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Abstract
A common assumption made in log analysis research is

that the underlying log is totally ordered. For concur-

rent systems, this assumption constrains the generated log

to either exclude concurrency altogether, or to capture a

particular interleaving of concurrent events. This paper

argues that capturing concurrency as a partial order is

useful and often indispensable for answering important

questions about concurrent systems. To this end, we mo-

tivate a family of event ordering invariants over partially

ordered event traces, give three algorithms for mining

these invariants from logs, and evaluate their scalability

on simulated distributed system logs.

1 Introduction
Most log analysis studies and tools consider totally or-

dered (TO) logs of events. A total order has important

advantages, such as the ability of humans to directly in-

spect and understand the logged information and the ap-

plicability of simple and powerful log analysis techniques.

Further, many well-established logging formats are TO.

However, in domains where an execution may be con-

current, such as distributed systems, events are partially

ordered (PO) rather than TO. Concurrency is increas-

ingly used for improving performance on clusters and

multi-core architectures. Even simple applications are

becoming concurrent, with more functionality migrating

into the cloud and with widespread use of Ajax to mask

latency.

Because of the widespread concurrency of modern soft-

ware, we propose that log analysis researchers should

take up the challenges and opportunities offered by PO

logs. This paper focuses on such logs in the context of

distributed systems, which are inherently concurrent.

A PO log has more concurrency information than a TO

log, making it more useful when studying concurrent sys-

tem behavior. For example, consider a simple distributed

system with two communicating processes. One of the

processes generates an a event, and the other process gen-

erates a b event. If the events are logged in a TO log (say,

a log in which the order of events in the file implicitly

defines the ordering), then it is unclear whether a neces-

sarily preceded b or just happened to be logged before

b. Even if a and b appear in different orders in different

traces, it is still possible that they can never occur con-

currently. Unlike a TO log, a PO log makes concurrency

explicit: the log indicates whether a and b have some

order, in which case they are not concurrent, or they are

not ordered and therefore concurrent.

A PO log contains more information, and is therefore

more complex, than a TO log. It is generally infeasible

to analyze it manually. Prior work on automated PO log

analysis has concentrated on visualization for simplifying

analysis [5, 25]. This paper defines a set of event-ordering

invariant templates that we think capture interesting pat-

terns in PO logs. We have built a system that mines these

invariants from the collected PO logs, and presents them

to the user. If the mining algorithm reports an invari-

ant that is not intended to be true of the system, then

the developer knows to write more diverse test cases to

exercise more behavior. In addition to helping develop-

ers better understand their systems or detect erroneous

behavior, the mined invariants can also be used to infer

other, higher-level, system properties of interest to devel-

opers. For example, invariants could be combined with

performance information to determine whether there is

correlation between slow executions and the ordering of

events in the system. As well, invariants can help diag-

nose distributed deadlock, which typically occurs because

of an anomalous ordering of distributed events.

2 Motivating example
As a motivating example, consider the PO log in Figure 1a.

This log captures five executions of a web application in

which two clients access a server to buy airplane tickets.

Unfortunately, there is only one ticket available. The log
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[1,0,0] client 0: search for tickets to Portugal for 23/10/11
[0,1,0] client 1: search for tickets to Portugal for 23/10/11
[1,0,1] server: there is a ticket available for 505P
[1,1,2] server: there is a ticket available for 505P
[2,0,1] client 0: buy ticket
[2,1,3] server: sold
[1,2,2] client 1: buy ticket
[2,2,4] server: tickets sold out

[0,1,0] client 1: search for tickets to Portugal for 23/10/11
[1,0,0] client 0: search for tickets to Portugal for 23/10/11
[0,1,1] server: there is a ticket available for 505P
[1,1,2] server: there is a ticket available for 505P
[0,2,1] client 1: buy ticket
[1,2,3] server: sold
[2,1,2] client 0: buy ticket
[2,2,4] server: tickets sold out

[1,0,0] client 0: search for tickets to Portugal for 23/10/11
[1,0,1] server: there is a ticket available for 505P
[0,1,0] client 1: search for tickets to Portugal for 23/10/11
[1,1,2] server: there is a ticket available for 505P
[1,2,2] client 1: buy ticket
[1,2,3] server: sold
[2,0,1] client 0: buy ticket
[2,2,4] server: tickets sold out

