“}ﬁ)\'/ﬁ’)ﬁg

SHANGHAI JIAO TONG UNIVERSITY

Performance and Protection in the ZoFS
User-space NVM File System

Mingkai Dong, Heng Bu, Jifei Yi, Benchao Dong, Haibo Chen

Institute of Parallel and Distributed Systems (IPADS),

Shanghal Jiao Tong University

Oct. 2019 @SOSP ’19

Non-volatile memory (NVM) is coming with attractive features

® Fast

— Near-DRAM performance

" Persistent
— _Suees _
— Durable data storage £ /7 5 E

" Byte-addressable

— CPU load/store access

| File systems are designed for NVM

" NVM File systems in kernel = User-space NVM file systems!!]

— BPFS [SOSP ’09] — Aerie [EuroSys '14]
— PMES [EuroSys "14] — Strata [SOSP "17]
— NOVA [FAST ’16, SOSP ’17]

— SoupFS [USENIX ATC ’17]

[1] These file systems also require kernel part supports.

| User-space NVM file systems have benefits

= User-space NVM file systems!H
— Aerie [EuroSys "14]
— Strata [SOSP ’"17]

v'Easier to develop, port, and maintain!4
v Flexiblels!

v'High-performance due to kernel bypass®#

1] These file systems also require kernel part supports.

2] To FUSE or Not to FUSE: Performance of User-Space File Systems, FAST ’17
3] Aerie: Flexible File-System Interfaces to Storage-Class Memory, EuroSys ’14
4] Strata: A Cross Media File System, SOSP ’17

[
[
[
[

I Metadata is indirectly updated in user space

» Updates to metadata are performed by trusted components
— Trusted FS Service In Aerie

— Kernel FS In Strata

Update data Update metadata

Aerie direct write N~ .
Indirect updates!
append a log in user space,
Strata : :
digest in kernel

I Indirect updates are important but limit performance

Create empty files in a shared directory

" Indirect updates protect metadata 300 283.97
| | | M Strata
— File system integrity 250
— Access control
_.200 At
. o 5 ©
" Indirect updates limit performance! > 150
C
)
= 100
50

4.19

O ——

1 Process 2 Processes

| Goal: fully exploit NVM performance

" Problem: Indirect updates protect metadata but limit performance

= Qur approach: Directly manage both data and metadata in user-
space libraries while retaining protection

— Coffer: separate NVM protection from management

— The kernel part protects coffers via paging

— User-space libraries manage in-coffer structures (file data and metadata)

= Results: Outperform existing systems by up to 82% and exploit full
NVM bandwidth in some scenarios

| Outline
- Coffer

=" Protection and isolation

= Evaluation

I Files are stored with the same permissions that rarely change

" Survey on database and webserver data files

directory with rwx------ o directory with rwxr-xr-x
PostgreSQL 2% DokuWiki 5%
1835 files 20976 files
Uid: postgres Uid: http
Gid: postgres Gid: http
regular file with rw------- regular file with rw-r--r--
987% 95%

— Most files have the same ownership & permission

I Files are stored with the same permissions that rarely change

= Survey on database and webserver data files
— Most files have the same ownership & permission
— Ownership & permissions are seldom changed
1. Group files with the same ownership & permission

2. Map their data and metadata to user space
3. Let user-space libraries manage these data and metadata directly

10

| A new abstraction: Coffer

1

| data | [home | var

games) |work

. mine | |others|

11

| A new abstraction: Coffer

Group files with the same ownership & permission ¢~

Bob

papers music coffee ames| |work
papers| [music/ (coffee] (g

. mine | |others|

12

| A new abstraction: Coffer

Group files with the same ownership & permission '/—Coffer‘ 7777777777 -/ |
| data | [home | | var

- Coffer Bob

papers music coffee ames| |work
papers) [music g

 mine | |others|

13

| A new abstraction: Coffer
Group files with the same ownership & permission .~ — |
[data var |

,
i

Cofter Bob

 [mine | [others . (Bames/\

| Coffer internals

A collection of NVM pages that share the same T

. Coffer
ownership & permission |

. FileS are Organized by | vetagta,:?athmD p———— |
user-space FS libraries lcoffer I"Q?er-lzal Free Pagesl
| - I —— J
" Local space management r— = N e
. | o i
= A root page with metadata I N T
- e [mi S
— Owner and permission e T T P T TR TR N

I Coffer separates NVM protection from management

pemmmmmmmmmmmnnnneaes e mmmmmnmmmnnnnnans .

