

Cross-chain Deals and Adversarial Commerce

Maurice Herlihy Brown University mph@cs.brown.edu

Barbara Liskov MIT CSAIL liskov@csail.mit.edu from, classical ato nic ty assections. In particular, the clas-

liuba@brandeis.edu

sical notions of orrecovers for atomic transactions must be

Classical at my by means that a transaction's effects tal place everywhere or nowhere. This notion of atomicity ca not be gua a ceed when parties are potentially malicio

Modern distributed data management systems face a new challenge: how can autonomous, mutually-distrusting par-ABSTRACT ties cooperate safely and effectively? Addressing this challenge brings up questions familiar from classical distributed systems: how to combine multiple steps into a single atomic action, how to recover from failures, and how to concurrent access to data. Nevertheless, each requires rethinking when participants are au deal, a new

potentially adversarial. We propose the notion of a cro to structure complex distributed yea acceste in an adversarial sett is transactions, but are in

rethought.

the best cocan do is to ensure that honest parties can be cheat Moreover, classical transactions often priori er liveness, allowing, for example, commit pr k [41]. For cross-chain commerce, how es have been relied upon to ensure tha ck another into locking up assets forev Lation guarantees that concurrent trans oven for a long time.

and the decentralized

novel safety

active ways. Isolation is ty such as serializability or si perties are poorly suited t chain commerce, where mutually-untrusting parties

I'm Alice
I'm a ticket broker

I'm Bob I own a theater

I'm Carol I need theater tickets

everyone happy!

I'm using Carol's money to pay Bob Bob's ticket to pay Carol!

Deal

Not a cross-chain swap!

What Inacceptable Wrong?

I transferred tickets but didn't get paid!

Cross-chain Deal

This Talk

Correctness for Classical Transactions

Correctness for Cross-Chain Deals

Atomicity

I laugh at your inadequate notions of correctness

Consistency

solation

Durability

Conforming parties follow the protocol

Deviating parties might do anything

That's it.

Not faulty vs honest

vs rational ...

Just conforming vs deviating ...

Correctness for Classical Transactions

Atomicity

Either all steps happen, or none do

Isolation

Durability

All or nothing *impossible* when parties can deviate, instead ...

Atomicity

Liveness: If all conform, all transfers happen

Durchility

Safety: if some parties deviate, no conforming party ends up "worse off"

Correctness for Classical Transactions

Atomicity

Consistency

Application-specific constraints respected

Strong Nash Equilibrium

Everyone follows one strategy ...

But if a coalition deviates...

It won't improve its payoff

Correctness for Cross-Chain Deals

Atomicity

Consistency

Isolation

Conforming to protocol should be strong Nash equilibrium ...

Example: Swap Digraph

Protocol is strong Nash Equilibrium IFF swap digraph is strongly connected

Correctness for Classical Transactions

No transaction sees another's intermediate states

Consistency

Isolation

Hence serializability, snapshot consistency, etc

Serializability makes no sense here

Safety: "no double spending", e.g. assets placed in escrow can't be unlocked until deal complete

COHSISICHUY

Isolation

Liveness: But Assets can't be escrowed forever

Correctness for Classical Transactions

1 to minity

Committed transactions survive crashes

Isolation

Durability

Correctness for

And also censorship by governments, corporations, hackers, counterparties, exes, etc

Deals

Durability

What We Said

"ACID" properties for distributed transactions

Revised properties for cross-chain deals

https://arxiv.org/abs/1905.09743