[1,0,0] client 0: search for tickets to Portugal for 23/10/11
[1,0,1] server: there is a ticket available for 505P
[0,1,0] client 1: search for tickets to Portugal for 23/10/11
[1,1,2] server: there is a ticket available for 505P

[1,0,0] client 0: search for tickets to Portugal for 23/10/11
[1,0,1] server: there is a ticket available for 505P
[2,0,1] client 0: buy ticket
[2,0,2] server: sold
[0,1,0] client 1: search for tickets to Portugal for 23/10/11
[2,1,3] server: tickets sold out
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Mined invariants

searchc0 ‖ searchc1

sold-outs �→ solds

sold-outs �→ buyc0

sold-outs �→ buyc1

solds ← sold-outs

buyc0 ← sold-outs

availables ← buyc0

availables ← buyc1

buyc0 → sold-outs

buyc1 → sold-outs

buyc0 ‖ buyc1

...

Figure 1: (a) Five system traces (S1-S5), each comprised of log lines and corresponding vector clock timestamps for a web application

that sells airplane tickets. In the traces, two clients access a single server. (b) A visualization of the five system traces as space-time

diagrams. Time flows down, and events at each host are shown in a single column. (c) A partial list of ordering invariants mined

from the traces (ci is client i, and s is server). The three bottom-most invariants (in red) are examples of false positives.

captures several scenarios in which the clients and the

server interact: different orders of checking for ticket

availability, attempts to buy a ticket, and so on. This log

is PO because the clients issue requests independently.

It is difficult to piece together the various behaviors

just by looking at the log. Even if one considers the corre-

sponding time-space diagrams in Figure 1b, the system’s

behavior is not easily understood. However, the system

has definite patterns in its logs, and these patterns can be

mined and shown to a developer to aid their log analysis.

One property that can be mined is that the server cannot

sell a ticket after it has sold out of tickets. That is, the sold-
out server event is never followed by the sold server event.

This invariant helps elucidate the server’s operation, but it

is also simple enough to find and check by considering the

server’s timelines in the time space diagrams in Figure 1b.

An invariant that is less apparent is that the clients’ buy
operations are always concurrent. That is, if both clients

issue a buy command, then a buy at client 0 is always

concurrent with a buy at client 1.

To verify that the system is working properly, a devel-

oper can mine the invariants from the log of the captured

system executions and verify that the mined invariants

are consistent with the developer’s understanding of how

the system is supposed to behave. The more complex

ordering invariants over PO logs allow developers to do

this for concurrent systems, such as the example ticket

selling system.

We can mine many more invariants from the log in

Figure 1a, some of which are listed in Figure 1c. Before

explaining these, however, we first provide a few for-

mal definitions, and explain the vector clock timestamps

shown in the example log.

3 Definitions
We assume a distributed system that is composed of h
hosts, indexed from 0 to h−1. Each host generates a TO

sequence of event instances, each of which has an event

type from a finite alphabet of host event types.

Definition 1 (Host event types). For all hosts i, the host
event types set Ei ⊇ {STARTi, ENDi} is a finite set (al-

phabet) of event types that can be generated by host i.

Definition 2 (System event types). The set E of all possi-

ble system event types is ∪Ei, for all hosts i.

Definition 3 (Event instance). An event instance is the

triple t = 〈e, i,k〉, where e ∈ Ei, i is a host index, and k is

a non-negative integer that indicates the order of the event

instance, among all event instances on host i.

A host trace (Definition 4) is the set of all event in-

stances generated at host i. This includes event instances

of type STARTi, and ENDi, which respectively start and

end the host trace.

As the example in Figure 1 illustrates, order is an impor-

tant property of a distributed execution. Event instances

are ordered in two ways. First, the host ordering (Defini-

tion 5) orders any two event instances at the same host.

Second, the interaction ordering (Definition 6) orders de-

pendent event instances at different hosts. For example, if

hosts use message passing to communicate, a send mes-
sage event instance is ordered before a receive message
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event instance for the same message. Both orderings are

partial orderings, otherwise the distributed system can be

more simply modeled as a serial execution.

Definition 4 (Host trace). For all hosts i, a host trace is a

set Ti of all event instances t = 〈e, i,k〉, such that an event

of type e was the kth event generated on host i. The host

trace Ti includes two event instances 〈START, i,0〉 and

〈END, i,n〉, such that n is the largest k for all t ∈ Ti. The

k induces a total ordering of event instances in Ti. We

denote this total ordering as <i. More formally, ∀ê1 =
〈e1, i,k1〉∈Ti, ê2=〈e2, i,k2〉∈Ti, (ê1 <i ê2⇐⇒k1<k2).

