
Web Analytics and the Art of Data Summarization

Archana Ganapathi and Steve Zhang
Splunk Inc.

{aganapathi, steveyz}@splunk.com

Abstract

Web Analytics has become a critical component of many
business decisions. With an ever growing number of
transactions happening through web interfaces, the abil-
ity to understand and introspect web site activity is criti-
cal. In this paper, we describe the importance and intri-
cacies of summarization for analytics and report genera-
tion on web log data. We specifically elaborate on how
summarization is exposed in Splunk and discuss analyt-
ics search design trade-offs.

1 Introduction

Modern websites contain a wealth of content to pro-
vide easy and efficient access to information about an
enterprise. These websites range from simple static html
to very sophisticated dynamic content. While hosting
such content comes with its own set of challenges, such
as resource provisioning and traffic anomaly detection,
an even larger challenge is to identify business insights
based on web access patterns. The most useful source of
such insight is the web access log. Mining these logs can
provide information on what happened, what to antici-
pate and how well things are working.

Many enterprises rely on web analytics for business
intelligence, i.e., to evaluate and optimize their business
decisions. Mining logs can help answer questions such
as what search terms are effective in directing traffic

to our website and how different are our visitor demo-
graphics now compared to last quarter. Such informa-
tion can help inform content layout and search engine ad
word campaigns. Furthermore, conversion funnels cre-
ated with such data, when overlaid with revenue metrics,
can inform strategic initiatives for an enterprise.

Web data, although immensely informative, can often
contain millions of events per second based on traffic vol-
ume and verbosity of logging. For example, logging ev-
ery click on a page drastically increases the number of
events generated compared to logging a single event per
pageview. Much of web analytics tries to extract useful
patterns and statistics periodically to generate regular re-
ports. Thus, although the data itself changes frequently,
the report-generating searches seldom change.

With high volumes of data, it can take hours to gen-
erate reports across data spanning large time windows.
If daily reports take hours to execute, very little time is
left to investigate anomalies and make changes in time
for the next roll out. Furthermore, many investigations
benefit from correlating web log data with alternate data
sources, such as application logs, system performance
metric logs or other databases. Performing such corre-
lations via ad hoc searches can be prohibitively expen-
sive if it requires rerunning the report’s search to account
for trends indicated by an additional data source. While
sampling large data volumes helps reduce the quantity
of data to search, it does very little to empower business
units with a complete perspective of trends and metrics.

We propose using data summarization to efficiently
search large quantities of log data. Data summarization
involves running a search at regular intervals to extract
information from the raw data. The results of this search
are stored in a summary index, against which subsequent
searches and reports can be run. Since the summaries of
the data are smaller, these searches execute much faster
than those run against the raw data. Furthermore, if
many different reports have common search elements,
the common subsearches can be summarized to make

1

andrew
Text Box
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
SLAML '11, October 23, 2011, Cascais, Portugal.
Copyright © 2011 ACM 978-1-4503-0978-3/11/10 ... $10.00.

multiple reports run efficiently. Even for the same re-
port, it is more efficient to run the report against varying
time granularities. For example, a daily summary of the
data would significantly speed up a weekly report on the
data as well as a monthly report on the data. As a result,
the computational cost of running a search over large
volumes of data is amortized over time by running the
search periodically on much smaller quantities of data.

In this paper, we examine data summarization applied
to the specific problem of log-based web analytics. We
store and perform analytics on web access logs using
Splunk, a platform to index and search semi-structured
time series data. We explain our use of Splunk to add
summaries on top of our web logs, and subsequently run
report-generating searches for web analytics.

The remainder of this paper resumes by comparing
various approaches to web analytics in Section 2 and de-
tails what information web logs contain in Section 3. In
Section 4, we explain in depth how data summarization is
implemented in Splunk and provide detailed examples of
searches, comparing their performance against summa-
rized and unsummarized data. We also discuss various
challenges involved when searching summarized data in-
stead of raw data. Section 5 provides a brief overview of
related work and Section 6 concludes.

2 Web Analytics Background

There are many well known commercial products for
performing web analytics. Rather than delve into de-
tailed feature lists for these product we thought it best
to focus on guiding principles for what data is used, how
much of it is stored and implications at retrieval time.

