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Abstract
Replicated storage for large Web services faces a trade-off between stronger forms of
consistency and higher performance properties. Stronger consistency prevents anomalies,
i.e., unexpected behavior visible to users, and reduces programming complexity. There
is much recent work on improving the performance properties of systems with stronger
consistency, yet the flip-side of this trade-off remains elusively hard to quantify. To the best
of our knowledge, no prior work does so for a large, production Web service.

We use measurement and analysis of requests to Facebook’s TAO system to quantify
how often anomalies happen in practice, i.e., when results returned by eventually consistent
TAO differ from what is allowed by stronger consistency models. For instance, our analysis
shows that 0.0004% of reads to vertices would return different results in a linearizable
system. This in turn gives insight into the benefits of stronger consistency; 0.0004% of reads
are potential anomalies that a linearizable system would prevent. We directly study local
consistency models—i.e., those we can analyze using requests to a sample of objects—and
use the relationships between models to infer bounds on the others.

We also describe a practical consistency monitoring system that tracks φ -consistency,
a new consistency metric ideally suited for health monitoring. In addition, we give insight
into the increased programming complexity of weaker consistency by discussing bugs our
monitoring uncovered, and anti-patterns we teach developers to avoid.
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1. Introduction
Replicated storage is an important component of large Web services and the consistency
model it provides determines the guarantees for operations upon it. The guarantees range
from eventual consistency, which ensures replicas eventually agree on the value of data
items after receiving the same set of updates to strict serializability [12] that ensures
transactional isolation and external consistency [25]. Stronger consistency guarantees of-
ten require heavier-weight implementations that increase latency and/or decrease through-
put [5, 13, 26, 37]. As a result, many production systems [14, 15, 19, 24, 32, 42, 46] choose
weaker forms of consistency in order to provide low latency and high throughput.

These weaker forms of consistency have two primary drawbacks. First, they admit exe-
cutions with user-visible anomalies, i.e., strange behavior that defies user expectations. A
common example is out-of-order comments on a social network post, e.g., Alice comments
on a post, Bob comments on the same post after seeing Alice’s comments, and then Charlie
sees Bob’s comment appear before Alice’s. The second drawback of weaker consistency
models is that they increase programming complexity, i.e., programmers working on sys-
tems with weaker models must reason about and handle all the complex cases. A common
example is the loss of referential integrity, e.g., Alice uploads a photo, and then adds it to an
album. In some weaker consistency models, the programmer must reason about an album
with references to photos that do not yet exist.

There has been much recent work on providing intermediate [3, 7, 21, 22, 38, 39], and
even strong consistency [6, 9, 17, 18, 23, 27, 31, 36, 39, 41, 43, 50–52, 54, 56] with
increasingly high throughput and low latency. Yet the flip side of this trade-off remains
elusively difficult to quantify; to the best of our knowledge there is no prior work that does
so for a large, production Web service. Without an understanding of the consistency benefits
of intermediate and strong consistency, it is difficult to fully evaluate how they compare to
weaker models, and each other.

This work takes the first step towards quantifying those benefits by measuring and
analyzing requests to the social graph at Facebook. We focus our study on a social network
because it is the application that has motivated much of the recent research boom in
replicated storage. We also focus on it because it provides a more interesting trade-off
between performance and consistency than some other applications that require strong
forms of consistency, e.g., the ads served by the F1 database [49], which motivates the
strongly consistent Spanner system [17].

Facebook’s replicated storage for its social graph is a combination of a two-level
cache and a sharded, single-master-per-shard database. The caches are grouped into clus-
ters. Within a cluster, per-object sequential and read-after-write consistency are provided.
Across the entire system, eventual consistency is provided. We perform two types of anal-
ysis on this system: a principled analysis and a practical analysis. The principled analysis
identifies when the results of the system differ from what is allowed by stronger consis-
tency models, i.e., what anomalies occur in the eventually consistent production system.
The practical analysis is used as a real-time monitoring tool. It is also a useful tool for
finding bugs in code written on top of the storage system. These bugs give us insight into
the types of mistakes that can happen due to the increased programmer complexity due to
weaker consistency models.

We conduct the principled analysis by logging all the requests to a small random sample
of the social graph, and by running offline consistency checkers on those logs. We have
created checkers that identify when the real, eventually consistent system returns results
that are disallowed by stronger consistency models. We have checkers for local consistency



models, e.g., linearizability [29], per-object sequential consistency [16], and read-after-
write consistency, which can be accurately measured by a random sample. In addition,
we use the theoretical relationships between consistency models to infer bounds on the
results for non-local consistency models, e.g., causal consistency [1, 33], which cannot be
accurately measured by a random sample. The results of these checkers directly measure or
bound how often anomalies occur and give insight into the benefits of different consistency
models in reducing the frequency of anomalies.

Running the principled analysis in real-time would be equivalent to implementing a
system with stronger consistency guarantees, and running it in parallel with the eventually
consistent system. To avoid that overhead, we instead use a practical online consistency
checker for real-time health monitoring of the replicated storage system. The practical
checker measures φ -consistency, a new metric that can be computed in real-time. It reflects
the frequency of all replicas returning the same results for a user’s read request. We define
φ -consistency formally, relate it to principled consistency models, and explain how it is
used to monitor the health of the system. The practical checker has been deployed at
Facebook since 2012.

The contributions of this paper include:

• The first systematic analysis of the benefits of stronger consistency models in a large-scale
production system.

• A principled approach for identifying anomalies, and a practical approach for real-time
health monitoring of a weakly consistent system.

• Insights into the effects of increased programmer complexity due to weaker consistency
models through a discussion of bugs our monitoring system has uncovered, and anti-
patterns we teach developers to avoid.

We present background on Facebook’s replicated storage and consistency models in
Section 2. We present our principled analysis in Section 3 and our practical analysis in
Section 4. We discuss experience in Section 5. We review related work in Section 6; and
we conclude in Section 7.

2. Background
This section covers background on Facebook’s replicated storage and consistency models.

2.1 Facebook’s Replicated Storage
The replicated storage that holds the social graph at Facebook uses a graph data model
stored in a two-level cache and a backing database.

Data Model Facebook models entities and the relationships between them with vertices
and directed edges in a graph data model.1 Vertices are typed objects identified by a 64-bit
unique id and are stored with a type-specific dictionary. For instance, vertex 370 could be
a post object with the content and creation time of the post stored in the dictionary, and
vertex 450 could be a user object with the hometown and join date stored in the dictionary.

Directed edges in the graph are also typed objects stored with a type-specific dictionary,
but they are identified by their endpoints. For instance, edge(370,450) could be a posted by
edge that indicates user 450 created post 370 with an empty dictionary. Edges are indexed

1 Vertices and edges are also called objects and associations [14].
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Figure 1: The write path for Facebook’s replicated storage. On-path caches are
synchronously updated; off-path caches are asynchronously invalidated. There is a
single master region for each shard with the root-master cache and master database.
Different shards may have masters in different regions.

and accessed by their tail (source). Some edge types are symmetric, i.e., an edge(x,y) is
always accompanied by a symmetric edge(y,x). For instance, if user 450 follows user 520,
this relationship is represented by a pair of symmetric edges: a following edge(450,520)
and a followed by edge(520,450). Symmetric edge types are identified in the schema. A
creation/deletion operation on one edge in a pair implicitly creates/deletes the symmetric
edge. For instance, creating the following edge(450,520) would automatically create the
followed by edge(520,450).

Database Facebook uses a horizontally (i.e., row) sharded, geo-replicated relational
database management system to persistently store user data. There is a full copy of
the entire database in each of the geo-distributed regions, which are co-located sets of
datacenters. For each shard there is a single master region that asynchronously updates the
other, slave regions. The master region is not necessarily the same for all shards and the
master region for a shard can be changed.