Definition 5 (Host ordering). A host ordering ≺host is the

union ∪<i.

Definition 6 (Interaction ordering). An interaction order-

ing ≺interact orders pairs of event instances 〈e1, i,k1〉 and

〈e2, j,k2〉 such that i �= j.

A system trace is the union of a set of host traces (one

per host), which corresponds to a single execution of the

system. This union respects the host ordering and the

interaction ordering.

Definition 7 (System trace). A system trace is the pair

S = 〈T,≺〉, where T = ∪Ti, and ≺ = ≺host ∪≺interact .

Definition 8 (Log). A log L is a set of system traces.

A common way of ordering event instances in a system

trace is to associate a vector timestamp with each event

instance. These timestamps make the partial order, ≺,

of event instances in the system trace explicit. We now

explain the algorithm by which vector timestamps are

maintained. This explanation corresponds to a system

that uses message passing, though vector timestamps can

be used for ordering event instances in a system that uses

other mechanisms for inter-host communication, such as

shared memory.

3.1 Ordering events with vector time
Vector time [9, 21] is a logical clock mechanism that pro-

vides a partial ordering of event instances. In a distributed

system of h hosts, each host maintains an array of clocks

C = [c0, c1, . . ., ch−1], in which a clock value c j records

the local host’s knowledge of (equivalently, dependence

on) the local logical time at host j. We denote a times-

tamp’s C clock value for host j as C[ j].
The hosts update their clocks to reflect the actual order-

ing of event instances in the system with the following

three rules:

1. All hosts start with an initial vector clock value of

[0, . . ., 0].
2. When a host i generates an event instance, it incre-

ments its own clock value (at index i) by 1, i.e.,

Ci[i]++.

3. When host h communicates with host h′, h shares

its current clock Ch with h′, and h′ updates its local

clock Ch′ so that ∀i, Ch′ [i] = max(Ch[i],Ch′ [i]). h′
also updates its local clock value as in (2), since

message receipt is considered an event.

Note that the above procedure assumes that the hosts

know the number of participants (hosts) in the system,

and that the set of participants does not change over time.

Using the above procedure, each event instance in the

system is associated with a vector timestamp — the value

of C immediately after the event instance occurred. Vector

timestamps can be partially ordered with the relation ≺,

where C ≺C′ if and only if each entry of C is less than or

equal to the corresponding entry of C′, and at least one

entry is strictly less. More formally: C ≺C′ iff ∀i,C[i]≤
C′[i] and ∃ j,C[ j]<C′[ j]. This ordering is partial because

some timestamp pairs cannot be ordered (e.g., [1,2] and

[2,1]).
The vector timestamp ordering allows us to partially

order all the event instances in the system. Figure 1b

shows five time-space diagrams, each of which represents

the ≺ ordering for each of the system traces in the log1.

For example, in system trace S1 a search event instance

at client 0 has a timestamp of [1,0,0], which immediately

precedes the first available event instance at the server,

timestamped with [1,0,1]. The time-space diagram en-

codes this precedence information as a directed edge be-

tween the two events. However, the same search event

instance at client 0 is not ordered with the search event

instance at client 1, which has a timestamp of [0,1,0].
Correspondingly, there is no path in the time-space dia-

gram between these two event instances.

The next section formally defines a few kinds of event

ordering invariants that holds across all system execu-

tions, and gives an algorithm to infer these from a log.

4 Mining temporal invariants
Prior work (see Section 7) has shown that invariants of

software systems are useful across a range of application

domains. A common feature of all the prior work on

invariant mining is that it only considers TO sequences of

event instances. In this section, we first extend existing

invariant types to PO logs, and then give three algorithms

for mining these invariants.

4.1 Temporal invariants in PO logs
We consider five temporal ordering invariants that relate

pairs of host event types. All the invariants are defined in

terms of the ≺ partial ordering, which was introduced in

Definition 7 and operationalized in Section 3.1. Through-

out, we use the notation ei to represent an event e ∈ Ei,

1For compactness, the diagrams in Figure 1b bundle message re-

ceipt, message processing, and message send events into one event.
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and we use êi to represent a corresponding event instance

〈e, i,k〉 ∈ L.