The first and foremost consideration is what data to
use for web analytics. Traditionally there have been two
schools of thought on what web data is used - i) javascript
tags per page, and ii) web access logs. The largest differ-
ence between these two data collection methods is the
degree of invasiveness of the approaches. Tools such
as Omniture [7] and Google Analytics [3] require in-
strumenting each web page with javascript code snip-
pets and mining events returned by the beacons for an-
alytics. While this approach allows fine-grained instru-
mentation of web pages, the downside is that instrumen-
tation can be invasive and cause significant slowdowns
in page load times. Furthermore, if an organization has
strict cyclical website releases, any analysis that requires
additional/new instrumentation must wait until the next
release cycle. Analytics that solely relies on javascript
beaconing also suffers from insufficient information to
perform historical trend analysis, especially if the web-
site, or even pages, have evolved over time. The second
school of thought solely relies on web server logs for an-
alytics. Google Urchin [4] is an example of a tool that

relies on web server log analysis. All pages are treated
equally, and no instrumentation is required for each page
addition or modification. While a significant advantage
of this approach is that it is easier to perform analytics as
far back as the logs are available, the challenge is in han-
dling changes in log format over time. Furthermore, with
dynamically generated web pages, various key-value pair
url parameters must be understood and mined although
their churn rate is high.

The ideal web analytics approach is to overlay log
data with custom javascript beacons to allow both fine-
grained instrumentation as well as historical analysis of
web access patterns. Additionally, any web analytics sys-
tem must adapt and account for changes over time and
not require re-indexing historical data to account for new
schema.

The second consideration for web analytics is how
much and what granularity of information is stored.
There are three options when considering what to store -
(i) all the raw data, (ii) samples of the data, or (iii) sum-
maries of the data. Ideally, one could store and search all
the raw data across all time. However, many web ana-
lytics products have hard bounds on how much data can
be stored at a time, or require a preprocessing step to
impose a specific schema to the data. The advantage of
sampling the data is that you can reduce the quantity of
data stored. In fact, Google Analytics imposes data sam-
pling when the traffic volume exceeds a certain thresh-
old. The major downside of data sampling is that spikes
and anomalies are often overlooked and difficult to de-
tect, especially with a coarse sampling granularity. The
third option, data summarization, addresses this issue by
maintaining summary statistics for various characteris-
tics of the data rather than the raw data itself, and is used
by commercial tools such as Omniture. Summarizing av-
erage traffic volume on a daily basis provides a signifi-
cant space saving compared to maintaining all the raw
data if the only goal is to calculate traffic volume. That
said, although problem detection is easier with summa-
rization than sampling, problem diagnosis is still diffi-
cult without the raw unsummarized data. Furthermore,
if the summaries are over a coarse enough time granular-
ity, depending on the metrics maintained (e.g. average
but not max), spikes may be smoothed out. This short-
coming can only be addressed by preserving the original
data and allowing drilldowns from the summaries as and
when necessary.

The third and often most impactful consideration is
how easy it is to retrieve the data and search or run
reports against it. There is a wide range of possibil-
ities for data retrieval that span from limited predeter-
mined metrics or reports (e.g. Google Analytics) all the
way to needle-in-a-haystack type fine-grained plain text
searches. With business needs evolving over time, it is

2

difficult to anticipate what metrics to track a priori and
many times, the need to overlay multiple datasets with
web access data greatly influences the decision. Since
time is often the only axis with which multiple datasets
can be interleaved, it is important to preserve temporal
patterns in as fine granularity as possible.

By nature of implementation, as described in [8],
Splunk handles unstructured and semi-structured data ef-
ficiently, and does not require specifying fields to extract
up front. We scope the remainder of this paper to web ac-
cess log analysis and use Splunk to summarize the data
while preserving drilldown capability to the raw data. We
also explain how to leverage Splunk for data summariza-
tion in addition to searching and reporting on web logs.
In the next section, we describe typical information in
web logs and useful ways to leverage the information.

