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ABSTRACT

Recent trends in secure operating systems indicate that an
object-capability system is the security model with pre-
eminent characteristics and practicality. Unlike traditional
operating systems, which use a single global name space,
object-capability systems name objects per protection do-
main. This allows a fine-grained isolation of the domains
and follows the principle of least authority.

Programming in such an environment differs considerably
from traditional programming models. The fine-grained ac-
cess to functionality requires a programming environment
that supports the programmer when using a capability sys-
tem. In this paper, we present an object-oriented framework
that uses the C++ programming language to offer a frame-
work for building and using operating-system components
and applications.

Categories and Subject Descriptors

D.3.2 [Programming Languages|: Language Classifica-
tion—C++; D.4.6 [Operating Systems]: Security and
Protection; D.1.5 [Software]: Object-oriented Program-
ming

General Terms

Security; Languages; Design

1. INTRODUCTION

Currently, operating systems seem to move to a capability-
based security model. For example, the University of Cam-
bridge, supported by Google, presented a capability exten-
sion for UNIX [17]. Other research towards highly secure
systems is based on small capability-based operating-system
kernels [7].

Strictly applying the object-capability model can help
solving typical security flaws, such as the confused deputy
problem, and supports the principle of least authority
(POLA). Other work tries to support the programmers in
using capability-based systems by specific programming lan-
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guages or language extensions [14, 10]. Nevertheless, current
operating-system software is typically written in C or C++,
and constitutes a huge value with device drivers and func-
tionality that is worth to be adopted.

The contribution of this work is a lightweight and efficient
integration of the object-capability model into the C++ lan-
guage, including interface types and inheritance. The work
does not require any extra tools or compiler changes and
aids the programmer with intuitive programming patterns.

In the next section we give an overview over the object-
capability model and object-oriented programming in C++,
as well as discuss related work. In Section 3 we describe the
goals of this work that are deduced thereof, before we move
on to discuss our implementation in Section 5. Section 6
provides a discussion about the efficiency of our solution
and Section 7 concludes the work.

2. OBJECT-CAPABILITY MODEL

Object-oriented programming is based on the idea of ob-
jects, references to objects, and the model of carrying out
operations on objects by sending messages on references.
The object-capability [1, 12] model as a computer security
model takes these ideas and asserts some requirements on
them, to achieve goals, such as the principle of least author-
ity and privilege separation.

As described in [11, 12] capability systems are superior
to systems using access control lists, and provide a more
intuitive abstraction for programmers.

There are two flavors of object-capability systems: purely
language-based approaches [14, 10] and capability-based op-
erating systems [13, 7, 8]. In the remainder of this work we
shall focus on the capability-based operating systems and in
particular systems with kernel-protected capabilities.

2.1 Capability-Based OS

Looking at implementations of current operating-systems,
one can find a lot of object-oriented implementations written
in languages, such as C or C++. C++ natively supports
the object-oriented programming paradigm, provides good
integration with C, and allows the same control over memory
management as C does. Hence, we favored C++ as the
implementation language for a capability-based operating
system.

The central part of our architecture is a small and secure
kernel [3] running in privileged processor mode. The main
purpose of the kernel is to provide strong isolation between
different protection domains and an highly efficient commu-
nication mechanism to support a fine-grained object-model
based on protection domains. Our kernel provides a purely
object-capability based API. In particular, services provided



by the small kernel are available as objects implemented in
the kernel’s protection domain and the kernel provides an
efficient capability-based communication mechanism to im-
plement objects in different protection domains. Results
presented in [9] and [6] influenced the API of our kernel,
as well as motivate the goals described in Section 3. Be-
fore we move on to the goals we shall briefly describe the
properties of references to objects in terms of C++ and our
object-capability kernel.

2.2 References in Detail

C++ uses pointers as references to objects. In contrast,
our small kernel provides kernel-protected references to ob-
jects in different protection domains. Protection domains
are either the kernel’s domain or isolated user processes com-
prising a virtual memory space and an object-space (also
called capability table). Programs refer to capabilities by
an index into their local capability table. This means, they
use integral values (capability selectors) to reference remote
objects in a different protection domain.