Definition 9 (Event invariant). Let L be a log, and let

ai and b j be two host event types whose corresponding

event instances, âi and b̂ j, appear at least once in some

system trace in L. Then, an event invariant is a property

that relates ai and b j in one of the following five ways,

and evaluates to true in each of the system traces in L.

ai → b j : An event instance of type a at host i is always
followed by an event instance of type b at host j.
Formally: ∀âi ∃ b̂i, âi ≺ b̂ j.

ai �→ b j : An event instance of type a at host i is never
followed by an event instance of type b at host j.
Formally: ∀âi � ∃ b̂ j, âi ≺ b̂ j.

ai ← b j : An event instance of type a at host i always
precedes an event instance of type b at host j. For-

mally: ∀b̂ j ∃ âi, âi ≺ b̂ j.

ai ‖ b j : An event instance of type a at host i is always
concurrent with an event instance of type b at host

j. Formally: ∀âi, b̂ j(âi �≺ b̂ j ∧ b̂ j �≺ âi).
ai ∦ b j : An event instance of type a at host i is never

concurrent with an event instance of type b at host

j. Formally: ∀âi, b̂ j(âi ≺ b̂ j ∨ b̂ j ≺ âi).

We omit the never precedes invariant because it is

equivalent to the �→ invariant. The →, �→, and ← in-

variants capture particular kinds of ordering dependency.

For example, Figure 1c lists the “availables ← buyc0
” in-

variant, which means that a client can only make a ticket

purchase if the server indicated ticket availability.

The ‖ and ∦ invariants are more general. The ‖ in-

variant captures the lack of ordering, and ∦ captures the

presence of some ordering. An example of a ‖ invariant

is “searchc0
‖ searchc1

” in Figure 1c, which means that

ticket search requests from the two clients are never or-

dered. The ‖ and ∦ invariants are also commutative —

e.g., ai ‖ b j iff b j ‖ ai.

The →, �→, and ← invariants are analogs of the most

frequently observed specification patterns in Dwyer et

al. [7], with scope constrained to a trace (i.e., global

scope). The translation is not one-to-one: ai → b j is

Dwyer’s Existence pattern when ai is STARTi, and is oth-

erwise Dwyer’s Response pattern. Another example is

∀b j,ai ← b j, which is Dwyer’s Universality pattern. A

key difference, however, is that Dwyer et al. [7] only con-

sider local invariants as they study specification patterns

of sequential systems.

For each of the five invariants, the event instances may

occur on different hosts or on the same host. We term

invariants that relate host event types on the same host

(i.e., i = j) as local, and those that relate host event types

on different hosts (i �= j) as distributed. Local invariants

can be evaluated independently of event instances on

other hosts, solely by using the total ordering of event

instances on the host (i.e., <i). In contrast, distributed

invariants capture dependency between event types on

different hosts — their evaluation requires the use of the

partial ordering.

Some invariants are trivially true, such as STARTi →
ENDi. Others are trivially false, such as STARTi �→ ENDi.

However, determining the truth value of most invariants

requires log analysis, which we take up next.

4.2 Mining temporal invariants
The task of mining invariants involves taking a log (e.g.,

Figure 1a) as input, and outputting the set of invariants

that are true of the log (e.g., Figure 1c). To process the

log, we assume that the user also inputs a set of regular

expressions so that each line in the input log can be parsed

into a vector timestamp and an event instance.

To simplify our discussion of invariant mining algo-

rithms, we use the directed acyclic graph (DAG) repre-

sentation of a system trace. The time-space diagrams in

Figure 1b illustrate the basic idea of the DAG representa-

tion (except that in these diagrams, edges between events

generated at the same host are implicit). Formally, a sys-

tem trace 〈t,≺〉 can be represented as a DAG with nodes

corresponding to event instances in t, and an edge from e
to e′ iff e is a direct predecessor of e′ (i.e., iff e ≺ e′ and

� ∃ e′′, e ≺ e′′ ≺ e′).

4.2.1 Transitive-closure-based algorithm

One invariant-mining algorithm computes the forward

and reverse transitive closures of each trace DAG in L
and then determines which invariants are valid from those

transitive closures as follows:

• ai → b j iff in each forward DAG transitive closure,

every âi node (instance of event type ai) has an edge

to a b̂ j node.

