
Mining large distributed log data in near real time

Stefan Weigert
TU Dresden

Dresden, Germany
stefan@se.inf.tu-

dresden.de

Matti Hiltunen
AT&T Labs Research

180 Park Ave.
Florham Park, NJ, USA

hiltunen@research.att.com

Christof Fetzer
TU Dresden

Dresden, Germany
christof@se.inf.tu-

dresden.de

ABSTRACT
Analyzing huge amounts of log data is often a difficult task,
especially if it has to be done in real time (e.g., fraud de-
tection) or when large amounts of stored data are required
for the analysis. Graphs are a data structure often used in
log analysis. Examples are clique analysis and communities
of interest (COI). However, little attention has been paid
to large distributed graphs that allow a high throughput of
updates with very low latency.

In this paper, we present a distributed graph mining sys-
tem that is able to process around 39 million log entries per
second on a 50 node cluster while providing processing laten-
cies below 10 ms. We validate our approach by presenting
two example applications, namely telephony fraud detection
and internet attack detection. A thorough evaluation proves
the scalability and near real-time properties of our system.

Keywords
Log processing, distributed graphs, COI

1. INTRODUCTION
The volume of log data in complex distributed systems can

become very large due to the amount of data generated by
individual nodes (e.g., a network router generating netflow
data) as well as the number of nodes in a complex system
(e.g., 100K+ compute nodes) each generating log data. Pro-
cessing and analyzing this data to identify events of interest
or to store the data for user initiated queries becomes a chal-
lenging task. This task is particularly challenging if the data
needs to be analyzed in real time, for example, applications
such as fraud detection require new entries in the log files to
be analyzed in less than a second. Given the volume of data,
it is typically not possible to store all the required data in
the memory of one processing node.

Graphs are used in various applications to process log-
data. Examples include clique analysis [11], query-log anal-
ysis for search-engines [9], graph databases [20], pattern

©

�

�

�

�
�

�

�

�

	
��
�

	
��
�

�

�

�

�
�

�

�

Figure 1: Distributed graph

matching [21], and fraud detection [7, 19]. Graphs can gen-
erally be used to store data representing interactions be-
tween entities such as phone calls between calling and called
phone numbers, Internet communication between two end
points (each defined by IP address and port number), or
interactions between software components (e.g., call graph).

In this paper we will demonstrate that large graphs can
be updated and queried in near real time by distributing
the graph onto multiple nodes (i.e., physical machines). We
show that the space complexity for the distributed graph is
linear.

Our contributions can be summarized as follows:

1. We construct dynamic, distributed graphs with linear
space complexity.

2. We make these graphs easily accessible for queries.

3. The system scales linearly with the number of process-
ing nodes.

4. We avoid unnecessary data copies by using the log-
generating nodes for processing.

The rest of the paper is structured as follows. We de-
scribe the approach and architecture in Section 2, followed
by two example applications (telephony fraud detection and
internet attack detection) in Section 3. We evaluate the
performance of the system with these example applications
in Section 4. Section 5 provides a survey of related work,
followed by conclusions in Section 6.

2. APPROACH AND ARCHITECTURE

2.1 Distributed graph
We propose a distributed, dynamic graph structure as de-

picted in Figure 1 as means for log processing. The graphs
are directed, potentially cyclic, and do not need to be fully

1

andrew
Text Box
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
SLAML '11, October 23, 2011, Cascais, Portugal.
Copyright © 2011 ACM 978-1-4503-0978-3/11/10 ... $10.00.

connected (i.e., there may be a vertex v1, not reachable from
a distinct vertex v2). With this structure, correlations and
relationships can be expressed easily. For example, the ver-
tices A, B, C, and D could be physical machines, sending
error messages X, Y, and Z to each other. This informa-
tion could be used to determine how an error propagated
through a complex system.

The graphs consist of a set of vertices V and a set of
edges E: G = (V, E) with E ⊆ {(v1, v2) | v1, v2 ∈ V }. Each
edge e ∈ E has a weight w(e) ∈ R and can store any kind
of additional information (e.g., the different ports used, for
every observed communication between v1 and v2).