C++ does not provide strict type safety and does not ad-
here to the rules for obtaining references as defined in [1].
In particular, a C4++ pointer can be synthesized out of thin
air, can be distributed among objects in global variables,
and there are operations that do not require an explicit ref-
erence to an object, such as global functions. However, our
small kernel strictly applies the rules of an object-capability
system with the granularity of protection domains and ob-
jects implemented in different protection domains. Objects
implemented in the kernel’s domain also strictly adhere to
these rules.

Considering the operations on objects, object-oriented
programming provides the mechanism of abstract interfaces
that declare the operations that can be performed on an ob-
ject. C++ has the notion of pure virtual functions defined
in a class declaration. This provides the same abstraction
from a particular implementation of an object as the object-
capability model provides with the messages on references.
Object-oriented languages usually also provide the mecha-
nism of inheritance to derive more specialized interfaces and
implementations from one or more base interfaces, including
a set of type conversion rules on typed references to objects.

Based on the properties of object-capability systems and
object-oriented languages, and considering the work done
in the area of microkernel-based systems since [9], we define
the goals of a seamless integration between those two worlds
in the next section.

3. GOALS

A general goal of this work is to provide a C++ repre-
sentation of capabilities that does not introduce per-design
overheads, such as the use of dynamically allocated proxy
objects.

Efficient representation of capabilities. Capabilities
shall be as efficient as C++ pointers when they are used
and passed around inside a single application. This means
assignment to local variables and to attributes of objects,
as well as passing as parameters must not introduce extra
operations compared to normal pointers.

Efficient invocation of operations on objects. The
C++ representation of capabilities shall not add extra over-
head, such as additional levels of indirection, to the message
passing that is used for invoking operations.

C++ static typing rules. Capabilities shall behave like
pointers to objects, with respect to the type safety and type-

conversion rules. This means capabilities shall carry type
information as typed C++ pointers do, and the C++ com-
piler shall enforce the same conversion and assignment rules
as on pointers. This allows for extra robustness and static
error catching at compile time.

Dynamic type information. Objects in our system shall
carry dynamic (runtime) type information comparable to
that provided by C++.

Comparable cast operations. As capabilities shall be
typed, there need to be explicit conversion operations. The
conversion operations working on the static type of a capa-
bility (e.g., cap_static_cast and cap_reinterpret_cast)
shall have semantics and complexity compatible to their
C++ versions for pointers. Conversions working with the
dynamic type of an object (comparable to dynamic_cast)
may have additional overhead, as do dynamic casts in C++.
C++ Standard Compliance. A goal of this work is to
stay within the defined behavior of the C+4 Standard [2]
as far as possible. However, some parts are based on imple-
mentation-defined behavior of the specific compiler.

4. RELATED WORK

There are two important industry implementations of dis-
tributed object-oriented systems: COM and CORBA. While
CORBA explicitly targets network transparent object mod-
els, COM is designed to support object-oriented systems
locally, hence COM is more similar to our scenario. The
C++ language bindings for both approaches are different.
CORBA requires no direct mapping of the interface hierar-
chy to a C++ class hierarchy, this means no implicit con-
versions can be applied by the C++ compiler. COM in-
terfaces are mapped to a C++ class hierarchy and support
static C++ conversions. Nevertheless, both solutions use lo-
cal proxy objects with virtual functions to represent remote
objects. These proxy objects add two problems in our con-
text: the proxy objects must be dynamically allocated and
at least one additional layer of indirection is introduced.

The low-level OS framework shall avoid dynamic alloca-
tion, because the framework shall not depend on any specific
memory management framework. The goal of a C++-based
type checking and type conversion system requires a com-
patible mapping of the interface hierarchy to a C++ class
hierarchy. We try to avoid any extra level of indirection to
achieve highly efficient operations on objects.

S. IMPLEMENTATION

The foundation for our language mapping is provided by
two C++ concepts, namely operator overloading and tem-
plate meta programming. These concepts can be used to
implement a pattern known as C++ smart pointers [4, 16].
Smart pointers are generic data types, which provide the
syntax and semantics of normal C++ pointers and hide the
internal implementation.