Two-Level Cache A two-level cache fronts (i.e., it is a write-through cache) the full
database replica in each region. There is a single logical root cache that sits in front of the
database; there are multiple logical leaf caches that sit in front of the root cache.2 Shards
of root caches are distinguished by the role of the database shard they front: a root-master
fronts the master for its shard of the database, a root-slave fronts a slave for its shard of the
database. The front-end web servers that handle user requests are grouped into clusters and
each cluster is exclusively associated with a single leaf cache. Figure 1 shows clusters of
web servers, the top-level leaf caches, mid-level root cache, and bottom-level database in
three regions.

2 The root and leaf caches are also called leader and follower tiers [14].



Reads progress down the stack in their local region on cache misses from leaf cache
to root cache, and then to local database. The cache-hit ratios are very high, so reads are
typically served by the leaf caches.

Writes follow a more complex route as shown in Figure 1. They are synchronously
routed through their leaf cache (1) to their local root cache (2) to the root-master cache (3),
and to the master database shard (4) and back (5–8). Each of those caches applies the write
when it forwards the database’s acknowledgment back towards the client. The root caches
in the master (6′) and originating regions (7′) both asynchronously invalidate the other leaf
caches in their region. The database master asynchronously replicates the write to the slave
regions (5′). When a slave database in a region that did not originate the write receives
it, the database asynchronously invalidates its root cache (6′′) that in turn asynchronously
invalidates all its leaf caches (7′′).

2.2 Consistency Models
This subsection reviews the definition of “local” for consistency models, the consistency
models covered by our principled anomaly checkers, and the consistency model provided
by Facebook’s replicated storage.

Local Consistency Models A consistency model, C, is local if the system as a whole pro-
vides C whenever each individual object provides C [29]. We primarily study local consis-
tency models in this paper because they can be checked and reasoned about using requests
to a subset of objects. Analyzing non-local consistency models—e.g., strict serializability,
sequential consistency, and causal consistency—require requests to all objects, and thus
are not amenable to sampling-based study. While we focus on local consistency models,
we do derive lower bounds, and also some upper bounds on the anomalies non-local con-
sistency models would prevent in Section 3.4. All of the consistency models described in
the remainder of this section are local.

Linearizability Linearizability [29] is the strongest consistency model for non-transactional
systems. Intuitively, linearizability ensures that each operation appears to take effect instan-
taneously at some point between when the client invokes the operation and it receives the
response. More formally, linearizability dictates that there exists a total order over all oper-
ations in the system, and that this order is consistent with the real-time order of operations.
For instance, if operation A completes before operation B begins, then A will be ordered
before B. Linearizability avoids anomalies by ensuring that writes take effect in some se-
quential order consistent with real time, and that reads always see the results of the most
recently completed write. Linearizability also decreases programming complexity because
it is easy to reason about.

Per-Object Sequential Consistency Per-object sequential consistency3 [16, 34] requires
that there exists a legal, total order over all requests to each object that is consistent
with client’s orders. Intuitively, there is one logical version of each object that progresses
forward in time. Clients always see a newer version of an object as they interact with it.
Different clients, however, may see different versions of the object, e.g., one client may be
on version 100 of an object, while another client may see version 105.

Read-After-Write Consistency Within each cluster, Facebook’s replicated storage is also
designed to provide read-after-write consistency within each leaf cache, which means when
a write request has committed, all following read requests to that cache always reflect this

3 Also called per-record timeline consistency.



write or later writes. We also consider read-after-write consistency within a region and
globally. Region read-after-write consistency applies the constraint for reads in the same
region as a write. Global read-after-write consistency applies the constraint for all reads.

Eventual Consistency Eventual consistency requires that replicas “eventually” agree on
a value of an object, i.e., when they all have received the same set of writes, they will
have the same value. Eventual consistency allows replicas to answer reads immediately
using their current version of the data, while writes are asynchronously propagated in the
background. While writes are propagating between replicas, different replicas may return
different results for reads. A useful way to think about this is that a write might not be seen
by reads within time ∆t after it committed, which is not allowed in linearizable systems.
We later refer to this ∆t as a vulnerability window. Multiple replicas may accept writes
concurrently in an eventually consistent system, but we do not have that complication here,
because Facebook’s TAO system uses a single-master-per-shard model to order all writes
to an object.

Facebook’s Consistency Overall Facebook’s design provides per-object sequential con-
sistency and read-after-write consistency within a cache, and eventual consistency across
caches. User sessions are typically handled exclusively by one leaf cache, and thus we
expect most of them to receive per-object sequential and read-after-write consistency.

Sometimes user sessions are spread across multiple leaf caches. This happens when user
sessions are load-balanced between web server clusters. It also happens when a machine
within a leaf cache fails and the requests to it are sent to other leaf caches in the same
region. In these cases we expect user sessions to receive eventual consistency [14].

3. Principled Consistency Analysis
This section makes progress towards quantifying the benefits of stronger consistency
models by identifying how often the behavior they disallow occurs in Facebook’s replicated
storage. This section describes the trace collection, the consistency checkers, the results of
those checkers, and the conclusions about the benefits of stronger consistency.

3.1 The Trace
We collect a trace that is useful for identifying the violations of consistency models. An
ideal trace would contain all requests to all vertices (and their adjacent edges) in the
system and would allow us to check all consistency models. Unfortunately, logging all
requests to the replicated storage system is not feasible because it would create significant
computational and network overhead. To avoid this, our trace instead contains all requests
to a small subset of the vertices (and their adjacent edges) in the system. This trace allows
us to check local consistency models, while keeping collection overhead low.

Trace Collection Vertices are identified by 64-bit unique ids. These ids are not necessarily
evenly distributed so we hash them before applying our sampling logic. This ensures an
even distribution among vertex types and a rate of logged requests that is similar to our
sampling rate. We trace vertex requests if the hashed ID is in our sample. We trace edge
requests if the hashed head or tail ID is in our sample. Tracing based on both directions
of edge requests ensures we catch explicit requests that implicitly update the opposite
direction for symmetric edge types.

For each request, we log the information necessary for running our checkers and
debugging identified anomalies:



• object id: Vertex ID or head and tail IDs for edge requests.
• type: The type of the vertex or edge requested.
• action: The request type, e.g., vertex create, edge add.
• value: The hashed value field of the request.
• invocation time: Time when the request was invoked.
• response time: Time when a response was received.
• user id: Hashed ID of the user that issued the request.
• cluster: ID of the cluster that served the request.
• region: ID of the region that served the request.
• endpoint: ID of the service that issued the request.
• server: ID of server that issued the request.

The object id, type, and action fully define a request. The value allows us to match
reads with the write(s) they observed. The invocation time and response time are used
for defining the real-time order in linearizability and read-after-write consistency. Those
times in combination with the user id define the (process) ordering for per-object sequential
consistency. The cluster is used to differentiate different varieties of anomalies by checking
per-cluster, per-region, and global consistency. The endpoint and server are useful for
debugging anomalies we identify.

Requests are logged from the web servers that issue the requests to the storage system.
They are logged to a separate logging system that stores the requests in a data warehouse.
At the end of each day we run the offline consistency checkers. Waiting until well after
the requests have occurred to check them ensures we see all requests to an object. This
eliminates any effects we would otherwise see if parts of the logging system straggle.

Clock Skew The web servers that log requests take the invocation timestamp before
issuing each request, and the response timestamp after receiving the response. The time
on the web servers is synchronized using NTP [40] and there is a small amount of clock
skew, the amount of time a machine’s local clock differs from the actual time. For the days
of August 20-31 the 99.9th percentile clock skew across all web servers was 35 ms.