;'l //
Coffer ¢ / Coffer-local Free Pages

Root Page "'_L—‘ |
| o\ e

Coffer

\ mine | |others|

I Coffer separates NVM protection from management

KernkS

= Protect coffer metadata

* Mange global free space

g Super |

\.

block

J

-

Allocation

_

Page A

Table)

-

\mappings)

Path- A
coffer

Coffer

i Coffer

ﬂ==f*\<<-~

Coffer

Coffer

y Coffer

~

Coffer

KernFS

17

I Coffer separates NVM protection from management

KernkS

= Protect coffer metadata

* Mange global free space

FSL|bs / Process

Coﬁer

Coffer-local Free Pages

N

COffej%El |

(data | (home)(var |

FSLibs

= User-space FS libraries (UFSs)

= Manage Iin-coffer structures
(data, metadata and free space)

Coffer-APlIs

" create, map, split, ...

FSL|bs / Process

COffej%El |

K (data | (home)(var |
\\ \ /7 J
\ Ve
\ ,/
\ e
N) UFS R FS1 || uFS2
\ % /\ \\‘ y 7 H -
+ Coffer API:| |: \\\ /’/Memory Mappings
r N\ \\\ N —)
Super N Coffer
_ block
" Page \(C o ® : \\ Coffer | uvn
Allocation || “©TT€r "'C-
Tabl Coffer -
_ Table) T
4 R <
Path- \
coffer —
:) Coffer Coffer
_Mmappings
)18

| Outline

=" Protection and isolation

19

| Protection and isolation

Hardware paging

" For each coffer map request
— KernFS checks the ownership and permission of the coffer

— Map the coffer to the process page table read-only/read-write accordingly

= Applications can access a coffer only If they have the permission

20

| Protection and isolation

Hardware paging

= Applications can access a coffer only If they have the permission

Memory protection keys

g
A hardware feature that supplements paging

Process

Region 1 IRegion leegion 1I Region 3 IRegion 0 JRegion 1. Region 0 I

VM space

- Region 0: rw

PKRU Eeg%Oz y r- " MPK permission violations
egio P o--)
q segmentation faults

.| Region 15: --

| Protection and isolation

Hardware paging

= Applications can access a coffer only If they have the permission

Memory protection keys

= KernFS separates different coffers to different memory protection
regions for each process

= Application threads can control its access to each coffer efficiently

22

| Protection and isolation

Hardware paging

= Applications can access a coffer only If they have the permission

Memory protection keys

» Application threads can control its access to each coffer efficiently

Challenges

1. Stray writes 2. Malicious manipulations 3. Fate sharing

23

| Challenge 1: stray writes

f
Coffer

Coffer ?

— \J e\ |

................................

| Challenge 1: stray writes

Problem: Stray writes corrupt metadata in mapped coffers

/-

TR Coff
Approach: write windows!] Cotter
= MPK regions are initialized as non-accessible | -
* When a uFS modifies a coffer PKRU (o G
1. Enable coffer access / \

2. Modity coffer
3. Disable coffer access

Region R W

Blue R W coffee

Result: Stray writes in application code cause \
segmentation faults due to MPK Coffer

[1] System Software for Persistent Memory, EuroSys "14

| Challenge 2: malicious manipulations

Problem: An attacker manipulates a shared coffer to attack others!

Case: manipulate a pointer to point to another coffer

a—

-

Coffer [| J

ot) (home o)

\

| Challenge 2: malicious manipulations

Problem: An attacker manipulates a shared coffer to attack others!

Case: manipulate a pointer to point to another coffer \
Attacker

'Shared Coffer

N\

| Challenge 2: malicious manipulations

Problem: An attacker manipulates a shared coffer to attack others!

Case: manipulate a pointer to point to another coffer \

P - - Attacker “, 3
The victim accesses the private coffer by mistake \d| Shared Coffer

=
L T
Victim N g — y

\

N\

| Challenge 2: malicious manipulations

Problem: An attacker manipulates a shared coffer to attack others!

Case: manipulate a pointer to point to another coffer \ RU
\
\

The victim accesses the private coffer by mistake

Attacker

Oc—ar
\ RW

Approach: At most one coffer Is accessible
at any time for each thread

Result: Following manipulated pointers
triggers segmentation faults!