5.1 Basic Language Mapping

The goals described in Section 3 lead to a language map-
ping where interfaces of remote objects are defined using
CH+ classes and where capabilities are comparable to point-
ers to objects of those classes. The syntax for using remote
objects shall be as simple as using operations on a locally
implemented C++ object.



5.1.1 References

We use a smart-pointer-like template class to represent
capabilities in C++. The Cap template has full value se-
mantics and wraps our capability selectors. In practice,
declaring a reference to a remote object looks as follows:
Cap<Addressbook> a, where Addressbook is the type of the
object to be referenced. This is similar to the smart point-
ers described in [4]. The simplified skeleton of the typed
capability template class is:

template< typename T >
class Cap
{ private: cap_idx_t _c; };

The data member _c is the only data member and has the
same storage size as a native C++ pointer. C++ allows such
data types to be handled as efficient as simple native inte-
gral data types with respect to assignment and parameter
passing.

5.1.2 Operations

Next, we need to enable operations on remote objects, just
as calling methods on a local object. The syntax for invoking
operations on objects, referenced by a C++ pointer, is using
the arrow operator ”->” followed by a call operator ”()” (i.e.
obj->func()). Fortunately, C++ allows overloading of the
arrow operator, as a key element for smart-pointer imple-
mentations. C++ defines that overloaded arrow operators
are consecutively resolved until the resulting value has the
type pointer to object. This means, when invoking a non-
virtual member function, the function call is resolved using
the static class type. All the given parameters and addition-
ally the implicit this pointer are passed to the function’s
implementation.

Looking at the Cap class, it seems unclear how to provide
an arrow operator that returns a pointer, because we have
only the capability selector available. The solution is to use
the C++ reinterpret cast to convert the capability selector
to a pointer of type T, and return the pointer as result of
the arrow operator:

T *xoperator -> () const
{ return reinterpret_cast<T*>(_c); }

The returned pointer does not hold a valid address of a
C++ object, rather it carries the capability selector that
is required for the kernel call. The invalid pointer implies
that we have no instances of our stub class T, and hence T
should be an empty class type, without any data members
or virtual functions. To prevent instantiation of stub classes
we add a protected constructor to those classes. A method
call to our interface translates to a statically resolved call to
a function deduced by the type T, the given identifier for the
function’s name, and the parameter types. This interface
stub implementation is called with the capability selector
as this pointer and is responsible for marshalling (see [5])
the parameters into a message, converting the this pointer
back to a capability selector, and passing the message to the
remote object using the kernel mechanism.

5.1.3 Inheritance and Type Conversion

Because we study interfaces of remote objects, we have
to consider abstract interfaces only. Inheritance of inter-
faces provides a mechanism to take a base interface (a set
of operations) and add more operations to the derived in-
terface. Another flavor is multiple inheritance that enables
the combination of multiple base interfaces into a common
interface.

C++ provides inheritance as part of the language and
deploys the inheritance relations in the form of implicit and
explicit type conversion rules. For example, we can derive
the class Addressbook from the class Table:

class Table
{ pudblic: int get_num_rows(); };

class Addressbook public Table
{ public: <nt find_by_name(char const *n); };

This means, a pointer to Addressbook can be implicitly (au-
tomatically) converted into a pointer to type Table. The
other direction, from Table to Addressbook, has to be done
using explicit cast expressions. C++ cast expressions exist
in different flavors and may fail at compile time or at run
time in the case types are not convertible.

The type system of C++ is used to determine the avail-
able operations on objects of a certain class, as well as to
provide static and dynamic type checking. These advantages
of the C++ type system shall also apply to the interfaces of
our remote objects. As we already define the interface of a
remote object using C++ stub classes, we can also use the
C++ inheritance features to add inheritance relations to the
types of our remote objects.