2.1.1 Sub-graph construction
To distribute such a graph onto multiple nodes (i.e., phys-

ical machines or separate address spaces), we construct for
each vertex v ∈ C, a sub-graph Gv = (Vv, Ev) with:

Vv = {va ∈ V | ∃e ∈ E ∧ e = (v, va)} ∪ {v}
where the set of vertices C contains only those vertices v ∈
V which have at least one outgoing edge. The new set of
vertices Vv now contains all vertices va that are connected
with an edge from v to va, as well as v itself. To construct
the set of edges Ev we add all outgoing edges e ∈ E of v:

Ev = {e ∈ E | ∃v1 ∈ V : e = (v, v1)}
The vertex v is now called the center vertex of the sub-
graph Gv. To determine on which node to store sub-graph
Gv, we apply a hash-function h to the center vertex v and
compute the modulo of h(v) with the number of available
nodes. Since each node has a unique id, which starts at
0, the result of the modulo operation equals the unique id
of the node on which to store Gv. For example, in Fig-
ure 1, h(A) mod 2 = 0 matches the unique id of node 0 and
h(B) mod 2 = 1 matches the unique id of node 1.

2.1.2 Space complexity
Because the sum of all |Ev| is equal to |E|, the space

needed to store all edge information is not changed by the
sub-graph construction. The transformation does, however,
increase the space needed to store the vertices, that is, the
sum of all |Vv| is greater or equal to |V |. This is because of
the vertices that are, at the same time, center-vertices and
part of other sub-graphs, such as vertex B in Figure 1.

The multiset of vertices in the distributed graph V D =U
v∈C Vv increases linearly with the number of edges in each

sub-graph:

|V D| =
X

v∈C

|Vv| =
X

v∈C

(|Ev| + 1)

If the number of outgoing edges for each vertex v ∈ C is
limited by a constant K, then |Ev| + 1 can be substituted
with K + 1 and the overhead is constant:

|V D|
|V | ≤

P
v∈C(K + 1)

|V | =
|C| · (K + 1)

|V |
In the worst case, all vertices in V have outgoing edges.
Hence, C is equal to V and thus

|V D|
|V | ≤ |V | · (K + 1)

|V | = K + 1

Note, that the space complexity of the distributed graph is
O(|V |), independent of how many physical nodes are used.

Figure 2: Distributed graph architecture

Our algorithm maintains two graphs for every center ver-
tex. One contains the information of all the data received
within a given window (e.g., the last 100 updates for each
center-vertex) and the other one stores the summary infor-
mation of the complete data that has been received so far.
The latter uses a top-k algorithm and the former its win-
dow size to limit the number of outgoing connections per
vertex to K. We show an example of how to use and merge
both graphs in Section 3. Both graphs are bounded in size.
Therefore, the amount of data that is stored per node is
bounded by the size of the two graphs times the number
of center vertices, stored on that particular node. An al-
gorithm for reconstructing the original graph G is given in
Section 2.4.

2.2 Processing architecture
Figure 2 depicts the architecture of the distributed graph

processing. The log data can be read from any socket. This
includes disks, as well as TCP-connections and Unix-pipes.
The parse component is used to extract and convert the nec-
essary information from the log data. For example, the parse
component can be used to construct a numerical represen-
tation of a human-readable IP address, such as “141.30.2.2”.

Subsequently, the parse component generates a new event
and sends it downstream to the graph components. All com-
munication in our system is event based. Events are key-
value pairs. The hash of the key of an event is used to route
it to the responsible downstream node. For example, if there
are two graph components, then all events with even hashes
of their key will be routed to the first, and all events with
odd hashes of their key will be routed to the second graph
component. The processing is also coupled to events and
their keys. If an event with key k is received, only the sub-
graphs whose center vertex corresponds to k will be read or
written. Thus, events with different keys can be processed
in parallel, using multiple threads.

Considering the example from Figure 1, if we want to send
an event to update the sub graph with the center vertex B,
our event has to have the key B. We will show how we chose
the keys for our two example applications in Section 3.

Since the system uses back pressure, the processing speed
of each component is not only limited by itself but also by
all downstream components. For example, the parse compo-
nents cannot send more events than the graph components
can process.

2

2.3 Simple queries
The graph maintained by the graph components can be

accessed and queried. There is no limit on the number of
queries running simultaneously. Moreover, each query it-
self may be distributed using the same concepts as the dis-
tributed graph for communication and parallelization. Since
the routing scheme is static, it is straight forward to com-
pute where the graph of a specific item can be found.