We account for this clock skew by expanding the invocation time and response time,
i.e., we subtract 35 ms from all invocation times and add 35 ms to all response times. This
ensures all anomalies we identify are true anomalies, and thus we are certain that a system
with a strong consistency model would return a different result. Another way to view this
is that we are identifying a close lower bound on the true number of anomalies.

Coping with Imperfect Logging One tricky issue we dealt with in collecting and pro-
cessing our trace was that our logging was not lossless. In particular, we log from web
servers that prioritize user traffic over our logging and as a result sometimes cause it to
timeout. This means the trace does not contain 100% of requests for our sample of objects.
For reads, we do not believe this has much impact on our results because the missing reads
should be evenly distributed between anomalous and regular reads.

For writes, however, missing them presents a problem that results in many false positive
anomalies. Reads that reflect the results of a write not in the trace would be marked as
anomalies. For instance, in:
vertex write(450,“x:1”,...)
vertex write(450,“x:2”,...) # missing

vertex read(450, ...) = “x:2”
the read appears to be an anomaly in the trace because it reflects a state of the data store
that never (appears to have) existed. We encountered many of these apparent anomalies,



including some cases where a value we never saw written was returned for hours. We
investigated them by checking the state of the master database and confirmed that the reads
were reflecting a write that was missing from our trace.

Our initial approach for dealing with these missing writes was to exclude reads that did
not match with a write in our trace. This provided a better measurement, but we still saw
some false positives. For instance, in:
vertex write(450,“x:2”,...)
# potentially many hours and operations

vertex write(450,“x:1”,...)
vertex write(450,“x:2”,...) # missing

vertex read(450, ...) = “x:2”
the read still incorrectly appears to be an anomaly because it appears to be reflecting a too
old state.

To eliminate these false positives from our trace we supplemented it with an additional
trace of writes from the Wormhole system [48]. This secondary trace uses the same hashing
and sampling logic to determine which writes to log. Its logging is also not lossless, so again
we do not have 100% of writes to all objects in the sample. When we combine the writes
from both traces, however, we have ~99.96% of all writes to the objects in our sample.
The impact of the few remaining missing writes is negligible when we add our logic that
identifies obviously missing writes to the combined trace.

3.2 Anomaly Checkers
We designed a set of algorithms to identify anomalies for three consistency models: lin-
earizability, per-object sequential consistency, and read-after-write consistency. Consis-
tency models provide guarantees by restricting the set of possible executions. The basic
idea of these algorithms is to identify when a traced execution violates these restrictions,
i.e., it is not possible in a system that provides the checked consistency guarantee. Each
checker does this by maintaining a directed graph, whose vertices represent the state of an
object, and whose edges represent the constraints on the ordering between them. We check
for anomalies by checking that the state transition order observed by reads is consistent
with these constraints.

Preprocessing We preprocess the trace to reduce its size for faster checking, to reduce the
memory required by the checkers, and to simplify the implementations. Each consistency
model that we check is a local consistency model, so we can check it by checking each
object individually. Our first preprocessing step enables this by grouping the requests for
each object together.

Our second preprocessing step reduces the size of the trace by eliminating objects that
will not show anomalies. These eliminated objects include those that either have no writes,
or have no reads. Objects with no writes have no restrictions on the set of allowed values.
Objects with no reads have nothing to check against the set of allowed values.

Our final preprocessing step sorts the requests to each object by their invocation time.4

This step simplifies the implementation of the checkers and allows them to make a single
pass over the requests to each object.

4 Sorting is primarily to merge traces from individual web servers. In addition, it also deals with occasionally
delayed components in the logging infrastructure that can cause out of order logging.



1 # all requests to one object sorted by their invocation time
2 func linearizable_check(requests):
3 for req in requests
4 add_to_graph(req)
5 if req is read
6 # look ahead for concurrent writes
7 next_req = req.next()
8 while next_req.invocT < req.respT
9 if next_req is write

10 graph.add_vertex(next_req)
11 match = find_matched_write(req)
12 merge_read_into_write(req, match)
13 if found_anomaly(graph)
14 anomaly_reads.add(req)
15 # graph only has writes and is acyclic
16 print anomaly_reads
17

18 func add_to_graph(req):
19 if req in graph
20 # already in graph from lookahead
21 return
22 new_v = graph.add_vertex(req)
23 # add edges from real-time ordering
24 for v in graph.vertices()
25 if v.resp_t < new_v.invoc_t
26 graph.add_edge(v, new_v)
27 # matched write inherits edges read
28 func merge_read_into_write(read, match)
29 for e in read.in_edges()
30 if e.source != match
31 graph.add_edge(e.source, match)
32 # refine response time of merged vertex
33 if req.resp_t < match.resp_t
34 match.resp_t = req.resp_t
35 graph.remove_vertex(read)
36

37 func find_matched_write(req)
38 for v in graph.breadth_first_search(req)
39 if v.hashValue matches req.hashValue
40 return v
41

42 # cycles indicate no legal total order exists and this
43 # read is an anomaly
44 func found_anomaly(graph)
45 cycles = graph.check_for_cycle()
46 if cycles is null
47 return false
48 # remove edges that produced cycles
49 for c in cycles
50 for e in c.edges()
51 if e.source.invoc_t > e.dest.resp_t
52 graph.remove_edge(e)
53 return true

Figure 2: Psuedo-code for the linearizability checker.



Linearizability Checker Figure 2 shows the pseudocode for a simplified version of our
linearizability checker. The input to the checker is a list of all of the operations to one
object sorted by invocation time. The output of the checker is all of the anomalous reads,
i.e., reads that return results they would not in a linearizable system.

Intuitively, the checker maintains a graph whose vertices are operations, and edges are
constraints. It checks for cycles as it adds operations to the graph. If the graph is acyclic,
then there exists at least one total order over the operations with all constraints satisfied,
i.e., there are no anomalies.5 If there are cycles, then there are anomalies. After adding an
operation to the graph we check for cycles; if there are cycles then the operation is flagged
as an anomaly and the cycle broken. Breaking cycles maintains the invariant that the graph
is acyclic before an operation is added, and thus allows us to check if the operation is an
anomaly simply by checking for cycles after adding it.

Linearizability requires that there exists a total order that is legal, and agrees with the
real-time ordering of operations. A total order is legal if a read is ordered after the write it
observed with no other writes in between. Our checker enforces this constraint by merging
a read vertex into the write vertex it observed (lines 29–36). This leaves us with only write
vertices in the graph. We can then convert a total order of the write vertices into a total
order of all operations by simply placing the reads immediately after the write they were
merged into.

Merging read vertices into the write vertices they observe requires matching reads to
writes (lines 38–41). Figure 3 shows the three possible cases: a read observes an earlier
write (a), a read observes a concurrent write that began before it (b), and a read observes a
concurrent write that began after it (c). Handling the third case when processing operations
ordered by invocation time requires that we look ahead to find all the concurrent writes
(lines 9–11, 20–22).

The real-time ordering constraint dictates that any operation that is invoked after another
completes must be ordered after it. Our checker incorporates this constraint by adding edges
to an operation from all those that precede it (lines 25–27). Figure 4 shows the execution
for a stale read anomaly where the real-time ordering is violated when a read observes the
value of an old write instead of a more recent one. The figure also shows the cycle this
anomaly creates in the graph that our checker will catch (lines 14–15, 45–54).

The total order requirement of linearizability may still be violated even when reads do
not observe stale values. This type of anomaly typically occurs when there are concurrent
writes followed by reads that do not mutually agree on the execution order of the writes.
We term this type of violation a total order anomaly and show an example in Figure 5. The
figure also shows the cycle the anomaly creates in the graph that our checker will find and
flag.

An important part of making our checker complete is refining the response time of a
write vertex to be the minimum of its response time and the response times of all the reads
that observe it (lines 34–35). This ensures we enforce transitive ordering constraints where
a read must be after the write it observes. Operations that follow that read in real-time must
be ordered after it, and thus operations that follow the read must also be after the write. For
instance, our checker would refine the response time of w3 in Figure 3 to be that of r3 to
ensure that if some other operation began after r3’s response time but before w3’s response
time, we would still capture that constraint.