The inheritance relation shown in the previous example al-
lows to call the get_num_rows method on a capability of type
Addressbook, as C++ implicitly converts the this pointer
for the function call to type Table*. To provide pointer-like
assignment semantics to the Cap class we have to add a set
of template conversion constructors that statically enforce
the same conversion rules as applied for pointers.

For the case of single inheritance this usually works
straight forward, however the C++ standard allows static
cast operations to change the value of the pointer, even
though they might be implicit. This pointer offsetting re-
sults from Section 4.10 §3 of the ISO C++ standard [2]. In
our case, where we abuse the pointer to contain our capabil-
ity selector this property may lead to a change in the capa-
bility selector and render the selector invalid or referring to
a different object. Using multiple inheritance, this property
of type conversions definitely becomes a problem, because
the C++ standard also contains a rule that two different
object of the same type must never have equal addresses.

To overcome this problem we use the property that our
capability selectors, as defined by the kernel’s API, do not
use the full value range of a C++ pointer. In particular,
the selector values are integers that are a multiple of 4096,
which means the least significant twelve bits of the integer
representation are zero. Assuming, that the pointer changes
engendered by the type conversions are in a range of one to
eight bytes (particular value depends on the compiler) per
interface in an inheritance hierarchy, we can use a simple
bit masking operation to align our capability selectors back
to multiples of 4096. The stub code has to do this masking
when an abused this pointer is transformed back to a ca-
pability selector. A more detailed view on the stub methods
and the translation to messages shall follow in Section 5.3.
The conversion we use to put our capability selectors into
the this pointer are robust according to the C++ stan-
dard [2] Section 5.2.10, in particular the note in §4 provides
confidence for our bit masking.

5.1.4  Explicit Type Conversion

As described before, we use C++ classes to represent the
interfaces of remote objects, and we use the inheritance fea-
tures of C++ to compose and refine interfaces. The imple-
mentation supports implicit type conversions that are either



done during dereference using the arrow ”->” operator or
during assignment or initialization using template conver-
sion constructors or assignment operators. The conversion
constructors and assignment operators must assert the va-
lidity of a conversion according to C++ pointer rules.

Explicit conversions in C++ are done using cast expres-
sions, for example static_cast<T>(v). These expression do
not work for our capabilities, because the classes represent-
ing the capabilities as smart pointers have no inheritance
relation on their own. For example, Addressbook is de-
rived from Table, however, Cap<Addressbook> is unrelated
to Cap<Table>.

Hence, support for type conversion has to be implemented
manually as a set of template functions, for example Cap<T>
cap_static_cast<T>(Cap<Tr> v). The implementation of
these cast functions has to ensure that a pointer to type Tr
is convertible to a pointer to type T with the correspond-
ing C++ cast expression. An exception of this simple and
straight forward approach for type conversion is the dynamic
cast expression that we shall elaborate on in the following
section.

5.2 Dynamic Types

C++ provides the dynamic cast, a robust type conversion
based on the dynamic type of objects. The dynamic type of
an object is the most derived type D of an object instance,
even if currently referenced by a pointer to a base class B
of D. C++ requires the types B and D to be polymorphic
types (i.e., classes equipped with some virtual functions).
The dynamic cast is robust in the sense that it yields a NULL
pointer in the case where the dynamic type of the object is
not of type D or a type derived from D.

Projecting this to remote objects in our object-capability
system is no longer trivial. As our interface classes have to
be empty classes as described in Section 5.1.2, they cannot
be polymorphic and thus cannot carry dynamic C++ type
information. Furthermore, the dynamic type of a remote
object is known solely by the object itself and therefore act-
ing on the dynamic type must be done sending messages to
the object, otherwise we would break the rules for object
capabilities.

Nevertheless, the dynamic type of a remote object could
be useful, especially in the case when capabilities to the
generic type Kobject are received and a robust conversion to
some "useful” type is considered. To provide such dynamic
type information we developed a Meta interface that shall
be implemented by every remote object in our system. The
Meta interface provides operations to support conversion of
a capability of type B to a capability of type T and applies
the conversion rules and information located in the remote
objects implementation.