The query interface provided by the graph components
is based on events. So called control messages can be sent
to request the graph of a given item and will be answered
with a response message. Algorithm 1 shows how a query is
performed.

Algorithm 1: Query a single sub-graph

input : vertex
output: sub-graph

begin function query

index = hash(vertex) % ngraph nodes;
control message m;
m.vertex = vertex;
// emits the event and waits for the answer
sub graph = emit event(index, m);
return sub graph

end

2.4 Multi-level queries (transitive closures)
To obtain the transitive closure of a sub-graph or even the

complete graph, the previous algorithm has to be repeated
recursively. Algorithm 2 shows this in pseudo-code. The
algorithm takes the initial vertex and the desired depth as
inputs. Initially, the set visited and the graph are initial-
ized to empty sets. First, we check if the sub-graph of a
vertex has already been processed. This ensures each vertex
is included only once in the output. Thereafter, we check
for each adjacent vertex in the sub-graph if it has already
been processed, and if the remaining search depth is still
greater than 0, we request the sub-graph of the current ad-
jacent vertex. The result is the union of all the collected
subgraphs.

3. EXAMPLES
In the following, we will provide two use-cases that we

have investigated using our approach. The first is a fraud de-
tection application for the telephony domain and the second
is an attack detection application for the internet domain.
Both examples use community of interest graphs (COI) [7].
Algorithm 3 shows how the COI graph is constructed. We
first add the received entry to the window, which is the first
graph we store for every center vertex. If more than a pre-
defined number of connections have already been added to
the window, the window is merged with the (potentially not
yet) existing COI, which is the second graph we store for ev-
ery center vertex (topk). To this end, the application needs
to define an attribute by which to measure the weight of
the connections. With that, the weight (sum of all the at-
tribute values) in the window, multiplied with a damping
factor 1 − θ, are added to the weight (multiplied with θ) in
the COI. Since θ = 0.85 in both examples, the influence of
the new connections in the window is damped. Thereafter,
the weights of all contacts in the COI that have not been

Algorithm 2: Transitive closure of a COI.

global visited = ∅;
global graph = ∅;
input : vertex, depth
output: graph

begin function closure
if vertex ∈ visited then

return ∅
end
visited.insert(vertex);

// the query function is shown in algorithm 1
sub graph = query(vertex);
graph = graph ∪ sub graph;
if depth > 0 then

foreach adjacent vertex ∈ sub graph do
if adjacent vertex ∈ visited then

continue
end

sub graph = closure(adjacent vertex, depth - 1);
graph = graph ∪ sub graph;

end
end

return graph
end

Figure 3: Community of interest example for an
anonymized phone number

observed during the current window are decayed by multi-
plying them with θ. To keep the COI at a maximum size of
K, we remove the weakest link until the size of the COI is
smaller or equal to K. Finally, the window and the counter
are reset.

3.1 Telephony application
In this application, we parse call-detail-records (CDRs)

that contain various information for each telephone call. The
CDRs are stored in a text file with each line representing
one CDR. The parse component extracts the caller, callee,
and call-duration information from each CDR. Thereafter,
two events are sent to the graph component: one with the
caller’s hash as the key and one with the callee’s hash as the
key. Each event message is about 24 bytes. In the graph
component, we construct a sub-graph for each event’s key,
i.e., there is a sub-graph for each phone number observed
in the CDRs—be it the caller or the callee. This approach
is similar to [7], with the exception that we dynamically
update each sub-graph individually, instead of updating the
complete graph after a fixed time interval.

3.1.1 Graph
Figure 3 shows the top-k sub-graph of a phone number.

3

Algorithm 3: Top-k graph construction

input : (window, topk, counter, new contact, attribute)
output: None

begin
// Save new contact in window
window[new contact].weight += attribute;
counter++;
// Merge window into top-k after N events
if counter > N then

foreach contact ∈ window do
// θ has a value of 0.85 in our analysis.
ww = window[contact].weight;
tw = topk[contact].weight;
topk[contact].weight = 1 - θ * ww + θ * tw;

end
// Decay weight of old connections
foreach contact ∈ topk ∧ contact /∈ window do

topk[contact].weight = θ * topk[contact].weight;
end

// Copy additional information I which can be
saved with the edges

// Remove the weakest links
while |topk| > K do

remove weakest link from(topk);
end

window = ∅;
counter = 0;

end
end

The adjacent vertices are other phone numbers that have
either been callers or callees with respect to communication
with the center vertex. Edges are weighted by the sum of all
call durations of each communication between two vertices.
The graph in the figure was obtained using the simple query
function (see Algorithm 1). All links were stored into a file
and then rendered using the neato tool, contained in the
graphviz [10] package.