5 A topological sort of the graph would give one such total order.
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Figure 5: Total order anomaly. r1 and r2 are merged into w1 and w2 respectively.

For clarity we omit pseudo-code for a number of corner cases and optimizations. The
corner cases include leading reads, missing writes, and picking between multiple sets of
reads for concurrent writes. Leading reads are the reads for an object in the trace that occur
before we see any writes. We handle these reads by inserting special ghost writes into the
beginning of the trace for the writes that we can assume happened, but were before our
trace began. Missing writes are the writes that are still missing from the merged trace.
We handle these as we did before we collected a second trace. When there are total order
anomalies there can be multiple sets of competing reads. Only one set can be marked as
not anomalous. Instead of picking the set of the first write to be seen, like the pseudo-code,
we pick the largest set, i.e., we assume the majority of the reads correctly reflect the final
state of those concurrent writes.

The optimizations we omit include reducing the number of edges and how we check
for cycles. Our implementation only adds edges that express new constraints, e.g., in
Figure 4(b) we would not add the edge (w1, r1) because that constraint is already expressed
by the edges (w1,w2) and (w2,r1). We check for cycles by checking if a read is being merged
into a write that is its ancestor (stale read anomalies) and checking each set of concurrent
writes to ensure no more than one is observed by reads invoked after the set returns (total
order anomalies).

Per-Object Sequential and Read-After-Write Checkers Linearizability is strictly stronger
than per-object sequential and read-after-write consistency, meaning the anomalies in lin-
earizability are supersets of those in the weaker models. We exploit this property by build-
ing the weaker model checkers as add-on components to the linearizability checker. Each
operates only on the linearizable anomalies.

Per-object sequential consistency has two constraints on the requests to each object: the
order of requests is consistent with the order that the users issue their requests and there



Requests ObjectsTotal Reads Writes

Vertices 939 937 2.1 3.4
Edges 1,828 1,818 9.7 13.4

Table 1: High-level trace statistics in millions. Objects indicate the number of unique
groups of requests that our checkers operate over. For vertices it is the count of
unique vertices in the trace. For edges it is the count of unique source and edge type
combinations.

exists a total order. We check these two constraints against each linearizable anomaly by
checking the following conditions that reflect those two constraints respectively. Case 1:
the linearizable anomaly is a stale read anomaly, and there exists a write more recent than
the matched write that is from the same user who issued the read. Case 2: the linearizable
anomaly is a total order anomaly. The former case shows a client does not observe her most
recent write, and hence is inconsistent with client’s order. The latter case is precisely a total
order violation. If either of these two cases matches, then the linearizable anomaly is also
flagged as a per-object sequential anomaly.

Read-after-write consistency requires that all reads after a committed write always
reflect this write or later writes. This constraint is equivalent to the real-time ordering
constraint. Hence, our checker simply flags all stale read anomalies found by linearizable
checker as read-after-write anomalies. We check read-after-write violations in three levels:
cluster, region, and global. We check at the cluster/region level by looking for a write in
the cycle that is more recent than the matched write, and has the same cluster/region as
the read. Global read-after-write anomalies are the same as the stale read anomalies under
linearizability.

3.3 Analysis
We ran our consistency checkers on a 12-day-long trace of Facebook’s replicated storage.
Each day is checked individually, and then the results are combined. The trace was collected
from August 20, 2015 to August 31, 2015 and included all requests to 1 out of every million
objects. This sampling rate is low enough to avoid adversely impacting the replicated
storage system while being high enough to provide interesting results. The trace contains
over 2.7 billion requests. Table 1 shows more high-level statistics.

No Writes No Reads Both

Vertices
Objects 75.8% 13.5% 10.7%
Requests 74.2% 0.1% 25.7%

Edges
Objects 74.3% 21.6% 4.1%
Requests 76.2% 1.0% 22.8%

Table 2: Percentage of objects with no writes, no reads, and with both reads and
writes. The percentage of overall requests to objects of each category is also shown.
Only requests to objects that contain both reads and writes can exhibit anomalies.



Anomalous
Reads

Percentage Of
Filtered Overall
(241M) (937M)

Linearizable 3,628 0.00151% 0.00039%
Stale Read 3,399 0.00141% 0.00036%
Total Order 229 0.00010% 0.00002%

Per-object Seq 607 0.00025% 0.00006%
Per-User 378 0.00016% 0.00004%

Read-after-Write
Global 3,399 0.00141% 0.00036%
Per-Region 1,558 0.00065% 0.00017%
Per-Cluster 519 0.00022% 0.00006%

Table 3: Anomalies for vertices. Filtered reads are those remaining after preprocess-
ing.

Preprocessing Results To reduce the computational overhead as well as to better under-
stand our workload, we pre-process the trace to filter out objects whose requests follow
patterns that would never show anomalies. The two patterns of requests we exclude are all
reads and all writes. If an object has only reads, then there are no updates for the storage
system to propagate around, and thus no possible anomalies. If an object has only writes,
then there are no reads that could be marked as anomalies. Table 2 shows the preprocessing
results. This preprocessing quickly yields upper bounds of 25.7% of requests to vertices
and 22.8% of requests to edges that can exhibit anomalies.

Anomalies in Vertices Table 3 shows the results of our checkers for requests to vertices.
We see a very low percentage of requests to vertices, around 0.00039%, violate lineariz-
ability. Most of these anomalies are stale read anomalies, i.e., the read did not see the most
recent update. A smaller number of them are total order anomalies.

The stale read anomalies are identified in the stale read row, the per-user row under per-
object sequential, and all of the read-after-write rows. The source of stale reads is typically
replication lag that includes master to slave wide-area replication and asynchronous cache
invalidations up the cache hierarchy. While this replication is still ongoing a read may
return an older, i.e., stale, version that it would not in a system with stronger consistency.
The replication lag can thus be considered the vulnerability period during which anomalies
may occur. The effect of increasing replication lag, and thus an increasing vulnerability
period is shown in the read-after-write results. Replication lag increases from the cluster to
the region and to then global level and we see an increase from 519 to 1,558, and to 3,399
anomalies.

Total order anomalies are identified in the total order row. They contribute to the overall
linearizability and per-object sequential counts. The source of these anomalies is also
typically replication lag. In this case, however, multiple users are reading different versions
of an object, i.e., one user in the same cluster as a recent write is reading the new version
and one user in a different cluster is reading an old version.

In general, the low percentage of anomalies is primarily due to the low frequency of
writes, and the locality of requests to an object. Both of these factors decrease the likelihood
of having a read occur during the vulnerability window after a write. The low frequency
of writes—i.e., only 1 in 450 operations was a write—directly decreases the likelihood



Anomalous
Reads

Percentage Of
Filtered Overall
(417M) (1,818M)

Linearizable 12,731 0.00305% 0.00070%
Stale Read 9,831 0.00236% 0.00054%
Total Order 2,900 0.00070% 0.00016%

Per-object Seq 2,900 0.00070% 0.00016%
Per-User 0 0% 0%

Read-after-Write
Global 9,831 0.00236% 0.00054%
Per-Region 5,312 0.00127% 0.00029%
Per-Cluster 3,070 0.00074% 0.00017%

Table 4: Anomalies for edges. Filtered reads are those remaining after preprocessing.

a given read will be during a vulnerability period. The locality of requests to an object
also decreases the likelihood of anomalous behavior because Facebook’s clusters provide
read-after-write consistency, i.e., there is no vulnerability window within a cluster. Our
results mostly validate this claim as we see approximately 1 in 1.8 million requests not
receive per-cluster read-after-write consistency. The few exceptions are likely due to cache
machine failures.