3 What can my web logs tell me?

Web access logs contain a wealth of information about
traffic served by web servers. There are a variety of web
servers, such as Apache [2], IIS [5] and Nginx [6]. Each
of these web servers supports a variety of formats for
web logs generated. For example, Apache produces both
the access combined and access common formats, each
with a variety of customizable fields. Although the range
of possible web log formats is wide, there are several
required fields captured by all these formats. Figure 1
shows a sample snapshot from an Apache log file. Two
categories of information can be extracted from the logs:

1. Visitor demographics: Fields such as clientip tell
you the visitor’s ip address, which can be used to de-
termine geolocation of visitors. Fields such as user-
agent can indicate the browser or platform used by
site visitors.

2. Visitor activity and site usage patterns: Fields
such as uri path show what pages on your site are
visited. URL parameters can be used to determine
what content, if any, was downloaded. Additional
analytics on uri fields can show information on how
many pages people visit, in what order etc.

At a cursory level, this information helps the web op-
erations team better provision and manage resources to
adapt for load and popularity. However, a few transfor-
mations to the data can lead to business-level insights
such as marketing strategy, product positioning and rev-
enue channels. There are two transformations we identi-
fied as crucial to improving business insights:

1. Sessionize the data: Use clientip, useragent and/or
cookie as well as any temporal thresholds necessary
to define what entails a usage session. Metrics cal-
culated on sessions make it easier to characterize

user behavior and therefore expose content based on
common actions that lead to a conversion.

2. Coalesce external data sources: Often, web logs
alone do not tell you conclusive information, but
when interleaved with another data source, such as
a revenue database, can produce more concrete met-
rics. For instance, web logs can show what search
terms users searched for that caused search engines
to refer them to your website. While a count of vis-
its by search term produces a popularity metric, it
is more meaningful when you multiply this metric
with the amount spent on ad words for the corre-
sponding search phrases and keywords. Correlating
the popularity data with a marketing campaign cost
sheet will allow us to evaluate the return on invest-
ment of an ad campaign.

Splunk is an appropriate choice for performing such
analytics as its search language allows users to express
complicated analytics tasks effectively. Also, a major
advantage of Splunk is that it allows us to coalesce mul-
tiple data sources using either or both temporal and non-
temporal characteristics, making it much more feasible
to perform ad hoc introspection and analytics across mul-
tiple data sources. Figure 2 shows an example of a web
analytics dashboard built using Splunk searches.

We next explain how data summarization is imple-
mented in Splunk and discuss the intricacies of searching
the summary data.

4 Data Summarization in Splunk

Data summarization is crucial to sift through large vol-
ume of historical data in a timely fashion. Most ap-
proaches to Web Analytics, and Business Intelligence in
general, involve acting upon already summarized data.
Splunk leverages a MapReduce-like architecture on top
of its indexed data store to allow users to search and per-
form analytics on large quantities of data. For details on
Splunk’s architecture, we refer the reader to [8]. Since
Splunk is designed to effectively handle large volumes of
raw textual data, Splunk treats summary data much like it
treats raw data. Splunk queries can compute summaries
and render the output as text, allowing Splunk to index
and store that output in the same way it consumes the
original log data.

4.1 Summary Data Layout
Since Splunk has full control of how summary data is
rendered as text, we naturally chose a format that is the
easiest and most efficient for the system to process. Al-
though Splunk can interpret most common log formats

3

96.61.62.162 - - [10/Aug/2011:09:58:03 -0700] "POST /page/sign_up/download HTTP/1.1" 302 20 "https://www.splunk.com/index.php/sign_up/download" "Mozilla/5.0
(Windows NT 6.1; WOW64) AppleWebKit/535.1 (KHTML, like Gecko) Chrome/14.0.814.0 Safari/535.1" "96.61.62.162.1312995221070430"
157.55.116.33 - - [10/Aug/2011:09:58:07 -0700] "GET /wiki/index.php?title=Special:RecentChanges&hidemyself=0&days=30&hideliu=1&from=20101221055615&feed=atom
HTTP/1.1" 200 13004 "-" "msnbot/2.0b (+http://search.msn.com/msnbot.htm)._" "157.55.116.33.1312995487208430"
96.61.62.162 - - [10/Aug/2011:09:58:07 -0700] "GET /download HTTP/1.1" 302 199 "-" "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/535.1 (KHTML, like Gecko)
Chrome/14.0.814.0 Safari/535.1" "96.61.62.162.1312995221070430"

Figure 1: Example Apache web log lines for www.splunk.com

Figure 2: Example of dashboards built using Splunk searches against web log data.

series kb
audittrail 3230.477770
scheduler 2472.734764
splunkd 20566.588819
splund access 81.030276

Table 1: Table rendering of summary data

automatically (and with simple configuration changes
handle the rest of the long tail of textual data formats),
not all formats are equally easy to interpret. Similar to
other big-data technologies that rely on a divide-and-
conquer strategy for scalability (e.g. Hadoop), Splunk
prefers data that is denormalized. Splunk also automat-
ically extracts field value pairs separated by an equals
sign. As a result, summary data is stored in a format that
is easy for Splunk to interpret.

