
Performance and Protection in the ZoFS
User-space NVM File System
Mingkai Dong, Heng Bu, Jifei Yi, Benchao Dong, Haibo Chen

Institute of Parallel and Distributed Systems (IPADS),
Shanghai Jiao Tong University

Oct. 2019 @SOSP ’19

2

Non-volatile memory (NVM) is coming with attractive features

§ Fast
– Near-DRAM performance

§ Persistent
– Durable data storage

§ Byte-addressable
– CPU load/store access

[1] These file systems also require kernel part supports. 3

File systems are designed for NVM

§ NVM File systems in kernel
– BPFS [SOSP ’09]

– PMFS [EuroSys ’14]

– NOVA [FAST ’16, SOSP ’17]

– SoupFS [USENIX ATC ’17]

§ User-space NVM file systems[1]

– Aerie [EuroSys ’14]

– Strata [SOSP ’17]

[1] These file systems also require kernel part supports.
[2] To FUSE or Not to FUSE: Performance of User-Space File Systems, FAST ’17
[3] Aerie: Flexible File-System Interfaces to Storage-Class Memory, EuroSys ’14
[4] Strata: A Cross Media File System, SOSP ’17 4

User-space NVM file systems have benefits

üEasier to develop, port, and maintain[2]

üFlexible[3]

üHigh-performance due to kernel bypass[3,4]

§ User-space NVM file systems[1]

– Aerie [EuroSys ’14]

– Strata [SOSP ’17]

5

Metadata is indirectly updated in user space

§ Updates to metadata are performed by trusted components
– Trusted FS Service in Aerie

– Kernel FS in Strata

Update data Update metadata

Aerie direct write via IPCs

Strata
append a log in user space,

digest in kernel

Indirect updates!

6

Indirect updates are important but limit performance

§ Indirect updates protect metadata
– File system integrity

– Access control

§ Indirect updates limit performance!

Create empty files in a shared directory

4.19

283.97

0

50

100

150

200

250

300

1 Process 2 Processes

La
te

nc
y

(u
s)

Strata

67×

7

Goal: fully exploit NVM performance

§ Problem: Indirect updates protect metadata but limit performance

§ Our approach: Directly manage both data and metadata in user-
space libraries while retaining protection
– Coffer: separate NVM protection from management

– The kernel part protects coffers via paging

– User-space libraries manage in-coffer structures (file data and metadata)

§ Results: Outperform existing systems by up to 82% and exploit full
NVM bandwidth in some scenarios

8

Outline
§ Coffer

§ Protection and isolation

§ Evaluation

9

Files are stored with the same permissions that rarely change

§ Survey on database and webserver data files

directory with rwxr-xr-x
5%

regular file with rw-r--r--
95%

DokuWiki
directory with rwx------

2%

regular file with rw-------
98%

PostgreSQL

1835 files
Uid: postgres
Gid: postgres

20976 files
Uid: http
Gid: http

– Most files have the same ownership & permission

10

Files are stored with the same permissions that rarely change

§ Survey on database and webserver data files

– Most files have the same ownership & permission

– Ownership & permissions are seldom changed

1. Group files with the same ownership & permission
2. Map their data and metadata to user space
3. Let user-space libraries manage these data and metadata directly

11

A new abstraction: Coffer

/

data home var

Alice Bob

workgames

work

Carol

papers music coffee

mine others

12

A new abstraction: Coffer

Group files with the same ownership & permission
/

data home var

Alice Bob

workgames

work

Carol

papers music coffee

mine others

Coffer

13

A new abstraction: Coffer

Group files with the same ownership & permission
/

data home var

Alice Bob

workgames

Carol

papers music coffee

mine others

Coffer

Coffer

work

14

A new abstraction: Coffer

Group files with the same ownership & permission
/

data home var

Alice

Bob

work

games

Carol

papers music coffee

mine others

Coffer

Coffer
Coffer

Coffer

Coffer

work
Coffer

A collection of NVM pages that share the same
ownership & permission

§ Files are organized by
user-space FS libraries

§ Local space management

§ A root page with metadata
– Path

– Owner and permission

15

Coffer internals

/

data home var

Alice

Bob

work

games

Carol

papers music coffee

mine others

Coffer

Coffer
Coffer

Coffer

Coffer

work
Coffer

Root Page

...

Metadata: Path,UID,GID,Perm.,...

Coffer-local Free Pages

16

Coffer separates NVM protection from management

/

data home var

Alice

Bob

work

games

Carol

papers music coffee

mine others

Coffer

Coffer
Coffer

Coffer

Coffer

work
Coffer

Root Page

...

Metadata: Path,UID,GID,Perm.,...