Anomalies in Edges Table 4 shows the results of our checkers for requests to edges. The
rate of anomalies is doubled compared to the anomaly rate of vertices, yet it is still a very
small number—we only observe 1 linearizability anomaly out of 150,000 requests. The
higher frequency of edge anomalies is correlated to the higher frequency of write operations
on edges. As shown in Table 1, there is 1 write in every ~188 operations on edges, while
the write fraction of vertex operations is about 1 out of 450. Intuitively, more updates mean
more frequent changes in system states. Each write introduces a vulnerability window that
allows anomalous reads to happen.

The rate of the different types of anomalies for edges is double what we observed
for vertices, with the notable exception of total order violations, and per-user session
violations. We see a rate of total order violations that is more than ten times the rate we see
with vertices and we see no per-user session violations. We are still investigating the root
cause of both of these differences.

Figure 6 further breaks down anomalies by the type of the edge. It shows a CDF of
anomalies for types in rank order, i.e., the type with the most anomalies is at position 1.
The rank 1 edge type contributes ~60% of all observed anomalies. This is the “like” edge
type, which is frequently updated and requested. The high update and request rate of “likes”
explains their high contribution to the number of overall anomalies. The high update rate
induces many vulnerability windows during which anomalies could occur and the high
request rate increases the likelihood a read will happen during that window. The top 10
types together account for ~95% of the anomalies. These most-anomalous edge types have
implications for the design of systems with strong consistency, which we discuss below,
and for finding programmer errors, which we discussion in Section 5.

Upper Bound Our analysis is primarily concerned with identifying reads that would
definitely return different results in systems with stronger consistency. As a result, when
there is uncertainty due to clock skew we err on the side of reporting fewer anomalies
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Figure 6: This figure shows the CDF of anomalies by edge type in ranked order. For
instance, the rank 1 edge type has the highest number of anomalies.

and so our results are a lower bound on the effect of stronger consistency models. In our
main results we have expanded the invocation and response times of each request by 35ms
(99.9th percentile clock skew). Figure 7 shows the effect of different choices for expanding
the invocation and response times for vertices.

An expansion of −35ms gives an upper bound on the effect of the stronger consistency
models. Here 35ms is added to the invocation time, 35ms is subtracted from the response
time, and we limit the response time to be no earlier than the modified invocation time. We
see anomaly rates that are much higher for both −35ms and −17.5ms. This is because in
both cases an artificial and incorrect ordering of requests is being enforced. The artificial
ordering comes from the invocation times of the many requests that completed in less than
70ms/35ms and thus had their invocation to response time windows shrunk to 0. In reality
these requests were concurrent and could have been ordered either way, not only in their
invocation time order.

The results for 0ms give a more accurate view of the true rate of anomalies be-
cause they mostly avoid artificially ordering concurrent requests. With no time expan-
sion we see 0.00066% linearizable anomalies, 0.00008% per-object sequential anomalies,
0.00065% global read-after-write anomalies, 0.00029% region read-after-write anomalies,
and 0.00010% cluster read-after-write anomalies.

3.4 Discussion
Our principled analysis gives us insight into the effect of deploying replicated storage with
stronger consistency at Facebook. The primary benefits of stronger consistency are the
elimination of anomalous behavior that is confusing to users and a simplified programming
model. Our results here indicate how often anomalies occur, i.e., how often a stronger
consistency model could help.

Quantifying the Benefit of Stronger Consistency Figure 8 shows a spectrum of consis-
tency models and the rate of anomalies for requests in them. Our observed values for lin-
earizability, per-object sequential consistency, and read-after-write consistency are shown
in the spectrum. In addition, the relationship between different consistency models is shown
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Figure 7: The percentage of reads flagged as anomalies by our checkers for different
timestamp expansions for vertices. Expanding timestamps Xms subtracts X from the
invocation time and adds X to response time.

Linearizability
0.00039% (vertex)
0.00070% (edge)

(Region) Read-After-Write
0.00017% (vertex)
0.00029% (edge)

(Cluster) Read-After-Write
0.00006% (vertex)
0.00017% (edge)

Sequential (Global)

Causal

Per-Object Sequential
0.00006% (vertex)
0.00016% (edge)

(Global) Read-After-Write
0.00036% (vertex)
0.00054% (edge)

Strict Serializability

Causal with 
Transactions

Figure 8: Spectrum of consistency models with arrows from stronger to weaker mod-
els. Measured anomaly rates are shown. Bounds on the anomaly rate in unmeasure-
able non-local consistency models can be inferred.

by arrows pointing from a model A to another model B when A is is strictly stronger than
B.6

These relationships allow us to bound the effect of non-local consistency models that
we cannot write checkers for, namely (global) sequential consistency [34], and causal
consistency [1, 33]. For instance, because causal is stronger than per-object sequential it
would eliminate anomalies from at least 0.00006% of vertex requests and because it is
weaker than linearizability it would eliminate anomalies from at most 0.00039% of vertex
requests.

6 See Section 4.5 for the definition of strictly stronger.



We also show strict serializability and causal consistency with transactions in the
spectrum. Our results give lower bounds for the anomalies each of these models would
prevent. We cannot provide upper bounds for them, which we discuss further as a limitation
later in this section.

An Interesting Direction Another result of the analysis was identifying that a small num-
ber of edge types account for the vast majority of anomalies. This points to two interest-
ing directions for future research into systems with stronger consistency: (1) build system
were non-anomalous types have negligible overhead or (2) provide stronger consistency
for a small subset of a larger system. While the latter would not prevent all anomalies, it
would allow incremental deployment of these systems and significantly reduce the rate of
anomalies. Interestingly, such a subsystem that does provide linearizability is used within
Facebook for a small set of object types, e.g., passwords.

Limitations Our analysis has a few limitations to what it can provide in terms of quanti-
fying the benefits of stronger consistency. One limitation is that our analysis is limited to
the replicated storage at Facebook. Results for other eventually consistent systems could
and would be different, but Facebook is a large, important data point in this space.

Another limitation is that our measurements only report anomalies we observed, not
anomalies that could happen but whose triggering conditions have not yet occurred. An
architectural change could trigger these anomalies, but our principled anomaly checkers
would alert us to the effects of this change. In addition, it is likely that our practical
consistency checker would catch this effect in real-time. Our sampled view of objects is
also a limitation. There might be rare objects with higher rates of inconsistencies that our
sampling misses that could shift the overall anomaly rates.

The biggest limitation to our analysis is that it cannot give insights into the benefits of
transactional isolation. Transactional isolation is inherently a non-local property [29] and
so we cannot measure it accurately using only a sample of the full graph. This unfortunately
means we cannot quantify the benefits of consistency models that include transactions, e.g.,
serializability [44] and snapshot isolation [11], or the benefit of even read-only transactions
on other consistency models. For instance, while our results for causal consistency bound
the benefit of the COPS system [38], they do not bound the benefit of the COPS-GT [38]
system that also includes read-only transactions.

4. Practical Consistency Analysis
Our practical consistency analysis has been used since 2012 at Facebook as a real-time
cache-health monitoring system. This section justifies why we need practical analysis,
defines φ -consistency, describes typical measurements of it, discusses their implications,
and finally describes how we use φ -consistency to debug production issues.

4.1 Why We Need Practical Analysis
Our principled analysis is helpful for understanding the consistency guarantees the current
systems provide, identifying consistency issues caused by weak consistency models, and
quantifying the benefits of a system with stronger consistency. However, the principled
analysis is neither designed for real-time monitoring nor is a good fit. The principled
analysis requires access to all timestamped requests to each sampled object. Retrieving
and analyzing these requests in real-time would be akin to implementing a replicated
storage system with strong consistency. Our principled analysis avoid this overhead by
only processing requests well after they have occurred, typically once per day. This allows



the storage for the principled analysis trace to be eventually consistent, and provides plenty
of time for log entries to arrive.