Figure 3 shows example summary text, rendered from
a report over a single day of the total KB of data indexed
by data type. Note that each row of the report is rendered
as a separate event, and properties of the search itself
(e.g. the search time range) are added to each event. This
denormalized format allows each summary row to be re-
trieved and used independently. Furthermore, it allows
the process of reducing summaries to get the final report
to be easily parallelized. Such parallelization is essential
for efficiently handling big data. The report is normally
rendered in the Splunk UI as a table similar to Table 1.

4.2 Searching Summarized Data

Splunk treats summary data the same as raw log data.
Essentially, whether a piece of data represents a sum-
mary or a raw event log is opaque to Splunk. This is
advantageous for several reasons. First, because time

is treated as a first-class concept within Splunk, retriev-
ing summaries for a specific timerange is very efficient.
Second, since everything is indexed, we can quickly re-
trieve specific summary entries, such as those that per-
tain to a given URI or username, without having to re-
trieve all summary entries that may have been gener-
ated with those entries. Furthermore, a multitude of op-
tions for configuring and managing the lifecycles and ac-
cess controls of raw data are made available for sum-
mary data. For example, older data can be moved to a
slower, cheaper storage option after it reaches a certain
age or once some amount of disk space is used. This
consistency in treatment of raw and summary data does
present some additional challenges. Mainly, a user of
the system must specify exactly how the summary data
is to be generated and how it can be used to produce a
final report. However, this apparent disadvantange also
presents a silver lining for advanced users, who are given
ultimate control in how summaries are generated and re-
duced. This flexibility is especially important when han-
dling data that does not summarize trivially, such as com-
puting distinct counts for a high cardinality field. The
next section describes common summarization pitfalls.

4.3 Summarization Challenges/Trade-offs

Although the common case of summarizing data
with sufficient statistics over a time period is fairly
straightforward, there are exceptional cases where the
summarization leads to an incomplete or incorrect view
of the data. Below, we discuss four such issues in the
context of web analytics.

The cardinality curse:
Picturing the data in a table format, summarization

4

!"#$%#&!$$'!!(!!(!!)'*+,-./*+.0*/12$%!34565!!7!!!)'*+,-./89.0*/12$%!6!%56!!7!!!)'*+,-.:18;<=.0*/12$%!6!64"$&7544)'>?2@%&%!753333!@)':1;*1:28AB*00;8*C'
!"#$%#&!$$'!!(!!(!!)'*+,-./*+.0*/12$%!34565!!7!!!)'*+,-./89.0*/12$%!6!%56!!7!!!)'*+,-.:18;<=.0*/12$%!6!64"$&7544)'>?2@&53&73%53"5@)':1;*1:2:<=1BAC1;'
!"#$%#&!$$'!!(!!(!!)'*+,-./*+.0*/12$%!34565!!7!!!)'*+,-./89.0*/12$%!6!%56!!7!!!)'*+,-.:18;<=.0*/12$%!6!64"$&7544)'>?2@&!D""7D666$4@)':1;*1:2:ECA+>B'
!"#$%#&!$$'!!(!!(!!)'*+,-./*+.0*/12$%!34565!!7!!!)'*+,-./89.0*/12$%!6!%56!!7!!!)'*+,-.:18;<=.0*/12$%!6!64"$&7544)'>?2@6$7!%!&3"@)':1;*1:2:ECA+>B.8<<1::'

'

Figure 3: Example Splunk summary data

helps reduce the number of rows in the table. However,
based on the dimensionality of various columns in the ta-
ble, the number of rows removed by summarization may
not be substantial. For example, an hourly summary con-
taining the number of hits by http status code compresses
the data into 10s of rows per hour (i.e. at most one per
status code). However, a count by clientip does little
to reduce the data as the number of possible clientips is
large compared to the number of status codes.

