Tutorial: Automated verification of
systems software with Serval

Luke Nelson, Emina Torlak, and Xi Wang
University of Washington
https://unsat.cs.washington.edu/projects/serval/

Abstract

Serval is a framework for writing scalable automated veri-
fiers. This tutorial will give a brief overview of recent progress
in verifying systems software, a hands-on guide on how to
formally specify and verify a system using Serval, and an
in-depth discussion of formal verification techniques that
power Serval.

ACM Reference Format:

Luke Nelson, Emina Torlak, and Xi Wang. 2019. Tutorial: Automated
verification of systems software with Serval . In ACM SIGOPS 27th
Symposium on Operating Systems Principles (SOSP ’19), October 27—
30, 2019, Huntsville, ON, Canada. ACM, New York, NY, USA, 1 page.

1 Goals

Formal verification is an attractive approach for developing
high-assurance systems. It is a timely topic in systems re-
search, with growing interest among the systems community
in applying verification to system design and implementa-
tion. This tutorial has three goals:

e presenting an overview of recent efforts on verifying
systems software (with a focus on SOSP/OSDI);

e teaching how to formally specify and verify a system
using automated verifiers from Serval [1], and

e illustrating the verification technologies that power
Serval: the Rosette programming language [2], sym-
bolic evaluation, and SMT solving.

2 Target audience

The target audience is researchers, students, and developers
who are interested systems verification. The tutorial includes
an overview of the field and hands-on experience with a
verification tool, and introduces the Serval methodology for
automated verification of systems software.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

SOSP ’19, October 27-30, 2019, Huntsville, ON, Canada

© 2019 Association for Computing Machinery.

3 Organization

The tutorial consists of the following three parts.

(i) Overview of research on verifying systems software.
The first part gives an overview of the goals and history of
systems software verification. It describes recent examples
of verified systems from SOSP/OSDI and the methodologies
used to verify them. Furthermore, it discusses the guarantees
and trade-offs afforded by the various methodologies, and
gives a sense of which verification methodology may be
appropriate for particular domains and properties.

(ii) Verifying systems with Serval. The next part demon-
strates how to apply Serval to verify a system. It uses a toy
OS kernel running on RISC-V as the example system to be
verified. The audience is expected to run the automated veri-
fiers provided by Serval on the toy OS kernel to identify bugs
and to verify the fixed version. For example, the audience can
use Serval’s verifiers to find undefined behavior, functional
correctness, and high-level safety bugs in the toy OS ker-
nel. These examples are simplified from bugs we discovered
when verifying real-world systems. For each example, this
part provides skeleton code for the audience to experiment
with and run on their own laptops.

(iii) Extending Serval with Rosette. The last part shows
how to extend Serval using the Rosette programming lan-
guage. It includes a brief tutorial on how to use Rosette for
tasks such as symbolic evaluation and verification, and how
Rosette reduces a problem into SMT constraints. It uses a
toy instruction set as an example to show how to write a ver-
ifier for the instruction set in Rosette and how to implement
symbolic optimizations to scale verification in Serval. This
part also gives examples of a broader range of applications
of Rosette, including verifying radiation therapy software
and synthesizing problem-solving strategies for games and
education.

References

[1] Luke Nelson, James Bornholt, Ronghui Gu, Andrew Baumann, Emina
Torlak, and Xi Wang. 2019. Scaling symbolic evaluation for automated
verification of systems code with Serval. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles (SOSP). Huntsville, Ontario,
Canada.

Emina Torlak and Rastislav Bodik. 2014. A Lightweight Symbolic Vir-
tual Machine for Solver-Aided Host Languages. In Proceedings of the
35th ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI). Edinburgh, United Kingdom, 530-541.

[2

—


https://unsat.cs.washington.edu/projects/serval/

	Abstract
	1 Goals
	2 Target audience
	3 Organization
	References