In contrast, our practical consistency analysis is designed to operate in real-time and to
be lightweight. As a consequence it does not trace all operations on a given object, and thus
does not give insights into how often principled consistency models are violated. Instead, it
uses injected reads to track metrics that are designed to mirror the health of different parts
of the replicated storage.

4.2 φ(P)-consistency
The operational consistency metric we use is φ(P)-consistency. The φ(P)-consistency of a
set of replicas P is the frequency that injected reads for the same data to all p ∈ P receive
the same response from each p.

At Facebook our replicas can be a leaf cache, root cache, or database. When performing
a read for φ(P)-consistency, we care about the data at the individual p∈ P. Reads are made
with a flag to look only in cache for a cache layer, avoiding any read-through nature of the
system. A read-miss indicates there is no cached data at p, so it is not considered in the
metric.

The injected reads are all issued from one server and the responses are compared once all
have returned. This does not require clock synchronization, versioning, or logging on either
the issuing client or the replicated storage, and is very lightweight. As a result, however,
it is affected by network and other delays. For instance, even if two replicas of an object
have the same old version of it when the reads are issued, and change to the same new
version at the same instant in time, if one of the injected reads arrives before this instant
and the other afterwards, they will be φ(P)-inconsistent. Despite this and its theoretical
incomparability to principled consistency models that we will show in Section 4.5, φ(P)-
consistency is useful in practice.

φ(P)-consistency’s usefulness derives from how it quickly approximates how conver-
gent/divergent different parts of the system are. Increases in network delay, replication
delay, misconfiguration, or failures all cause a drop in φ(P)-consistency. An increase in the
write rate of the system will also cause a drop in φ(P)-consistency rate, because there will
be more writes in flight at any given time. These types of changes can be detected within
minutes by our φ -consistency metrics.

We track two types of φ(P)-consistency regularly: φ(G)-consistency and φ(Ri)-consis-
tency. φ(G)-consistency is for the global set G of all replicas, i.e., all leaf and root cache
clusters at Facebook. As a global system measure it is useful for tracking the health of the
overall system. φ(Ri)-consistency is for the set of all cache clusters in region Ri. We track
φ(Ri)-consistency for all regions. It is useful for tracking the health of each region and
cluster individually.

4.3 Analysis
The practical analysis system that measures φ(P)-consistency has been responsible for
monitoring consistency issues since it was deployed in 2012. This subsection describes
some results of this practical analysis.

Since φ -consistency rates are affected by the rate of updates to data, we track φ -
consistency rates for several types of data with different access patterns. We expect φ(G)-
consistency to be lower than the φ(Ri)-consistency because all results that count against any
φ(Ri) also count against φ(G), and because φ(G) measures across geographically distant
regions. Both rates exhibit diurnal and weekly patterns that correspond to the level of user



Figure 4: This figure compares the f(G)-inconsistency,
on the left, to f(R0)-inconsistency (for the the single re-
gion R0), on the right, for four different types of data
with varying sensitivity to inconsistency. This figure
also shows that regional best effort invalidations result
in higher consistency than global invalidations.

all system will also cause a drop in Aqueduct’s f(G)-
consistency rate, since there will be more writes in flight
at any given time.

Measuring f(P)-consistency in Aqueduct is straight-
forward. For a sampled set of read queries to both
TAO and Memcache, we also issue queries to all cache
tiers p 2 P. We then measure the frequency with which
the results returned by p 2 P, excluding cache-misses,
for a particular query are identical. This frequency
over a rolling time window is the f(P)-consistency of
Aqueduct at any given time. In terms of the choice
of P, we regularly track f(G)-consistency and f(Ri)-
consistencies, where Ri is the set of all cache tiers in the
Ri region.

f(P)-consistency is inherently an aggregate concept,
in the sense that it measures consistency over the col-
lection of p 2 P. When there are inconsistencies, f(P)-
consistency does not identify where the problem is. For
example, if a single cache tier c always returns erroneous
values, both f(G)-consistency and f(R j)-consistency
where c 2 R j will be 0%. Therefore, Aqueduct also mea-
sures the f(S : P)-consistency of two sets of cache tiers
S = {si} and P = {pi}. We define f(S : P)-consistency
as the frequency with which queries to s 2 S return a
value that is identical to the most common value, ex-
cluding cache misses, returned by querying all p 2 P.2

2We recommend that the expression “f(S : P)-consistency = 95%”
be read as “f consistency for S given P is 95%”. Similarly, “f(G)-
inconsistency = 1%” can be read as “f -inconsistency for G is 1%”

Figure 5: Memcache photo comment keys are highly
sensitive to delays in the invalidation delivery pipeline.
Our monitoring framework generates an alert if photo
comment inconsistency rate spikes above 2%.

Thus, f({c} : G)-consistency is not affected by errors
from cache tiers t 2 G such that t 6= c. Therefore, mon-
itoring f({c} : G)-consistency 8c 2 G makes it straight-
forward to identify problematic cache tiers.

For operational flexibility, the consistency monitoring
system also supports different sampling rates for differ-
ent types of Memcache data, TAO query types, database
shards, cache machines, or database machines.

Beyond definitions, intuitive explanations, and mea-
surement methodology, there is clearly theoretical
relationships between between d -consistency, f(P)-
consistency and f(S : P)-consistency that needs to be ex-
plored. The extent to which each of these metrics cap-
tures failure modes in different consistency models is
also a topic of interest. However, these details are be-
yond the scope of this paper.

6.2 Operational Lessons
Aqueduct has been in operation at Facebook for 1.5
years and is the primary system responsible for main-
taining cache consistency. Here we discuss the lessons
we learned from operating the system and responding to
various issues that arose.

6.2.1 Overall consistency rate

Overall, Aqueduct maintains a fairly steady f(G)-
consistency rate of 99.7%. The f(Ri)-consistency rates
are significantly higher, as we would expect, and tend to
be around 99.99%. Both rates exhibit diurnal and weekly
patterns that correspond to the level of user activity that
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Figure 10occurs on Facebook. However, the difference between
peak and trough is not significant.

The f(P)-consistency rates also vary by the type of
data that is being cached. Figure 4 shows f(G) �
inconsistency and f(R0)� inconsistency rates for four
different types of data. The f(G)-inconsistency rate for
Type I is significantly higher than the other three types.
This is because Type I happens to be a type of data that
changes frequently due to user activity. Fortunately, the
f(R0)-inconsistency of Type I data is much lower than
its f(G)-inconsistency. Since users tend to consistently
be served out of the same datacenter region, any incon-
sistencies tends to be undetectable by users.

6.2.2 Monitoring

One of the main goals in operating a system such as
Aqueduct is to be able to quickly identify and respond to
operational problems. Issues such as misconfiguration,
network failures, and machine failures are all reasons that
can cause Aqueduct’s performance to suffer. While we
use f(G)-consistency as a measure of the overall effi-
cacy of Aqueduct, in practice, a single global measure
of f(P)-consistency is insufficiently sensitive. Instead,
we use f(Ri)-consistency rates to give us insight into
problems that occur with individual regions. We also
use f({c} : G)-consistency to find problems in individ-
ual cache tiers. In addition, from experience, we have
found that certain types of data are more sensitive to op-
erational issues than others. As such, we use their f(G)-
consistency levels as early warning systems.

One of the most sensitive families of data we have
found are the Memcache keys that store photo comments.
Intuitively, this makes sense because of user behavior.
When a user uploads a photo, it is common for their
friends to comment on the photo. Interactive conversa-
tions between multiple users in the comment thread of
a photo are common. These conversations trigger a se-
ries of changes on the same Memcache key, which will
need to be invalidated multiple times over a relatively
short time period. The same key is read by all users
who want to view the photo. This effect is exaggerated
by users who have a large number of friends or follow-
ers, and those users’ photos, in particular, produce highly
consistency-sensitive Memcache keys.