° ° \
Victim \\Rw

|

rShared Coffer

p
Private Coffer

\

N\

| Challenge 3: fate sharing

Problem: An error in FS libraries can terminate the whole process!

Approach:

SIGSEGV Handler

1. Setymp before user-space FS operations

check _segv _reason(...);

2. Hook the SIGSEGV handler — longjmp(&ctx, errcode);

3. Jump back and return error code | i¢" (cerr = setimp(&ctx))) £

return err;

} » void call fs_mkdir(...)
call fs mkdir(...); — {

Result: Segmentation faults are
... // seg fault here

reported to the application

}
as an FS error code!

| ZoFS: An example user-space NVM FS library (uFS)

Directory

* Adaptive two-level hash tables
File structures

= Simple direct/indirect data blocks
Local space management

* |eased per-thread allocators

Leased per-thread allocator

A
[\
Coffer >Custom >AIIocator R Free
Root Page Page : Page
Free Free
Page Page
Root as ir
> —
Inode Table | , Entries-lJ'>

Entries

Entries

A directory structure

L

| Outline
= Coffer

=" Protection and isolation

= Fvaluation

32

| Evaluation Questions

= Can ZoFS scale and fully exploit NVM performance?

" How much performance benefit comes from the direct updates in user
space?

" How does ZoFS perform in synthetic workloads and real applications?

33

| Evaluation Setup

Two 10-core Intel® Xeon® Gold 5215M CPUs
384 GB DDR4 DRAM

1.5 TB Intel® Optane™ DC Persistent Memory
All experiments on NUMA 0 with hyper-threading disabled

File Systems: Ext4-DAX, PMFS, NOVA, Strata
Benchmarks: FxMark, Filebench, LevelDB and TPC-C on SQLite

| FxMark

file create 4K data overwrite
0.4 «@=Z0FS 6 «@=Z0oFS

? *EXt4'DAX TI; *Ext4_DAX - - I S EEE B =
5 %5
%0'3 -4-PMFS e =a=PMFS
S 4NOVA S4 =NOVvA
= 0.2 pot
g 3
o0 i -
5 %"2
o 0.1 o .
i -
= =

0 A4k ' A) A 0

0 4 8 12 16 20 0 4 8 12 16 20
Threads # Threads

Z0FS scales well and reaches the maximal NVM bandwidth of our platform!

I Breakdown: direct updates boost the performance
4K data overwrite

ZOFS ;
NOVA-noidx
PMFS-NT .
ZoFS-kwrite :
NOVAi-noidx I 33% I
PvFs [le—l
NOVA User-space
NOVAI direct updates
0 200 400 600
Throughput (Kops/s)

Z0FS-kwrite: implement write in kernel and call via system calls

Direct updates in user space improves the performance by 33%

I Breakdown: direct updates boost the performance

4K data overwrite 8 mstrata ?
7 NOVA

ZoFS B ZoFS /
NOVA-noidx : 6
PMFS-NT s
ZoFS-kwrite I >a

NOVAi-noidx I 337l §
pviFs [e =’
NOVA User-space :
NOVAI direct updates 1
%) 3.53 6.17
0 200 400 600 0
Throughput (Kops/s) 1 Process 2 Processes

Z0FS-kwrite: implement write in kernel and call via system calls

Direct updates in user space improves the performance by 33%

| LevelDB and SQLite

LevelDB TPC-C on SQLite
8
60 M ZoFS
50 mExtd-DAX L&
-
,_g, 40 = NOVA S
= B PMFS <2
S 30 2
2 <
820 S ,
; u
0 - 0
sync-write seq-write rand-write read-hot ZoFS Ext4-DAX NOVA PMFS

Z0FS reduces LevelDB latency by up to 82% and improves SQLite throughput
by up to 31%

Conclusion 111 IPADS (@) YiEXAAE

INSTITUTE OF PARALLEL
AND DISTRIBUTED SYSTEMS

SHANGHALI JIAO TONG UNIVERSITY

= Non-volatile memory: fast, persistent, and byte-addressable

" Problem: no direct metadata updates In user space, underexploited
NVM performance

= Coffers: separating NVM protection from management, directly
managing data and metadata while embracing protection and isolation

= ZoFS bullt upon coffers show iImproved performance against existing
NVM file systems

Thanks and Questions? :)

39