• ai �→ b j iff in each forward DAG transitive closure,

every âi node has no edge to a b̂ j node.

• ai ← b j iff in each reverse DAG transitive closure,

every b̂ j node has an edge to a âi node.

• ai ‖ b j iff there are no edges between âi and b̂ j nodes

in either the forward or the reverse DAG transitive

closures, and the two kinds of nodes both occur in

some DAG.

• ai ∦ b j iff there are edges between all âi nodes and

all b̂ j nodes in either the forward or the reverse DAG

transitive closures whenever both nodes occur in the

DAG.

This algorithm performs poorly on sparse DAGs, for

which transitive closure construction is expensive. Next,

we describe two algorithms that do not explicitly gen-

erate the transitive closures, but instead mine invariants

implicitly by collecting event type co-occurrence counts.
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1 Input: event log L, as a set of event instance DAGs

2

3 for dag ∈ L {
4 let dagOcc[] // Maintains DAG event counts per event type

5 // Traverse the DAG in the forward direction:

6 foreach node ∈ dag, in topological order:

7 let node.predecessors = ∪p∈node.parentsp.predecessors

8 let b j = node.type

9 dagOcc[b j]++
10 let seenTypes = {}
11 for nodeP ∈ node.predecessors:

12 let ai = nodeP.type

13 PrecPairs[ai][b j]++
14 if ai /∈ seenTypes:

15 CoOcc[ai][b j] = true
16 Prec[ai][b j]++
17 seenTypes = seenTypes∪{ai}
18

19 // Traverse the DAG in the reverse direction:

20 foreach node ∈ dag, in reverse topological order:

21 let node.successors = ∪c∈node.children c.successors

22 let ai = node.type

23 let seenTypes = {}
24 for nodeS ∈ node.successors:

25 let b j = nodeS.type

26 FollowsPairs[ai][b j]++
27 if b j /∈ seenTypes:

28 Follows[ai][b j]++
29 seenTypes = seenTypes∪{b j}
30

31 // Accumulate this DAG’s event instance counts:

32 for ai ∈ dagOcc.keys:

33 Occ[ai]+ = dagOcc[ai]
34 for b j ∈ dagOcc.keys:

35 TraceCountProductsSum[ai][b j]+=
36 (dagOcc[ai]∗dagOcc[b j])
37 }
38

39 // Use the counts to derive the invariants:

40 let invariants = []
41 for ai,b j ∈ eventTypes :

42 if Follows[ai][b j] = Occ[ai]:
43 invariants.append(ai → b j)
44 if Follows[ai][b j] = 0:

45 invariants.append(ai �→ b j)
46 if Prec[ai][b j] = Occ[b j]:
47 invariants.append(ai ← b j)
48 if CoOcc[ai][b j]∧Follows[ai][b j] = 0∧Follows[b j][a] = 0:

49 invariants.append(ai ‖ b j)
50 if CoOcc[ai][b j]∧TraceCountProductsSum[ai][b j] =
51 PrecPairs[ai][b j]+FollowsPairs[b j][ai]:
52 invariants.append(ai ∦ b j)
53

54 Output: invariants

Figure 2: The co-occurrence counting algorithm v1 described

in Section 4.2.2.

4.2.2 Co-occurrence counting algorithm v1

The idea behind the co-occurrence counting algorithm is

to avoid explicit construction of the trace DAGs’ transitive

closures. Instead, the algorithm walks through the trace

DAGs and counts specific values, such as the number of

times an event instance of type ai is followed by an event

instance of type b j. After counting, the algorithm uses

a set of rules (derived from the invariant definitions in

3 for dag ∈ L {
4 // Traverse the DAG in the forward direction:

5 foreach node ∈ dag, in topological order:

6 let node.typePred = ∪p∈node.parentsp.typePred

7 let b j = node.type

8 Occ[b j]++
9 for ai ∈ node.typePred:

10 CoOcc[ai][b j] = true
11 Prec[ai][b j]++
12

13 // Traverse the DAG in the reverse direction:

14 foreach node ∈ dag, in reverse topological order:

15 let node.typeSucc = ∪c∈node.children c.typeSucc

16 let ai = node.type

17 for b j ∈ node.typeSucc:

18 Follows[ai][b j]++
19 }

Figure 3: A different for loop body for the pseudocode in lines

3–29 of Figure 2, which generates a simpler and more efficient

algorithm (co-occurrence counting algorithm v2) for computing

all the invariants except ∦. As well, the new algorithm would

omit lines 50–52 in Figure 2.