Coffer-local Free Pages

KernFS

§ Protect coffer metadata

§ Mange global free space

17

Coffer separates NVM protection from management

Ke
rn

FS

/
datahome var

Alice

Bob

work

games
Carol

papersmusiccoffee
mineothers

Coffer

Coffer

Coffer

Cofferwork

Root Page

Coffer

Page
Allocation

Table

Super
block

Path-
coffer

mappings

Coffer

Ke
rn

FS

KernFS

§ Protect coffer metadata

§ Mange global free space

FSLibs

§ User-space FS libraries (µFSs)

§ Manage in-coffer structures
(data, metadata and free space)

Coffer-APIs

§ create, map, split, ...
18

Coffer separates NVM protection from management

/
datahome var

Alice

Bob

work

games
Carol

papersmusiccoffee
mineothers

Coffer

Coffer

Coffer

Cofferwork

Root Page
Coffer

Coffer

Page
Allocation

Table

FSLibs / Process
Coffer

Carol

papers music coffee

mine others

Root Page
...

Coffer-local Free Pages

FSLibs / Process

Coffer-API Memory Mappings

Coffer

/

data home var

Coffer

/

data home var

Super
block

Path-
coffer

mappings

µFS µFS1 µFS2

19

Outline
§ Coffer

§ Protection and isolation

§ Evaluation

20

Protection and isolation

Hardware paging

§ For each coffer map request
– KernFS checks the ownership and permission of the coffer

– Map the coffer to the process page table read-only/read-write accordingly

§ Applications can access a coffer only if they have the permission

21

Protection and isolation

Hardware paging
§ For each coffer map request– KernFS checks the ownership and permission of the coffer– Map the coffer to the process page table read-only/read-write accordingly

§ Applications can access a coffer only if they have the permission

Memory protection keys

A hardware feature that supplements paging
Process
VM space Region 1 Region 2 Region 3 Region 0Region 1 Region 0 Region 1

Region 0: rw
Region 1: r-
Region 2: --

...
Region 15: --

PKRU § MPK permission violations
segmentation faults

22

Protection and isolation

Hardware paging
§ For each coffer map request– KernFS checks the owner and permission of the coffer– Map the coffer to the process page table read-only/read-write accordingly

§ Applications can access a coffer only if they have the permission

Memory protection keys

§ KernFS separates different coffers to different memory protection
regions for each process

§ Application threads can control its access to each coffer efficiently

23

Protection and isolation

Hardware paging
§ For each coffer map request– KernFS checks the owner and permission of the coffer– Map the coffer to the process page table read-only/read-write accordingly

§ Applications can access a coffer only if they have the permission

Memory protection keys
§ KernFS separates different coffers to different memory protection regions for each process

§ Application threads can control its access to each coffer efficiently

Challenges

1. Stray writes 2. Malicious manipulations 3. Fate sharing

Challenge 1: stray writes

/

data home var

Alice

Bob

work

games

work

Carol

papers music coffee

mine others

Coffer

Coffer

Coffer

Coffer

Coffer

Coffer

Challenge 1: stray writes
Problem: Stray writes corrupt metadata in mapped coffers

Approach: write windows[1]

§ MPK regions are initialized as non-accessible

/

data home

work

Carol

papers music coffee

mine others

Coffer

Coffer

Coffer

Coffer

§ When a µFS modifies a coffer
1. Enable coffer access
2. Modify coffer
3. Disable coffer access

Result: Stray writes in application code cause
segmentation faults due to MPK

Region R W
Blue - -
... - -

PKRU

R W

pop

[1] System Software for Persistent Memory, EuroSys ’14

Challenge 2: malicious manipulations
Problem: An attacker manipulates a shared coffer to attack others!

Case: manipulate a pointer to point to another coffer

/

data home var

games

Carol

papers music coffee

mine others

Coffer

Coffer

Coffer

Coffer

Challenge 2: malicious manipulations
Problem: An attacker manipulates a shared coffer to attack others!

Case: manipulate a pointer to point to another coffer

Attacker
RW

/

data home var

games

Carol

papers music coffee

mine others

Shared Coffer

Private Coffer

Coffer

Coffer

Victim
RW

RW

Challenge 2: malicious manipulations
Problem: An attacker manipulates a shared coffer to attack others!

Case: manipulate a pointer to point to another coffer

The victim accesses the private coffer by mistake Attacker
RW

/

data home var

games

Carol

papers music coffee

mine others

Shared Coffer

Private Coffer

Coffer

Coffer

Victim
RW

RW

Challenge 2: malicious manipulations
Problem: An attacker manipulates a shared coffer to attack others!