3.1.2 Social fingerprinting
One application of communities of interest is social finger-

printing. The idea is that an individual can be identified,
with a certain probability, using only its community of in-
terest. The probability depends highly on the size of the
COI. Research has shown that a COI of size 9 is sufficient
[7]. This, in turn, can be used to check whether the same
individual lies behind two or more different numbers. For
example, if we have a set of known fraudsters, we can check
if the COI of a suspicious customer is sufficiently similar
(e.g., 90%) to one of the stored fraudster’s COIs. This check
needs to be done in real time, since action must be taken
(e.g., block a call) before the actual call is completed.

Implementing such a fingerprint query on top of our graph-
mining system is straight forward and shown in Algorithm 4.
First, we query the COI of the number in question. Then
we construct the set intersection for the received COI with
each of the stored fraudster’s COIs. If at least one of the
intersections is as large as 90% of the COIs size, a possible
fraudster has been found and a fraud analyst should further
investigate the case.

3.2 Netflow application
In this application, we parse netflow logs, recorded by

routers, which contain various information about internet

Algorithm 4: Fingerprinting

input : suspect number
output: alarm

begin
suspect coi = query(suspect number);
foreach coi ∈ fraudster cois do

intersection = coi ∩ suspect coi;
if |intersection| >= 0.9 ∗ |coi| then

return true
else

return false
end

end
end

based communication connections. Each netflow entry is a
line in a text file. We use the parse component to extract the
source-ip, target-ip, source-port, target-port and number of
transferred bytes from each netflow entry. Thereafter, an
event, representing one netflow entry, is sent to the filter
component. Each event message is about 32 bytes.

The filter component is a new component, introduced for
the netflow application, to discard unimportant traffic before
it reaches the graph component. The decision to discarded
an event depends on various factors, such as the ports used
and source and destination IPs. A detailed description of
the filter component is out of the scope of this paper, but
fundamentally we use this component to filter traffic that
is not related to the community or uses trusted protocols.
Finally, if the original event was not filtered, the filter sends
an event to the graph components using the source-ip’s hash
as the key.

With that, we construct a sub-graph for each unfiltered IP
address. We use the number of bytes transferred to deter-
mine the weight of each edge and also store the used ports
as additional information for each edge.

3.2.1 Graph
Figure 4 shows a top-k sub-graph as it is used in the inter-

net attack detection application. The center vertex depicts
an IP address that connects to various members of the com-
munity “A” and three members of the community “B”. We
omit the real community names for privacy reasons. The
edges depict communication between the two vertices and
the diamond boxes depict the weights of the connections.
These weights are determined by the sum of the transferred
bytes by each communication between two vertices. While
not shown in the figure, the edges also contain every source-
and destination-port combination ever used by the two ver-
tices. The graph in the figure was obtained using the simple
query function (see Algorithm 1).

3.2.2 Security incident detection
The netflow application is used to detect stealthy security

incidents by utilizing information across a community of or-
ganizations (e.g., banking industry, energy generation and
distribution industry). A stealthy attack is, for example, an
attack which only targets one or few machines in each orga-
nization and does not transfer large volumes of information
at once. Consequently, it may not be detected by any stan-
dard mechanisms that checks in- and out-going traffic for
unusual behavior.

The basic idea of our community-based security incidence

4

Figure 4: Community of interest example for an
anonymized IP address

is to identify IP addresses outside the community that com-
municate with a number of different organizations in the
community. Typical examples of security threats that can be
detected using this approach include botnet controllers man-
aging a number of bots in the community, compromised ma-
chines downloading stolen information to a dedicated server,
an attacker targeting machines in multiple organizations, as
well as many security policy violations (e.g., illegal software
download sites, etc). Thresholds can be used to control the
number of alarms generated.