Section 4.1) to infer the true invariants:

• ai → b j iff the number of âi occurrences is equal to

the number of times that âi was followed by b̂ j.

• ai �→ b j iff the number of times that âi was followed

by b̂ j was 0.

• ai ← b j iff the number of b̂ j occurrences is equal to

the number of times b̂ j was preceded by âi.

• ai ‖ b j iff âi and b̂ j co-occurred at least once in a

system trace (otherwise calling the two event types

concurrent does not make sense); and the number of

times that âi followed b̂ j and the number of times b̂ j
followed âi was 0 (the events were never ordered).

• ai ∦ b j iff âi and b̂ j co-occurred at least once in a

system trace; and in every trace each âi instance is

followed or preceded by every b̂ j instance. That is,

in a trace the number of âi followed by b̂ j pairs plus

the number of âi preceded by b̂ j pairs must equal the

count of âi in the trace times the count of b̂ j in the

trace.

The pseudocode in Figure 2 outlines this procedure.

The algorithm starts by building a set of data structures to

hold various occurrence counts:

• Occ[ai] : the count of âi across all traces.

• CoOcc[ai][b j] : whether or not âi and b̂ j co-

appeared in a trace.

• Prec[ai][b j] : the count of b̂ j instances that were

preceded by at least one âi.

• Follows[ai][b j] : the count of âi instances that were

followed by at least one b̂ j.

• FollowsPairs[ai][b j] : the count of all (âi, b̂ j) pairs

for which âi was followed by b̂ j.
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• PrecPairs[ai][b j] : the count of all (âi, b̂ j) pairs for

which âi precedes b̂ j.

• TraceCountProductsSum[ai][b j] : the sum across all

traces of the product of the number of âi in a trace

and the number of b̂ j in a trace.

To collect these counts, the trace DAG is first traversed

in the forward and then in the reverse directions. Both

traversals are in topological order (e.g., on the forward

traversal a node is visited after all of its parents). The

topological order guarantees that all the nodes that pre-

cede (respectively follow) the node’s parents (respectively

children) are aggregated correctly. Once the DAG is tra-

versed in both directions, the algorithm infers invariants

from the data structures. Each if statement on lines 42–52

of the pseudocode corresponds to an informal description

given above.

Because the algorithm traverses each edge once, its

base traversal time for a single trace DAG is Θ(|E|),
where E is the set of edges in the DAG. On traversing

an edge, the algorithm needs to merge two sets whose

sizes are at most |V |, where V is the set of nodes in the

DAG. Therefore, in processing a single trace DAG, the

algorithm has a running time of Θ(|E||V |). Because it

does not need to explicitly maintain a transitive closure,

this algorithm performs especially well on sparse trace

DAGs.

4.2.3 Co-occurrence counting algorithm v2 (w/o ∦)

In both of the previous algorithms, the cost of computing

the ∦ invariant is significantly higher than that of com-

puting each of the other invariant types. This is because

evaluating the invariant ai ∦ b j requires an algorithm to

consider every pair of instances (âi, b̂ j). This overhead

prompted us to consider an algorithm that mines all of the

invariants except the ∦ invariant.

Figure 3 lists a different for loop body for the pseu-

docode in lines 3–29 of Figure 2. The resulting algorithm

— co-occurrence counting algorithm v2 — is significantly

faster (see Section 5). The reason for this is that instead

of maintaining the set of all event instances that precede

(respectively follow) a node, the algorithm maintains only

the set of event types that precede (respectively follow)

a node. Because of this, the per-edge cost drops from

Θ(|V |) to Θ(|ETypes|) where ETypes is the set of event

types in the trace DAG. Therefore, this algorithm’s run-

ning time is Θ(|E||ETypes|).

5 Evaluation
This section compares the performance of the transitive-

closure-based algorithm with the performance of the two

co-occurrence counting algorithms. We evaluate the al-

gorithms on synthetic PO logs that we generated using a

discrete-time simulator that simulates a set of concurrent

communicating hosts. We first describe the simulator, and

then present and discuss the results.