The impact of summarization is most visible when
searching the summaries to compute statistics. With
each additional data dimension on which statistics are
calculated, there is a combinatorial increase in the
cardinality of data searched. Thus, it is important to be
judicious when deciding how to summarize the data.
A rule of thumb is to maintain separate summaries for
metrics across unrelated columns rather than a single
summary with data pivoting multiple columns.

Border patrol:
Summarizing over regular intervals is practical for

most metrics. For example, calculating and storing total
hits on an hourly basis allows you to quickly aggregate
hits on a daily basis by summing over the hourly
totals. However, summarizing sessionized data can
introduce inaccuracies when computing statistics. For
instance, a user session that starts at 10:55am and ends
at 11:05am would be incorrectly summarized by the
hourly summaries at 11am and at noon. Two solutions
to clean up these summaries are (i) only summarize
sessions after the sessions have definitively ended, or (ii)
periodically make a pass over the summarized sessions
to perform any clean-up to merge sessions straddling
multiple summary windows. The downside of option (i)
is that searches to populate the summary index would
have to span more than the last hour of data, which could
prove expensive. The downside of option (ii) is that any
automation to periodically perform cleanup will have to
propagate the clean up to searches/summaries relying
on the summarized data. The cost of such cleanups
far outweighs the disadvantages of double-counting a
handful of “border-straddling” sessions.

Caveats of statistics:
While the idea of searching summaries instead of

searching the raw data is appealing and often more ef-
ficient, we thought it important to provide some words

of caution. Typically, summaries are used to speed up
the computation of averages and counts over time. There
are several pitfalls the user must avoid when perform-
ing statistics using summarized data. For example, to
compute averages in a final report, users must be aware
that their summaries must include sums and counts rather
than averages. They must also be explicit in the query
about how the sums and counts are to be combined to
compute the averages. Splunk mitigates this problem
by adding commands to its query language that simplify
many common cases.

One should avoid storing averages and distinct counts
as summary fields to avoid potential miscalculation of
these metrics at search time. For instance, to calcu-
late average number of hits per visitor over 5 hours
using hourly summaries, storing averages per hour and
calculating an average over the 5 hourly summaries
would produce the wrong result. Instead, it is more
accurate to store the total number of hits per visitor as a
multivalue list and then compute the average at search
time. Splunk exposes some commands, as discussed in
Section 4.2, to simplify several common case statistics
that are frequently summarized, such as average and top.
However, it is important to carefully balance trade-offs
in the more complicated scenarios such as calculating
distinct counts, where the user has many options for
applying approximation heuristics to trade accuracy for
efficiency.

Resurrecting pre-summarized data:

An important issue for log analysis is exposing appro-
priate drilldown behavior from summarized data. For ex-
ample, if a particular time period shows a spike in traffic,
we must drilldown to the original unsummarized data to
search for potential triggers or culprits causing the spike.
However, if we have multi-level summaries, it may be
expensive for the drilldown to search the entire set of
events coerced into the summary. That said, if the orig-
inal pre-summarized data is discarded, for instance to
save disk space, there is no perceivable method to zoom
in further for understanding what caused the spike.

With these caveats in mind, we next show examples of
web analytics searches and evaluate their performance
against summarized and unsummarized data in Splunk.

5

4.4 Summarization Effectiveness
In this section we provide examples of composing
Splunk searches against raw web logs as well as sum-
marized versions of the log data. We compare the perfor-
mance of searches towards summarized and unsumma-
rized data and explain trade-offs between the approaches.

4.4.1 User session summarization search

One of the most insightful operations on web log data
is to sessionize events and perform analytics on sessions.
To this extent, we explain how to construct a user session
in Splunk. We subsequently examine the performance
of running searches against summarized and unsumma-
rized user session data. Splunk automatically extracts
fields for Apache access common and access combined
log formats as well as IIS formats; for the purpose of this
example, we examine our Apache web access logs.