Algorithm 5: Internet attack detection query

input : topk, community, threshold
output: alarm

begin
count = 0;
source-ip = get center vertex(topk);
foreach contact ∈ topk do

if contact ∈ community then
++count;

end
end
if count > threshold then

if source-ip ∈ community AND used ports are not
suspicious then

return ∅
else

return source-ip
end

else
return ∅

end
end

To determine if an IP address tries to attack the com-
munity, Algorithm 5 is executed every time a new entry in
the netflow is forwarded to the graph component. The algo-
rithm receives the top-k graph, together with the community

to check and a threshold. It then iterates over all contacts
in the top-k graph and counts with how many community
members the corresponding center vertex has contact. If this
number is higher than the threshold and the center vertex
is not in the community itself or uses suspicious ports, an
alarm is raised. A detailed discussion of what is considered
to be a suspicious port is out of the scope of this paper. The
generated alarms are forwarded to an external service, e.g.
a web-server.

4. EVALUATION
We executed all benchmarks of the telephony application

on a 50 node cluster, each equipped with two Intel Xeon
quad-core processors and 8GB of RAM. The relation of
nodes for this experiment is (n : n + 1): n parse nodes
and n + 1 graph nodes.

The experiments, using the netflow application were exe-
cuted on a 9-node cluster, each equipped with 4 Intel Xeon
quad-core processors and 24GB of RAM. The relation of
nodes for this experiment is (n : n : 1): n parse nodes,
n filter nodes, and 1 graph node. Each node is a physical
machine.

The measurements were conducted by processing accu-
mulated (i.e., historic) data, because the volume of the real
time data was not high enough (for example, we can process
one day of netflow data in 40 minutes on a single machine)
to show how the system behaves (i.e., with regard to latency
and throughput) at its limit. Of course, we plan to integrate
our system with real-time analysis at a later point in time.

4.1 Telephony application
Figure 5 shows the scalability of the dynamic graphs. It

can be seen that the dynamic graphs scale linearly with the
number of nodes used and, more importantly, with the input
traffic. The linear characteristic is due to the fact that we
use the same set of CDRs for every setup. Thus, the number
of sub-graphs per node decreases as more nodes are added.
In the largest configuration, we can process up to 39 million
log-entries per second.

number of nodespr
oc

es
se

d
ite

m
s

in
 m

ill
io

ns
 p

er
 s

ec
on

d

10

20

30

40

10 20 30 40

●

●

●

●

●

Figure 5: Scalability of dynamic graphs

This is still being done in near real time: Figure 6 shows
the mean latency from reading a new log entry until the pro-
cessing is completely finished for different configurations. It
can be observed that by adding more nodes, the overall la-
tency declines. The reason for this is the same as for the lin-
ear scalability in the throughput measurement. Note, how-
ever, that the throughput also increases with larger setups
(as shown in Figure 5). Therefore, by increasing the number

5

of nodes, latency can be maintained at a constant level even
if the workload increases.

number of nodes

la
te

nc
y

in
 m

ill
i−

se
co

nd
s

5

10

15

20

10 20 30 40

●

●

●

●

●

Figure 6: Latency of processing individual log en-
tries

One of the motivations for mining log data with a dis-
tributed system is that the computational overhead can be
distributed. For example, the nodes that parse the entries
from the log files will not have to dedicate all their resources
to the mining and may be used for other purposes. This ar-
gument is supported by Figure 7. It shows that the CPU of
the parse components is much less utilized than that of the
graph components. However, the network connections of the
parse components are fully utilized (i.e., 115MB/s) because
the parsed entries need to be sent to the graph components.

number of nodes

us
ag

e
in

 p
er

ce
nt

30

40

50

60

70

80

10 20 30 40

●

● ● ● ●

parse−nodes graph−nodes●

Figure 7: CPU utilization, separated for source and
graph nodes

It can also be seen that larger configurations yield a higher
CPU utilization on the nodes running the graph compo-
nents. This is caused by the fact that we always use 1 graph
component more than parse components (n : n + 1), which
is the setup in which the telephony application performs op-
timally. Since this is constant, its influence is higher for
smaller configurations and the graph nodes in smaller con-
figurations will be less utilized.

4.2 Netflow application
We executed the same set of measurements for the net-

flow application. However, the results cannot be compared
directly since the hardware is different1 and the netflow ap-
plication uses one additional component (the filter).