5.1 Log-generating system simulator
The simulator is parameterized by the number of hosts,

number of events types, number of events per execution,

and the number of executions. For each event, the simmu-

lator chooses the host that will execute the event and the

event’s type, both with uniform probability. The simulator

also decides to either associate the event with sending a

message to some other random node (with probability

0.3); or, if the node has messages in its queue, to associate

the event with receiving a message (with probability 0.4);

or to make the event local to the selected host (remaining

probability). Any outstanding messages in the receive

queues are flushed when the simulation ends.

The simulator maintains vector clocks, following the

procedure from Section 3.1. The simulator outputs a log

of multiple executions, or system traces, composed of

events; each event has a vector timestamp.

5.2 Methodology
We implemented the three invariant-inferring algorithms

in Java and ran experiments on an Intel i7 (2.8 GHz) OS

X 10.6.7 machine with 8GB RAM. Our implementation

used the Floyd-Warshall [10] algorithm to compute the

transitive closure. As part of our future work, we plan to

implement a more efficient transitive closure algorithm

special to DAGs (e.g., [14]).

Our evaluation goal was to measure how the two ver-

sions of the co-occurrence counting algorithm scale, as

compared to the transitive-closure-based algorithm, in

four dimensions: (1) with the length of the system trace,

(2) with the number of traces in the log, (3) with the num-

ber of hosts, and (4) with the number of event types. For

each of the dimensions, we first used the simulator to gen-

erate a set of logs, varying that dimension and keeping the

others constant. The constant values were: 30 hosts, 50

host event types per host (= 1,500 total since event types

at different hosts are considered different), 1,000 events

per execution, and 50 executions. We ran each algorithm

5 times and report the median value.

5.3 Results from generated logs
Figure 4 plots the results of our simulations. Figure 4(a)

illustrates the algorithms’ scalability with respect to the

length of the system trace and Figure 4(b) with respect

to the length of the log (i.e., the number of traces). In

both cases, the transitive-closure-based algorithm outper-

formed the co-occurrence counting algorithm v1. The co-

occurrence counting algorithm v2 (without ∦) performed

best.

Figure 4(c) illustrates the algorithms’ scalability with

respect to the number of hosts and Figure 4(d) with re-
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Figure 4: Invariant mining time for the transitive closure and the co-occurrence counting algorithms on logs generated by the

simulator described in Section 5.1. In each of the figures, a single log feature is varied: (a) number of hosts, (b) execution length, (c)

number of executions, and (d) number of event types. The other log features were held constant in the same figure, and were identical

across figures: 30 hosts, 50 host event types per host (= 1,500 total since event types at different hosts are considered different),

1,000 events per execution, and 50 executions.

spect to the number of event types. In both cases, the

transitive-closure-based algorithm underperformed the

co-occurrence counting v1. Again, the co-occurrence

counting algorithm v2 performed best.

6 Discussion and future work
To simplify presentation, we omitted certain details about

the mining algorithms. For instance, some invariants are

logically equivalent, such as STARTi → xi and xi ← ENDi.

Others, such as the local versions of ‖ and ∦ are trivial.

Also, some invariants may be subsumed by others. For

example, the distributed versions of → and ← invariants

make stronger claims about event ordering and therefore

subsume distributed ∦ invariants. The mining algorithm

implementations detect such duplicate, trivial, and sub-

sumed invariants and filter them out.

We have implemented and compared three invariant

mining algorithms that pre-process the log into DAGs

to mine invariants. However, it is also possible to mine

invariants directly from a log L by first enumerating all

the possible invariants based on event types in L, and then

traversing each of the system traces in L and checking

each invariant to eliminate the false invariants. Algorithm

developed by Sen et al. [24] for efficiently checking cer-

tain kinds of temporal predicates over consistent cuts of

a distributed execution could be used for this. However,

efficient traversal of the traces without an explicit DAG

structure is non-trivial. We plan to implement this more

direct algorithm in our future work. More generally, other

approaches such as those based on graph reachability

could be used for mining invariants [4]. Counting seems

to capture the minimum information necessary for our

invariant types, but we want to explore other approaches

in our future work.

Also, our evaluation concentrated on mining scalability

since system size and log size are a major concern for

practical log analysis. However, we did not evaluate the

fundamental assumption that PO log invariants are useful

to developers. We plan to evaluate the utility of mined

invariants and the relevancy of our invariant types with a

case study in future work.