Figure 5 displays the spike in f(G)-inconsistency rate
for photo comment keys after a recent site event that led
to a substantial delay in site-wide invalidations. The rate
would eventually stabilize at 10%, meaning that about
10% of all photo-comment queries had a chance of re-
turning different values depending on which caching tier
the user was assigned. The plot also shows the f(G)-
inconsistency rates for an aggregation of all Memcache
keys (“All MC Keys”) is far less sensitive than photo

Figure 6: TAO friend list queries are highly sensitive to
delays in the invalidation delivery pipeline.

comment keys.
The invalidation slowdown depicted in figure 5 also

created problems for TAO. Figure 6 shows the f(G)-
inconsistency rate for two different TAO queries: objects
and friend lists. The object query reads a user’s name and
birthday. The more sensitive friend list query pulls out a
user’s friend list. Not surprisingly, the friend list query is
more sensitive to invalidation delays because friend-lists
are modified far more often than a user’s basic informa-
tion.

6.2.3 Common Operational Issues

Human error. The most common root cause of prob-
lems in Aqueduct is human error. This often occurs in
the form of a misconfigured system that Aqueduct is de-
pendent on. We alleviate the impact of such issues by (i)
limiting the damage that can be caused by a single mis-
behaving system and (ii) quick detection and remediation
of issues when they occur.

For instance, in mid-2013, a bad MCRouter con-
figuration was deployed. This misconfiguration pre-
vented MCRouter from accepting invalidations sent
by Aqueduct-MC. Figure 7 shows the f(Ri : G)-
inconsistency rates for Memcache photo-comment keys
for each region during this event. Note that the absence
of invalidations only affected the 15% of users served
out of the problem region. The minor spike in f(R j : G)-
inconsistency rate is a result of the fact that the majority
value may sometimes be the stale value that is cached
in the failure region if the data item is not commonly
cached in other regions. Within the problematic region,
users are protected by local deletes which were still fully
functional. In other words, the only way a user would no-
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Figure 11

Figure 9 show φ(G)-inconsistency, on the left, compared to φ(R0)-inconsistency (for
the region R0), on the right. Four types of data with varying sensitivity to inconsistency
are shown. Figure 10 shows photo comment objects are sensitive to delays in the
invalidation delivery pipeline. Figure 11 shows friend list requests are also sensitive
to delays.



activity that occurs at Facebook. However, the difference between peak and trough is not
significant.

Figure 9 shows φ(G)-inconsistency and φ(R0)-inconsistency rates for four different
types of data. The φ(G)-inconsistency rate for Type I is significantly higher than the other
three types. This is because Type I happens to be a type of data that changes frequently due
to user activity. Fortunately, the φ(R0)-inconsistency of Type I data is much lower than its
φ(G)-inconsistency. Because users tend to consistently be served out of the same region,
any inconsistencies tend to be undetectable by users.

One of the main goals in operating a system is to be able to quickly identify and
respond to operational problems. Issues such as misconfiguration, network failures, and
machine failures are all reasons that can cause performance to suffer. In practice, a single
global measure of φ(P)-consistency is insufficiently sensitive. Instead, we use φ(Ri)-
consistency rates to give us insight into problems that occur within individual regions.
φ(Ri)-consistency rates can increase for a single region indicating that there is an issue
isolated to a specific region, this is shown in Figure 13 in Section 5 where we discuss an
example issue. In addition, from experience, we have found that certain types of data are
more sensitive to operational issues than others. We use their φ(G)-consistency levels as
early warning systems.

One of the sensitive families of data we have found are the objects that store photo
comments. Intuitively, this makes sense because of user behavior. When a user uploads
a photo, their friends may comment on the photo in interactive conversations. These
conversations trigger a series of changes on the same object, which will need to be
invalidated multiple times over a relatively short time period. The same object is read by
all users who want to view the photo. This effect is exaggerated by users who have a large
social graph, and those users’ photos, in particular, produce highly consistency-sensitive
objects.

Figure 10 displays the spike in φ(G)-inconsistency rate for photo comment keys after
a site event that led to a substantial delay in site-wide invalidations. The rate eventually
stabilized at 10%, meaning that about 10% of all photo-comment requests had a chance
of returning different values depending on which caching tier the user was assigned to.
The plot also shows the φ(G)-inconsistency rates for an aggregation of all objects(“All
Objects”) is far less sensitive than photo comment keys.

The invalidation slowdown depicted in Figure 10 also created problems for another type
of object. Figure 11 shows the φ(G)-inconsistency rate for two different types of requests:
user profiles and friend lists. The user profile request reads a user’s name and birthday. The
more sensitive friend list request pulls out a user’s friend list. Not surprisingly, the friend
list request is more sensitive to invalidation delays because friend lists are modified far
more often than a user’s basic information.

4.4 φ(S : P)-consistency
φ(P)-consistency is inherently an aggregate concept, in that it measures consistency over
the collection of p ∈ P. When there are inconsistencies, φ(P)-consistency does not identify
where the problem is. For example, if a single cache tier c always returns erroneous values,
both φ(G)-consistency and φ(Ri)-consistency where c ∈ Ri will be 0%.

To give finer granularity to our measurements we also use φ(S : P)-consistency. φ(S : P)-
consistency is defined over two sets of replicas, S and P, and is the frequency with which
requests to s ∈ S return a value that is identical to the most common value returned by
requesting all p ∈ P. This is a generalization of φ(P)-consistency as that is equivalent to
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(a) Linearizable but not φ -consistent execution.
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(b) φ -consistent but not linearizable execution.

Figure 12: Executions that demonstrate that φ -consistency and principled consistency
models are incomparable.

φ(P : P)-consistency. We often monitor φ(ci : G)-consistency for all cache tiers ci. φ(ci : G)-
consistency is not affected by errors from cache tiers t ∈ G such that t 6= ci. This makes
it straight-forward to identify problematic cache tiers. In practice, φ(ci : G) is especially
useful for helping debug consistency issues.

The φ(P)-consistency checker monitors inconsistency rate in real time and alarms when
there is a spike in inconsistency. These alarms are often the first indication of a problem.
Engineers use the φ(P)-consistency checker together with other consistency monitoring
systems to further investigate root causes. We consider a study of these systems, and how
they work interactively to be interesting future work.

4.5 Where Principles Meet Practice
Consistency models can be compared theoretically by examining executions that are legal
in one consistency model but illegal in the other. For two consistency models, A and B, if
there is an execution that is acceptable in A but not B we say A is weaker than B. Intuitively,
A is weaker because it allows behavior that B prohibits. If A is weaker than B, but B is not
weaker than A then we say B is strictly stronger than A. For instance, linearizability is
strictly stronger than per-object sequential consistency.7 If A is weaker than B and B is
weaker than A, then A and B are incomparable. Intuitively, this is because each permits
behavior the other prohibits.

Linearizability and φ -consistency are incomparable because there are executions
that are linearizable but not φ consistent and vice-versa. We show this through example
executions in both directions. Figure 12a shows an execution that is linearizable but not
φ -consistent and Figure 12b shows the reverse direction.

φ -consistency is also incomparable with per-object sequential and read-after-write
consistency. Because linearizability is strictly stronger than per-object sequential and
read-after-write consistency, all linearizable execution also satisfy the other models. Thus
Figure 12a suffices to show they are weaker than φ -consistency. The careful reader will
note that Figure 12b also shows the reverse direction of this relationship as the φ -consistent
execution is neither per-object sequential nor read-after-write consistent.