1Due to legal reasons we were not able to execute all exper-
iments on the same infrastructure.

number of nodes

pr
oc

es
se

d
ite

m
s

(in
 m

ill
io

ns
 p

er
 s

ec
on

d)

0.4

0.6

0.8

1.0

1.2

1.4

1.6

3 4 5 6 7 8 9

●

●

●

Figure 8: Scalability of dynamic graphs

Figure 8 shows that the netflow application scales almost
linearly with the number of nodes. Figure 9 depicts the mean
latency from the time a netflow entry is read until the graph
component finished processing it completely. As expected,
the latency is significantly higher than for the telephony ap-
plication. This is due to (1) a non-optimal implementation
of the filter and (2) the network delay, introduced by the
additional filter component. The reason that the latency
decreases for larger configurations is that the filter compo-
nents, which dominate the overall latency, are less loaded.

number of nodes

la
te

nc
y

in
 m

ill
i−

se
co

nd
s

140

160

180

200

220

3 5 9

●

●

●

Figure 9: Latency of individual log-entries

The CPU utilization (see Figure 10) shows that the filter
components have the highest CPU utilization. The parse
components do not require as much CPU since they are lim-
ited by I/O operations (reading the log entries from disk and
sending events to the filter components). Again, the reason
for the decrease of CPU utilization in larger configurations
is mostly due to lower load on the filters.

Interestingly, however, the graph component is much less
utilized than for the telephony application. This is true for
the CPU utilization (see Figure 10) as well as the network
traffic. As depicted in Figure 11, the network throughput
from the parse component to the filter component (the graph
on the left side) is by orders of magnitude higher than the
network throughput from the filter component to the graph
component (the graph on the right side). Therefore, also
the CPU utilization of the graph component is by orders of
magnitude lower than for the telephony application, where
the graph component has to process all the traffic sent from
the parse component.

Consequently, CPU utilization can be traded for network
traffic: Either the CPU usage is lower but the network traf-

6

number of nodes

us
ag

e
in

 p
er

ce
nt

0

20

40

60

80

100

3 4 5 6 7 8 9

● ●

●

parse−nodes filter−nodes graph−nodes●

Figure 10: CPU utilization, separated for sources,
filter and graph nodes

time in seconds

th
ro

ug
hp

ut
 in

 M
B

/s

5
10

15
20

0 20 40 60 80 100 120

●

●●
●

●

●

●

●●
●
●

●

●

●

●●
●
●●

●

●
●

●●
●●●

●

●
●●
●
●

●
●

●●●
●●●

●●
●●
●●●●

●

●●
●
●
●●●

●●
●
●●
●
●●

●

●

●
●●
●

●

●●●
●
●●

●●●●●●●●●
●●

●

●
●

●●

●
●
●●
●●

●

●●●●
●

●
●
●●●

●
●●
●
●●●

filter input

0 20 40 60 80 100 120

0.
00

0.
05

0.
10

0.
15

●

●

●
●

●

●
●●●

●

●
●
●
●●
●●●●●●

●

●●
●●●

●

●

●●

●

●
●
●●
●
●

●

●

●
●●●●

●●●●

●

●

●

●●
●
●●
●●●

●

●

●
●
●●

●
●

●

●

●

●

●
●●●

●●
●

●

●●
●

●
●
●
●
●
●

●

●●
●
●

●●

●
●
●●
●
●
●
●●
●
●

●

●

●

●

●

●

●●

●
●

●

filter output

Figure 11: Influence of filtering on throughput

fic is higher (as shown in Figure 7) or the CPU usage is
higher but the network utilization is lower (as shown in Fig-
ures 10 and 11).

5. RELATED WORK
The related work can be split into two distinct categories:

work in data mining and work on graphs in general. The
latter includes distributed graphs as well as fraud detection
with graphs.

5.1 Data mining
A system close to our mining platform is IBM’s SPC [2].

It provides a rich API for defining operators. However, it
only reaches high throughput with large event sizes (more
than 128KB) and the processing elements can only operate
on fixed windows over the input stream, while our system
allows a state to be stored independently from a window
(such as the top-k graphs).

Dryad [13] is a streaming system by Microsoft. It relies
on the availability of a distributed file system and process-
ing elements are executed in a single-threaded manner. No
latency measurements or absolute numbers on the achieved
throughput are provided in [13]. SCOPE [5] is a system by
Microsoft, specifically designed to parse log files. It relies,
like Dryad, on the availability of a distributed file system.
Furthermore, it provides only limited customizability of op-
erators, i.e., operators need to be defined by means of the

three constructs: PROCESS, REDUCE, and COMBINE.
No absolute latency or throughput results are provided in
[5] and the scalability is sub-linear.