A user session can be defined using the search below:

[get user sessions]
source = my access combined log status = 200
| transaction clientip maxpause = 1h

The first part of the search specifies a path to the file
the events must be from and further constrains it to events
with status=200. Apache events with status=200 are then
piped to the next stage of the search, which uses the
transaction command to sessionize events with the same
clientip such that there is no more than an hour gap be-
tween adjacent events in a session. Note that the trans-
action command also supports specifying a maxspan pa-
rameter to specify the maximum window size of a ses-
sion, and startswith and endswith parameters to use non-
temporal boundaries for a sessions.

To demonstrate searching against sessionized data and
understand the performance advantages of summariza-
tion, we focus here on a search to breakdown the number
of pages visited during a user session. The search run
against the raw data is as follows:

‘get user sessions‘ | eval user type =
case(eventcount = 1, “bounce”,
eventcount <= 5, “2− 5 pages”,
eventcount <= 10, “6− 10 pages”,
eventcount > 10, “ > 10 pages”)

| stats count by user type

The sessionization search is saved as a macro called
get user session and used in the above search. The ses-
sionized events are piped to add a user type column that
buckets users into 4 categories based on the eventcount
per session. Finally, we calculate a count per user type.

To populate a summary index with user session data,
we run the search below:

‘get user sessions‘ | stats list(uri path) as uri path,
max(duration) as myduration,
max(eventcount) as myeventcount,
values(eventtype) as myeventtypes,
min(req time) as earliesttime,

max(req time) as latesttime by clientip, time

This search extracts the necessary and sufficient statis-
tics from the user sessions and stores them in a summary
index so various searches can leverage this information.
For the purpose of this experiment, we configured this
search to run on an hourly schedule, searching and sum-
marizing the previous hour of data and storing it in a
summary index we named summary hourly. To run our
search to calculate pages per session based on the sum-
marized data, we simply replace the ‘get user session‘
macro with our summary index name as follows:

index = summary hourly
| eval eventcount = myeventcount
| eval user type =
case(eventcount = 1, “bounce”,

eventcount <= 5, “2− 5pages”,
eventcount <= 10, “6− 10pages”,
eventcount > 10, “ > 10pages”)

| stats count by user type

Furthermore, we can populate a daily summary index
based on scheduled searches towards the hourly sum-
mary index as follows:

index = summary hourly
| transaction clientip maxpause = 1h
| stats list(uri path) as uri path,
sum(myduration) as myduration,
sum(myeventcount) as myeventcount,
values(myeventtypes) as myeventtypes,
min(earliesttime) as earliesttime,

max(latesttime) as latesttime by clientip, time

Here, we re-transact on the data from the hourly
summary to handle the border conditions where a ses-
sion straddles an hour boundary. The subsequent
search against the daily summary is the same as the
search against the hourly summary, except with sum-
mary hourly replaced by summary daily.

The summary index populating searches are scheduled
to run periodically and any searches against these sum-
maries can be run in an ad hoc manner. To demonstrate
the performance implications of summarization, we ran
the page visits per session search against the unsum-
marized data, against the hourly summaries and against
daily summaries for www.splunk.com web logs spanning
January 1, 2011 to May 31, 2001. The results are sum-
marized in table 2. There is an 80% improvement in
search runtime when we search against the hourly sum-
mary compared to the raw unsummarized data. How-
ever, there is only a 5% improvement when using the

6

summary granularity time (hr:min:sec)
unsummarized 01:38:40
hourly summary 00:08:11
daily summary 00:07:47

Table 2: Comparison of search performance for calculating
pages visited per session against unsummarized data, hourly
summaries, and daily summaries

daily summary over the hourly summary. Here, very few
sessions compress down in the daily summaries, likely
because we define maxpause to be one hour.

We also evaluate the performance of a second search,
that calculates the top landing page per session, towards
the same summary indexes. The landing page search
against the raw data is constructed as follows:

‘get user sessions‘ | search eventcount > 1
| eval landing page = mvindex(uri path, 0)

| fields landing page | top landing page

Sessionizing the data by clientip produces a list of uris
visited during the session in the uri path field. The seg-
ment that calculates the landing page uses the mvindex
command, which allows you to access a specific element
of a multivalue list. The same search against the hourly
summary index is expressed as:

index = summary hourly
| makemv delim = “ ” uri path
| search eventcount > 1
| eval landing page = mvindex(uri path, 0)

| top landing page

The addition of the search segment with the makemv
command is meant to ensure that the uri path field is
treated as a multivalue field where each element in the
uri path list can be accessed separately. Note that these
searches can be used to calculate top exit page by using
mvindex(uri path,-1) to identify the last element visited
in the uri sequence.