Case: manipulate a pointer to point to another coffer

The victim accesses the private coffer by mistake

Approach: At most one coffer is accessible
at any time for each thread

Attacker
RW

/

data home var

games

Carol

papers music coffee

mine others

Shared Coffer

Private Coffer

Coffer

Coffer

Victim
RW

RW

Result: Following manipulated pointers
triggers segmentation faults!

Challenge 3: fate sharing
Problem: An error in FS libraries can terminate the whole process!

Approach:

1. Setjmp before user-space FS operations

2. Hook the SIGSEGV handler

3. Jump back and return error code

Result: Segmentation faults are
reported to the application
as an FS error code!

FS Lib
...
if ((err = setjmp(&ctx))) {
return err;

}
call_fs_mkdir(...);
...

SIGSEGV Handler
...
check_segv_reason(...);
longjmp(&ctx, errcode);

void call_fs_mkdir(...)
{
...
... // seg fault here
...
}

ZoFS: An example user-space NVM FS library (µFS)
Directory

§ Adaptive two-level hash tables

File structures

§ Simple direct/indirect data blocks

Local space management

§ Leased per-thread allocators

Free
Page

Free
Page

Free
Page

Root
Inode

Hash
Table

Dir
Entries

File
Inode

Coffer
Root

Dir
Entries

Dir
Entries

Indirect
Page

Data
Page

Data
Page

Data
Page

Data
Page

…

…

…

… …

…

A directory structure A regular file structure

Custom
Page

Leased per-thread allocator

Allocator
Page

32

Outline
§ Coffer

§ Protection and isolation

§ Evaluation

33

Evaluation Questions

§ Can ZoFS scale and fully exploit NVM performance?

§ How much performance benefit comes from the direct updates in user
space?

§ How does ZoFS perform in synthetic workloads and real applications?

Evaluation Setup

Two 10-core Intel® Xeon® Gold 5215M CPUs

384 GB DDR4 DRAM

1.5 TB Intel® Optane™ DC Persistent Memory

All experiments on NUMA 0 with hyper-threading disabled

File Systems: Ext4-DAX, PMFS, NOVA, Strata

Benchmarks: FxMark, Filebench, LevelDB and TPC-C on SQLite

FxMark

ZoFS scales well and reaches the maximal NVM bandwidth of our platform!

0

1

2

3

4

5

6

0 4 8 12 16 20

Th
ro

ug
hp

ut
 (M

op
s/

s)

Threads

ZoFS
Ext4-DAX
PMFS
NOVA

4K data overwrite

0

0.1

0.2

0.3

0.4

0 4 8 12 16 20

Th
ro

ug
hp

ut
 (M

op
s/

s)

Threads

ZoFS
Ext4-DAX
PMFS
NOVA

file create

Breakdown: direct updates boost the performance

ZoFS-kwrite: implement write in kernel and call via system calls

Direct updates in user space improves the performance by 33%

0 200 400 600

NOVAi
NOVA
PMFS

NOVAi-noidx
ZoFS-kwrite

PMFS-NT
NOVA-noidx

ZoFS

Throughput (Kops/s)

User-space
direct updates

4K data overwrite

33%

Breakdown: direct updates boost the performance

ZoFS-kwrite: implement write in kernel and call via system calls

Direct updates in user space improves the performance by 33%

0 200 400 600

NOVAi
NOVA
PMFS

NOVAi-noidx
ZoFS-kwrite

PMFS-NT
NOVA-noidx

ZoFS

Throughput (Kops/s)

User-space
direct updates

4K data overwrite

33%

4.19

283.97

3.53 6.172.49 3.46
0

1

2

3

4

5

6

7

8

1 Process 2 Processes

La
te

nc
y

(u
s)

Strata
NOVA
ZoFS

LevelDB and SQLite
LevelDB

ZoFS reduces LevelDB latency by up to 82% and improves SQLite throughput
by up to 31%

0

2

4

6

8

ZoFS Ext4-DAX NOVA PMFS

Th
ro

ug
hp

ut
 (K

 tx
ns

/s
)

31%20% 9%

TPC-C on SQLite

0

10

20

30

40

50

60

sync-write seq-write rand-write read-hot

La
te

nc
y

(u
s)

ZoFS
Ext4-DAX
NOVA
PMFS

82%

39

Conclusion

§ Non-volatile memory: fast, persistent, and byte-addressable

§ Problem: no direct metadata updates in user space, underexploited
NVM performance

§ Coffers: separating NVM protection from management, directly
managing data and metadata while embracing protection and isolation

§ ZoFS built upon coffers show improved performance against existing
NVM file systems

Thanks and Questions? :)