We assume the availability of logs, annotated with vec-

tor timestamps. A drawback to using vector timestamps

in large systems is their performance penalty — vector

length scales linearly with the number of hosts in the sys-

tem and exchanging them may negatively impact network

7



performance. Though more efficient vector clock mecha-

nisms exist [2], we believe that their application can be

made practical by limiting their use to short time periods

on large systems, or by using vector clocks exclusively

for debugging and during development and testing.

7 Related Work
In this section, we summarize two areas of research rel-

evant to ours: invariant mining and distributed system

debugging via log analysis.

Invariant mining. Javert [11] is a specification min-

ing tool that infers complex specifications by composing

simpler patterns into larger ones. Javert’s invariants are

more complex than ours (e.g., it handles invariants over

three events). Similarly, Perracotta [35] mines and visual-

izes temporal properties of event traces. These invariants

have been used to study program evolution [34]. All of

these systems require TO logs (or observed executions),

whereas our work concentrates on PO logs, common in

distributed systems.

Daikon [8] observes system executions and mines data

structure invariants as method pre- and post-conditions.

Our work concentrates on temporal invariants.

Jiang et al. [18] proposed approximately mining certain

types of invariants that relate flow intensities (e.g., traffic

volume) in distributed systems. These invariants capture

non-temporal properties. In contrast, our proposal is ex-

act, not approximate, and captures temporal properties.

Yabandeh et al. [31] describe Avenger, which mines invari-

ants that hold most of the time. These almost-invariants

are helpful for finding bugs that manifest infrequently.

Avenger mines a rich set of data invariant types; it does

not mine temporal properties.

Finally, Lou et al. [20] define a set of event depen-

dencies that range over events in interleaved traces of

independent processes. These include what they term

forward and backward dependencies. Our temporal in-

variants consider communicating processes, as opposed

to dependent ones.

Debugging distributed system via log analysis. One

area in which log analysis is helpful is debugging. Bugs

can manifest themselves via anomalous executions. De-

tecting anomalies in distributed systems is a popular re-

search area [30, 17, 36]. The aim of our invariants is

broader: to aid understanding efforts. However, our in-

variants can also be used for debugging. In fact, similar

invariants of systems that generate TO logs have been

shown helpful for debugging and understanding [3].

Bates et al. [1] developed an event definition language

that caused programs to generate logs with deep semantics

information, such as hierarchical relationships between

events. Their approach requires access to the source code.

In contrast, our approach does not need access to the

source code, and works on the already generated logs.

We do require the developer to express a set of regular

expressions. However, this set may be mined automati-

cally [29, 37].

MapReduce-specific research — SALSA [26] and

Mochi [27] — has created visualizations helpful to per-

formance debugging of Hadoop [16] node logs. Our ap-

proach, of course, is generic and applicable to a wide

range of systems.

General debugging of distributed system. Quality

specification can aid debugging, but as specification tools

like CADP [12] have not gained wide adoption by system

builders, the community has begun advocating alternate

specification styles. Thereska et al. [28] has argued that

modeling and specifying systems is hard. Automatically

mined invariants can serve as partial specification and can

be used to compare the system’s implementation to the

developers’ understanding of the system.

Specifying desired invariants can allow runtime check-

ing to ensure the system conforms to the developer’s ex-

pectations. Violated invariants can be reported to the user

or developer [23, 13, 19, 6], or the system may automat-

ically attempt to steer away from the violation [32, 22].

Unfortunately, many of the built-in record-and-replay

techniques [15] require access, and modifications, to the

source code [13, 6]. Others, require access to the binaries

for instrumentation [19]. Again, our approach, which

can complement these techniques, can help remove the

requirement for source code and binary access.

Pip [23] not only identifies violated invariants but also

provides the developer with visualization and logging

support to help explore what occurred during an execu-

tion. MODIST [33], a transparent model checker for

distributed system, does not require a user to specify any

properties, and instead explores the space of all possible

event interleavings to find bugs that crash the system. Our

work addresses precisely the inefficiency of exploring all

possible interleavings.

8 Conclusion
Mining invariants from totally ordered logs has proven

helpful for system debugging and understanding (e.g., [3,

8, 11, 35]. In this paper, we proposed to extend invariant

mining to partially ordered logs, which are common in the

distributed systems setting. We formally defined relevant

invariants for PO logs and described efficient algorithms

for mining such invariants.
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