5. Experience and Errors
This section qualitatively explores the impact of the increased programming complexity of
eventual consistency. It describes why we saw few anomalies, common programmer errors,

7 There are executions that are per-object sequential but not linearizable [29]. And there are no execution that are
linearizable but not per-object sequential by definition because the real-time order requirement in linearizability
implies the process order requirement in per-object sequential.
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Figure 13: φ(Ri : G)-inconsistency for the photo comment type after a misconfigu-
ration. This metric enables us identify the geographic region to which the incorrect
configuration was pushed.

and anti-patterns we teach developers to avoid that are common mistakes for uneducated
programmers.

5.1 Few Anomalies
Our principled consistency analysis found fewer anomalies than we initially expected.
Upon reflection, we surmise that it is due primarily to sensitive applications avoiding
eventually consistent TAO. Sometimes sensitive applications—e.g., the login framework—
mark reads as “critical” in TAO, which then provides linearizability by forcing requests to
go through the master-root cache [14]. Other times, sensitive applications will build their
own infrastructure to exactly match their consistency needs.

5.2 Human Errors
The most common root cause of problems we observe is human error, usually in the form
of a misconfiguration. We alleviate impact of such issues by (1) limiting the damage that
can be caused by a single misbehaving system and (2) quickly detecting and remediating
issues when they occur.

Our web service deploys a large cache. In mid-2013, a bad configuration in the system
that determines which cache machine to send a request to was deployed. This misconfigura-
tion implied that cache invalidations generated for cached data were delivered to the wrong
machine. Figure 13 shows the φ(Ri : G)-inconsistency rates for photo comment keys for
each region during this event. Note that the absence of invalidations only affected the 15%
of users served out of the problem region. The minor spike in φ(R j : G)-inconsistency rate
is a result of the fact that the majority value may sometimes be the stale value that is cached
in the failure region, if the data item is not commonly cached in other regions. Within the
problematic region, users are protected by local deletes which were still fully functional. In
other words, the only way a user would notice a problem is by recognizing that the content
originating from other regions are not reflected in their requests.

5.3 Developer Error
Our focus throughout the paper has been on our write-through cache that writes updated
data into the database and that ensures the cache reflects the latest updates. We also
have a look-aside cache for use cases where the write-through cache is not a good fit.
The look-aside cache requires developers to manually write data to the database and



issue invalidations to the cache. In our experience, the look-aside cache is far harder
for programmers to reason about. We next describe several common errors we observe
in programs that use a look-aside cache. We use monitoring and developer education to
identify and fix these issues.

• Caching failures. The data fetching logic might return an error code or failure of some
type if a network disconnection or database request timeout occurs. If a program does
not validate the data it receives, an error code or empty result will be stored in the cache.
This pollutes the cache, and causes subsequent queries that could have succeeded to also
return failure.

• Negative caching. Another common error is what we term negative caching where a
program caches the lack of existence of data to save itself an expensive synchronous
request. However, given the look-aside nature of some caches, when the underlying data
is modified, this negative cache value has to be explicitly deleted, so a future read can
demand fill the updated value. It is a common error to forget to add invalidations for the
negatively cached data.

• Caching time-dependent results. Some queries to the database may give different results
depending on the time the request was issued. One such request, for instance, would be
“what site-wide announcements have not yet expired?” A common error is to cache a
time-dependent result, and then reuse that result at a later time.

• Caching cached results. Another common error is for program code to cache data that is
derived from another cached object–since the invalidation system is only aware of the first
level of cached objects, the program code will often read stale data. This also decreases
the available storage space in cache due to duplicate data.

6. Related Work
We review related work that measures the consistency of replicated storage, and work that
specifies the consistency model of production systems.

Measuring Consistency Many benchmarking tools now include components that try to
measure some form of the consistency provided by the data stores they are benchmarking.
These systems include YCSB++ [45], BG [10], Wada et al. [53], Anderson et al. [4],
Rahman et al. [47], Zellag et al. [55], Goleb et al. [28], and YCSB+T [20]. The most closely
related work to ours is from Anderson et al. [4], which also takes traces of operations and
runs offline checkers against them. Their checkers check safety, regularity, and atomicity
violations [35]. Atomicity is equivalent to linearizability, regularity is equivalent to read-
after-write consistency, and safety is an unusual relaxation of read-after-write consistency
that permits an arbitrary value to be returned when there are concurrent writes. Our work
builds on the checkers and methodology of these benchmarking tools.

All of these benchmarking tools generate a synthetic workload, collect a global trace,
and then measure inconsistencies in that global, synthetic trace. In contrast, our work
examines sampled, real traces. Using sampled traces allows us to analyze a production
system running at large scale. Using real traces gives us insights into what anomalies occur
in the current eventually consistent system, and what the benefits of stronger consistency
would be.

Amazon measured how often their eventually consistent Dynamo [19] system returned
multiple (concurrently written) versions of a shopping cart within a 24 hour period and saw
that 99.94% of requests saw one version. Multiple versions are possible because Dynamo



uses sloppy quorums for writes that may not always intersect. This type of divergence
is avoided by design at Facebook where there is a single master per shard that serializes
all updates. Our work measures a different aspect of eventual consistency by looking at
violations of many consistency models instead of divergence.

Probabilistically Bounded Staleness (PBS) [8] provides expected bounds on staleness
for replicated storage that uses Dynamo-style sloppy quorums. It parameterizes a model
based on replication delays and uses that to predict how often reads will return stale values
and how stale those values will be. Our work was partially inspired by PBS, which is limited
to sloppy quorums, is based on synthetic models, and only considers PBS k-staleness
and PBS monotonic reads. In contrast, our work looks at a production single-master-per-
shared system, is based on real measurements, and considers many principled and practical
consistency models.

Production System Consistency Models Several publications from industry have ex-
plained the consistency model their systems provide. We were informed by them and mea-
sure anomalies under most of these models. Amazon’s Dynamo [19] provides eventual con-
sistency, this is the model Facebook’s system provides globally. Google’s Spanner [17] pro-
vides strict serializability. We measure anomalies under linearizability, which is a special
case of strict serializability without transactions that provides a lower bound. Facebook’s
Tao system [14, 30] provides read-after-write consistency and Yahoo’s PNUTS system [16]
provide per-object sequential consistency (also called per-record timeline consistency). We
measure anomalies under both models.

7. Conclusion
This paper studied the existence of consistency in the results from Facebook’s TAO system
and took a first step towards quantifying the benefits of stronger consistency in a large, real-
world, replicated storage system. Our principled analysis used a trace of all requests to a
sample of objects to study local consistency models. It identified when reads in TAO return
results they would not in systems with read-after-write consistency, per-object sequential
consistency, and linearizability. One key finding was that TAO is highly consistent, i.e.,
99.99% of reads to vertices returned results allowed under all the consistency models we
studied.

Another key finding was that there were anomalies under all of the consistency models
we studied. This demonstrates that deploying them would have some benefit. Yet, we also
found that these anomalies are rare. This suggests the overhead of providing the stronger
models should be low for the trade-off to be worthwhile [2].

Our principled analysis used the relationship between consistency models to infer
bounds on the benefits of the non-local consistency models that we could not directly
study, e.g., sequential consistency. A key takeaway from this reasoning was that we could
determine lower bounds, but not upper bounds, on the benefit of consistency models that
include transactions, e.g., strict serializability or causal consistency with transactions. This
suggests work on providing stronger consistency should include transactions to maximize
its potential benefit.

Our practical consistency monitoring system tracks φ -consistency, a new consistency
metric that is ideally suited for health monitoring. We showed that φ -consistency is theo-
retically incomparable to traditional consistency models, and that it is useful for an early
warning and monitoring system. In addition, we gave insight into the effects of increased
programming complexity caused by weaker consistency by discussing bugs our monitoring
system has uncovered, and anti-patterns we teach developers to avoid.
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