data is reused many times.

* No system exists for managing multiple DP training algorithms to enforce a global DP
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Can we make Differential Privacy practical for ML
applications?
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Sage

* Enforces a global (e4,64)-DP
guarantee across all models ever

released from a growing database. ‘ API ML platform (e.g. TFX)
* Tackles in practical ways two difficult . 50p I € 6.0P
DP challenges: N uto. ad (€, 6)-DP
1. “Running out of budget” fraditional complete ||| targeting recommn;?:lne?atlon
' code model model
2. “Privacy-utility tradeoff.”
Access Sage access control
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Outline

Differential Privacy
Two practical challenges
Sage design

Evaluation



Differential Privacy (DP)

(Dwork+ '006)

* Developed to allow privacy-preserving statistical analyses on sensitive datasets (e.g.,
census, drug purchases, ...).

* First (and only) rigorous definition of privacy suitable for this use case.
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Definition

 DP is a stability constraint on computations running on datasets: it requires that no
single data point in an input dataset has a significant influence on the output.

e To achieve stability, randomness is added into the computation.



Definition

 DP is a stability constraint on computations running on datasets: it requires that no
single data point in an input dataset has a significant influence on the output.

e To achieve stability, randomness is added into the computation.

* A randomized computation f: D — O, is (g, 0)-DP if for any pair of datasets D and D’
differing in one entry, and for any output set S c O:

P(f(D) e S) <e® P(f(D') e S) + &
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DP In ML

* Approach: make training algorithms DP.

* |t prevents membership query and reconstruction attacks (Steinke-Ullman '14;
Dwork+ '15; Carlini+ '18).

* DP versions exist for most ML training algorithms:
Stochastic gradient descent (SGD) (Abadi+16, Yu+19).

Various regressions (Chaudhuri+08, Kifer+12, Nikolaenko+13, Talwar+15).

Collaborative filtering (McSherry+09).
Language models (McMahan+18).
Feature and model selection (Chaudhuri+13, Smith+13).

Model evaluation (Boyd+195).

Tensorflow/privacy implements several of these algorithms (McMahan+19).
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Challenge 1 - Running out of privacy budget

Most DP work focuses on a fixed
database model:

e Each model consumes some privacy
budget.

* \WWhen the budget is exhausted, the
data cannot be used anymore: the
system can "run out of budget”.

ML platform (e.g. TFX)
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Challenge 1 - Running out of privacy budget

ML platform (e.g. TFX)

(€, 6)-DP model

Most DP work focuses on a fixed
database model: global (g4, 64)-DP

e Each model consumes some privacy

budget. Privacy loss

* \WWhen the budget is exhausted, the
data cannot be used anymore: the
system can "run out of budget”.
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Challenge 1 - Running out of privacy budget

ML platform (e.g. TFX)
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database model: global (g4, 64)-DP
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Challenge 2 - Privacy/utility trade-off
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Challenge 2 - Privacy/utility trade-off
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Motivation

Differential Privacy

Two practical challenges
Sage design

Evaluation
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Sage block composition (challenge 1)

_ _ Sage access control
Key realization: ML global (g4, 65)-DP
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Sage block composition (challenge 1)

Interaction model:

e Split the growing database into time

based blocks. Sage access control

e Models can adaptively combine global (g, 6¢)-DP

blocks to form larger datasets.

» Account for privacy loss only against Privacy loss
blocks used by each models.

e Models can influence future data and
privacy budgets.

Time

]
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Sage block composition (challenge 1)

Interaction model:

e Split the growing database into time
based blocks.

* Models can adaptively combine
blocks to form larger datasets.

* Account for privacy loss only against
blocks used by each models.

e Models can influence future data and
privacy budgets.
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Sage block composition (challenge 1)

Interaction model:

e Split the growing database into time
based blocks.

* Models can adaptively combine
blocks to form larger datasets.

* Account for privacy loss only against
blocks used by each models.

e Models can influence future data and
privacy budgets.
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Sage block composition (challenge 1)

model 3

model 2

model T
D

Theorem: Sage access control

| PrivacylLoss(stream) | < maxx | PrivacyLoss(Dx) | global (€4, 0g)-DP

Privacy loss

Time

i
oo | |.[ Jo]g

31



Sage block composition (challenge 1)

Theorem:

| PrivacylLoss(stream) | < maxk | PrivacyLoss(Dx) |

Why is this important?

e Controlling each block's privacy loss
controls the global privacy loss.

* New blocks arrive with zero loss and
constantly renew the budget.
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lterative training (challenge 2)
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Iterative training (challenge 2)

ML platform (e.g. TFX)
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Iterative training (challenge 2)

e Adaptively trains on growing data
and/or privacy budgets.

* Release when w.h.p. model
accuracy surpasses a target.

e Accounts for the impact of DP noise
iIn TFX-evaluate to give high-
probability assessment of model
accuracy.
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Iterative training (challenge 2)

e Adaptively trains on growing data
and/or privacy budgets.

* Release when w.h.p. model
accuracy surpasses a target.

e Accounts for the impact of DP noise
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Iterative training (challenge 2)

ML platform (e.g. TFX)
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Iterative training (challenge 2)
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* Release when w.h.p. model Y
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Sage Architecture o
reject/timeout

ML platform (e.g. TFX)
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Evaluation:

Benefits of block composition versus traditional DP
composition.

Importance of iterative training and DP aware
performance tests.

Continuous operation on multiple models and growing
database.
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1. Benefits of block composition versus traditional DP composition

Data points used . .
to reach target 4 Traditional DP composition # Sage

100,000,000 1o

10,000,000

1,000,000

100,000 o
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10,000 = = = =
2 3 4 5 6 7
4—
Better model MSE Target (x10-3)
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2. Importance of iterative training and DP aware performance tests

4 NonDP + DP + UB # Sage

100,000,000

10,000,000 |

1,000,000 |

00,0000

Required sample size

10,000 ’ ’ ’ ’ ’
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Test methodology

Failure rate at 1% proba. 0.2% 1.7% 0.3%
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3. Continuous operation on multiple models and growing database

# Traditional DP composition & Sage

..........................................................................................................................................................................................

........................................................................................................................................................................................

Avg. model release time
(in blocks)

. . 0.3 0.4 0.5 . 0.7
—_—mmm
Arrival rate (per block)
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Summary

 DP literature has mostly focused on individual ML algorithms running on
static databases (which don’t incorporate new data).

* ML workloads operate on growing databases: models incorporate new data
and (adaptively) reuse old data.

e Sage is the first to adapt DP theory and practice to ML workloads on growing
databases, for data protection.

Opens an exciting design space for efficient privacy resource allocation!
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