Table 3 compares the performance of running the
top landing page search against unsummarized data, the
hourly summary and the daily summary. Similar to the
page visits per session search, we see an order or magni-
tude improvement in performance when using the hourly
summary instead of the raw unsummarized data. Again,
there is little gain in using daily summaries over hourly
summaries since per-user-session data does not compress
well on a daily granularity.

We can optimize what we summarize and store by
limiting the summary statistics to a single search. For
example, to maintain a summary index for calculating
page visits per session, we only need to store a count by
user type in the hourly and daily summaries. Similarly,

summary granularity time (hr:min:sec)
unsummarized 01:36:46
hourly summary 00:16:00
daily summary 00:15:49

Table 3: Comparison of search performance for calculating
top landing pages against unsummarized data, hourly sum-
maries, and daily summaries

a separate summary for count by landing page can be
used to feed a top landing page search. Of course, the
drawback of such an optimization would be the space
overhead of an additional summary as well as the lack
of reusability of the summary for other user-session-
specific searches.

4.4.2 Web traffic by uri and status

In the next example, we examine the advantage of con-
straining a summary to cater to a specific search rather
than an exhaustive set. Specifically, we focus on a search
to break down web traffic by url and status code and com-
pare the performance of using a single summary for both
good and bad status codes versus separate summaries for
the two categories. We populate our hourly summary in-
dex for web traffic as follows:

eventtype = web− traffic− external
| stats count as “hits”,
min(time) as earliest hit,

max(time) as latest hit by uri, status

The search is run every hour on the previous hour’s
data. To clarify the first segment of the above search,
an event type is basically a predefined search we can run
to tag the events. In this case, the web-traffic-external
eventtype tag is defined to capture all events from our
Apache logs and limit results to web traffic from non-
Splunk sources (i.e. filter out internal clientips). The
daily summary index is populated based on the hourly
summary index with the following search run every day
over the previous day’s data:

index = summary hourly | stats sum(hits) as hits,
min(earliest hit) as earliest hit,

max(latest hit) as latest hit by uri, status

We search against summary hourly or summary daily
to calculate the number of hits per uri by status category
as follows for any given time period:

index = summary hourly | eval status =
toString(floor(status/100)) + “xx”

| stats sum(hits) as “totalcount” by uri, status

Table 4 shows the performance of running the above
search on 5 months of www.splunk.com web logs, from

7

combined good and bad status good status bad status
summary granularity time (hr:min:sec) time (hr:min:sec) time (hr:min:sec)
hourly summary 04:05:35 03:41:00 00:16:56
daily summary 01:21:06 01:16:36 00:04:57

Table 4: Comparison of search performance for calculating number of hits by uri and status using a single summary for good and
bad status codes vs using separate summary indexes for good and bad status codes.

January 1, 2011 to May 31, 2001. There is almost 4x
performance improvement from using daily summaries
over hourly summaries. It is common for web analyt-
ics reports to examine successful traffic separately from
traffic that resulted in bad status codes. Thus, to make the
searches more realistic and to understand the impact of
table cardinality on search performance, we performed
an additional experiment to create separate summaries
for traffic with good status codes (i.e. 200s) and traffic
with bad status codes (i.e. 300s to 500s). The search to
populate the hourly summary for good traffic included
a constraint on the raw data specifying status >= 200
and status < 300. The search to populate the hourly
summary for the bad traffic included a constraint specify-
ing status >= 300. We created corresponding separate
daily summaries for good and bad traffic.

Based on performance results in Table 4, it is benefi-
cial to separate out bad traffic into its own summary in-
dex. Searching for bad traffic against the combined good
and bad traffic single summary table would require post
processing to select the bad status codes, adding time in
computing statistics for the good status codes as well.
The performance gain isn’t as significant for good sta-
tus codes, primarily because the number of good status
events is orders of magnitude more than the number of
bad status events. Thus, it is important to try to min-
imize the cardinality of data summaries by partitioning
non-overlapping search data when possible.