Hadoop [1] is the main open-source implementation of the
MapReduce paradigm [8]. It is intended for batch process-
ing and therefore provides latencies far beyond the seconds
range. Several variations of the model have also been pro-
posed. Hadoop Online [6] improves Hadoop’s efficiency and
latency by enabling a direct communication between map-
pers and reducers. In the original publication, the authors
consider the processing of continuous data streams, but pro-
vide only a minimal example and no performance evaluation.
State is incorporated into MapReduce in [15]. However,
the goal is to provide better support for incremental batch
jobs and, thus, it will not support applications requiring low
latency. Better incremental support for batch systems is
also the focus of the new Google system, named Percolator
[16]. Unfortunately, the observed latencies in Percolator can
range up to minutes.

Borealis [18] addresses scalability by optimizing the place-
ment of operators, balancing load, and applying sophisti-
cated techniques for load shedding. However, it only sup-
ports SQL-like operators. Moreover, it does not address the
problem of parallelizing a single operation among a large
number of nodes. GSDM [14] addresses operations that are
partitionable, like is the case with MapReduce, but it does
not consider operators that maintain state—operator pro-
cess whole windows at a time, similar to our jumping win-
dows.

Finally, StreamMine [3, 4] addresses low latency, fault
tolerance, and parallelization of stateful operators, but the
speculative approach does not scale horizontally (i.e., among
nodes within a cluster).

5.2 Graphs
The use of graph structures for different kinds of applica-

tions has been addressed in number of research efforts [21,
11, 9, 19]. However, there is very little related work on
how to efficiently distribute huge graphs. The authors in
[12] propose a distributed graph algorithm but focus only
on finding the strongly connected components. It is not
clear if the graphs can be updated and with what latencies.
Taentzer [17] provides a theoretical analysis of distributed
graphs, but no implementation is provided.

In the field of community of interest-based fraud detec-
tion, the closest related work is [7]. However, the authors
do not consider constant updates but rather batch process-
ing. Moreover, the computation and the graph are not dis-
tributed.

The indexing of graph structures in databases has been
investigated in [20]. Nevertheless, the analysis considers only
one computer (not distributed), and latencies for queries
and updates are in the range of in the seconds with larger
databases.

6. CONCLUSIONS
We have demonstrated how to use graphs for many in-

teresting log processing problems. The evaluation showed
that we can process huge amounts of log data in near real
time (i.e., 10 ms). This is especially due to the very good
scalability of our system. Since the index is deterministic
and easy to compute, queries are very simple to implement.
Addition of new processing phases, such as our filter com-

7

ponents, is easy and can result in significant reduction of
data transferred and processed. Our future work includes
evaluation of our approach in new application domains and
analysis problems, including design and implementation of
additional processing components.

Acknowledgment
This research was funded as part of the SRT-15 project
supported by the European Commission under the Seventh
Framework Program (FP7) with grant agreement number
257843.

7. REFERENCES
[1] Hadoop. http://hadoop.apache.org/, January 2010.

[2] L. Amini, H. Andrade, R. Bhagwan, F. Eskesen,
R. King, P. Selo, Y. Park, and C. Venkatramani. Spc:
a distributed, scalable platform for data mining. In
Proceedings of the 4th international workshop on Data
mining standards, services and platforms, DMSSP ’06,
pages 27–37, New York, NY, USA, 2006. ACM.

[3] A. Brito, C. Fetzer, and P. Felber. Minimizing Latency
in Fault-Tolerant Distributed Stream Processing
Systems. In ICDCS ’09: Proceedings of the 2009 29th
IEEE International Conference on Distributed
Computing Systems, pages 173–182, Washington, DC,
USA, 2009. IEEE Computer Society.

[4] A. Brito, C. Fetzer, H. Sturzrehm, and P. Felber.
Speculative out-of-order event processing with
software transaction memory. In DEBS ’08:
Proceedings of the second international conference on
Distributed event-based systems, pages 265–275, New
York, NY, USA, 2008. ACM.

[5] R. Chaiken, B. Jenkins, P.-A. Larson, B. Ramsey,
D. Shakib, S. Weaver, and J. Zhou. Scope: easy and
efficient parallel processing of massive data sets. Proc.
VLDB Endow., 1:1265–1276, August 2008.