5 Related Work

There is much prior art in data summarization that we
embrace and extend in Splunk. The database community
has volumes of research on creating materialized views,
which are essentially summary tables for the raw data
[10]. The concept has even extended to modern MapRe-
duce frameworks, especially Hive, which is noted for
its SQL-like interface for MapReduce that enables data
summarization among other features [1]. While both tra-
ditional RDBMS and Hive expose summarization, they
both suffer the limitation that the data ingested must be
structured and have a pre-specified schema to form the
tables. As a result, they are not convenient for data
sources that change over time, as is the case with web
logs. Recent work on summarization for log data focused
on reducing the data by grouping events into classes; this

granularity of summarization is not conducive to obtain-
ing trends and statistics for the web log data.

Much research has gone into analyzing web logs and
detecting anomalous behavior [9, 11]. While a majority
of this work relies on statistical machine learning tech-
niques, a certain degree of log preprocessing or parsing
is inevitable before the algorithm can consume the data.
As described in [8], Splunk simplifies data munging and
preprocessing, enabling anomaly detection via compar-
ing summarized metrics over time rather than mining vo-
luminous raw data of high-traffic production websites.

6 Conclusion

In this paper, we presented an approach to web analyt-
ics that relies on data summarization. We demonstrated
the expressiveness of the Splunk search language for cre-
ating summary indexes and efficiently reporting on web
log data. We strongly believe that Splunk immensely fa-
cilitates web-related business and operational insights.

While we demonstrated feasibility and performance of
analytics with multi-level summarization, we have yet to
assess what user interfaces are required to simplify sum-
marization. It appears desirable to perform summariza-
tion with limited user interference, perhaps only to spec-
ify summarization granularity. However, we must sys-
tematically understand such trade-offs based on the vol-
ume of web log data per and the resource requirements
for generating the summaries for each environment.

The uses for Splunk are much broader than web ana-
lytics. Web logs are just one example of business-critical
time series data. There are many other equally valuable
datasets that are commonly mined for insights. Some ex-
amples include call detail records and CRM data. Splunk
already allows users to seamlessly index and search these
semi-structured and unstructured time series data and
temporally overlay heterogeneous datasets.

One significant area of future work includes exploring
data summaries as direct input for machine learning al-
gorithms. Currently, the summaries we generate are con-
venient for human readable reports. As Splunk moves
more towards a data preprocessor for machine learning
algorithms, it is equally important to evaluate alternate
summary data layout and retrieval mechanisms for ma-
chine consumers. We believe this is a promising area of
future work that would benefit data mining and analytics.

8

References
[1] Apache Hive Project. http://wiki.apache.org/hadoop/Hive.

[2] Apache HTTP Server Project. http://httpd.apache.org.

[3] Google Analytics. http://www.google.com/analytics.

[4] Google Urchin. http://www.google.com/urchin.

[5] IIS. http://www.iis.net.

[6] NGiNX. http://wiki.nginx.org.

[7] Omniture Site Catalyst.
http://www.omniture.com/en/products/online analytics/sitecatalyst.

[8] BITINCKA, L., GANAPATHI, A., SORKIN, S., AND ZHANG,
S. Optimizing data analysis with a semi-structured time series
database. In Proceedings of the 2010 workshop on Managing sys-
tems via log analysis and machine learning techniques (Vancou-
ver, Canada, 2010), SLAML’10, USENIX Association, pp. 7–7.

[9] BODIK, P., FRIEDMAN, G., BIEWALD, L., LEVINE, H., C, G.,
PATEL, K., TOLLE, G., HUI, J., FOX, O., JORDAN, M. I., AND
PATTERSON, D. Combining visualization and statistical analysis
to improve operator confidence and efficiency for failure detec-
tion and localization. In In Proceedings of the 2nd IEEE Inter-
national Conference on Autonomic Computing (ICAC 05 (2005),
IEEE Computer Society, pp. 89–100.

[10] HELLERSTEIN, J. M., AND STONEBRAKER, M. Readings in
Database Systems: Fourth Edition. The MIT Press, 2005.

[11] LI, W., AND GORTON, I. Analyzing web logs to detect user-
visible failures. In Proceedings of the 2010 workshop on Man-
aging systems via log analysis and machine learning techniques
(Vancouver, Canada, 2010), SLAML’10, USENIX Association,
pp. 6–6.

9