[6] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein,
K. Elmeleegy, and R. Sears. Mapreduce online. In
NSDI’10: Proceedings of the 7th USENIX conference
on Networked systems design and implementation,
pages 21–21, Berkeley, CA, USA, 2010. USENIX
Association.

[7] C. Cortes, D. Pregibon, and C. Volinsky. Communities
of interest. In F. Hoffmann, D. Hand, N. Adams,
D. Fisher, and G. Guimaraes, editors, Advances in
Intelligent Data Analysis, volume 2189 of Lecture
Notes in Computer Science, pages 105–114. Springer
Berlin / Heidelberg, 2001. 10.1007/3-540-44816-0 11.

[8] J. Dean and S. Ghemawat. Mapreduce: simplified
data processing on large clusters. Commun. ACM,
51(1):107–113, 2008.

[9] D. Donato. Graph structures and algorithms for
query-log analysis. In F. Ferreira, B. Löwe,
E. Mayordomo, and L. Mendes Gomes, editors,
Programs, Proofs, Processes, volume 6158 of Lecture
Notes in Computer Science, pages 126–131. Springer
Berlin / Heidelberg, 2010.
10.1007/978-3-642-13962-8 14.

[10] J. Ellson, E. Gansner, L. Koutsofios, S. North, and
G. Woodhull. Graphviz–open source graph drawing
tools. In P. Mutzel, M. Jünger, and S. Leipert, editors,

Graph Drawing, volume 2265 of Lecture Notes in
Computer Science, pages 594–597. Springer Berlin /
Heidelberg, 2002. 10.1007/3-540-45848-4 57.

[11] A. Francisco, R. Baeza-Yates, and A. Oliveira. Clique
analysis of query log graphs. In A. Amir, A. Turpin,
and A. Moffat, editors, String Processing and
Information Retrieval, volume 5280 of Lecture Notes
in Computer Science, pages 188–199. Springer Berlin /
Heidelberg, 2009. 10.1007/978-3-540-89097-3 19.

[12] W. M. III, B. Hendrickson, S. J. Plimpton, and
L. Rauchwerger. Finding strongly connected
components in distributed graphs. Journal of Parallel
and Distributed Computing, 65(8):901 – 910, 2005.

[13] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly.
Dryad: distributed data-parallel programs from
sequential building blocks. In Proceedings of the 2nd
ACM SIGOPS/EuroSys European Conference on
Computer Systems 2007, EuroSys ’07, pages 59–72,
New York, NY, USA, 2007. ACM.

[14] M. Ivanova and T. Risch. Customizable parallel
execution of scientific stream queries. In Very Large
Data Bases, pages 157—-168. VLDB Endowment,
2005.

[15] D. Logothetis, C. Olston, B. Reed, K. C. Webb, and
K. Yocum. Stateful bulk processing for incremental
analytics. In SoCC ’10: Proceedings of the 1st ACM
symposium on Cloud computing, pages 51–62, New
York, NY, USA, 2010. ACM.

[16] D. Peng and F. Dabek. Large-scale incremental
processing using distributed transactions and
notifications. In Proceedings of the 9th USENIX
Symposium on Operating Systems Design and
Implementation, Berkeley, CA, USA, 2010. USENIX
Association.

[17] G. Taentzer. Distributed graphs and graph
transformation. Applied Categorical Structures,
7:431–462, 1999. 10.1023/A:1008683005045.

[18] N. Tatbul, U. Çetintemel, and S. Zdonik. Staying fit:
efficient load shedding techniques for distributed
stream processing. In VLDB ’07: Proceedings of the
33rd international conference on Very large data bases,
pages 159–170. VLDB Endowment, 2007.

[19] P. Verkaik, O. Spatscheck, J. Van der Merwe, and
A. C. Snoeren. Primed: community-of-interest-based
ddos mitigation. In Proceedings of the 2006
SIGCOMM workshop on Large-scale attack defense,
LSAD ’06, pages 147–154, New York, NY, USA, 2006.
ACM.

[20] D. Williams, J. Huan, and W. Wang. Graph database
indexing using structured graph decomposition. In
Data Engineering, 2007. ICDE 2007. IEEE 23rd
International Conference on, pages 976 –985, april
2007.

[21] A. K. C. Wong and M. You. Entropy and distance of
random graphs with application to structural pattern
recognition. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, PAMI-7(5):599
–609, sept. 1985.

8

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