5.3 Operations on Remote Objects

So far, we considered the interfaces and their inheritance
and left out the task of transforming C++ method calls to
object-capability based message passing. An inherent part
of this task is to assign an ID (opcode) to each operation of
an interface. For simple interfaces without inheritance this
can be as trivial as incrementally assigning integers starting
from zero to each operation of the interface.

Introducing single inheritance, the task to assign opcodes
to operations becomes slightly more complicated. Opcodes
for operations of a derived interface must not collide with
opcodes assigned to operations of the base interface, how-
ever, opcodes used by the base interface must stay compati-
ble with the implicit type conversions that are possibly done

Kobject ‘ ‘ Kobject
B2:

B1:

0.b1() =0 ©[2) =0
11:

0il()=1

M:
om() =2

Figure 1: Typical memory layout of class M with mul-
tiple inheritance. You can see two single inherited hier-
archies: [Kobject«—B1<I1] and [Kobject<—B2]. Both are
combined by deriving M from I1 and B2. The interfaces have
some example operations o_bl, o_b2, o_il, and o_m. The
number after each operation shows the assigned opcodes.
The arrangement of the boxes from left to right depict the
pointer offsets for the sub-objects of M.

during C4++ method invocation. One solution is to also in-
crementally assign integer values starting at the opcode of
the last operation in the base interface plus one.

Going forward to multiple inheritance, to compose a new
interface out of multiple independently defined base inter-
faces, raises a general problem. The opcodes of the inde-
pendent interfaces are assigned individually and are likely
to collide. One way to resolve the collisions is to add static,
unique identifiers to each interface. However, this requires a
central unit, comparable to IANA, that assigns these inter-
face IDs (IIDs). Another possibility is a dynamic assignment
of IIDs at runtime and a negotiation protocol for clients to
acquire the information about the IIDs used by a particular
remote object.

The downside of the use of dynamically assigned IIDs is
that they have to be stored alongside the capability selector
in the Cap class. And even more tricky, the IID has to be
used within the stub code for remote object invocation that
runs with the restriction of getting the capability selector
via the abused this pointer.

As our capability selectors use only a part of the value
range used by C++ pointers we could use the remainder to
store the interface ID, theoretically as much as 4096 for each
individual object.

In practice this creates a collision between the pointer off-
setting, mentioned in Section 5.1.3, and the use of the least
significant bits of a capability selector for carrying vital data.
And additionally, there arises the question about interface
IDs and implicit casts to pointers to a base class when a
method to a base class is invoked.

5.3.1 Combining C++ Semantics and Interface IDs

The aforementioned collision between pointer offsetting
and interface IDs lead us to the idea that the pointer off-
setting could be used for automatically calculating interface
IDs within an inheritance hierarchy.

Taking a closer look on the pointer offsetting results in
the following observations. As our interface classes must be
empty classes (regarding data members) this usually results
in a zero offset for single inheritance, which is absolutely ac-
ceptable when we use distinct opcodes for operations in de-
rived interfaces. Multiple inheritance is, in particular, used
to combine interfaces that may be also used stand alone,
such interfaces typically inherit from the remote object base
class Kobject. And this in turn leads to a pointer offsetting



other than zero, because different sub-objects of a C++ ob-
ject that have the same type (Kobject) must have a different
address even if they are empty, see Figure 1.

Based on this knowledge we can use the C++ compiler to
assign interface IDs to the different interfaces that are com-
bined with multiple inheritance. The implementation of a
remote object has to use the values deduced from the pointer
offsets as interface IDs and dispatch incoming messages to
the implementation of the according sub-object. On the
client side, the interface IDs manifest themselves in the least
significant bits of the abused this pointer and need to be
added to the message that is sent to a remote object. In the
example in Figure 1, sub-hierarchy [Kobject<B1<«I1] has
zero offset and [Kobject«<—B2] has one byte offset (compiler
implementation defined). This means, calling M::0_b2()
needs to use one as IID, whereas calling M::0_i1() has to
use a zero 11D, otherwise the implementation of M could not
distinguish between M::0_b1() and M::0_b2().

Care has to be taken to represent the interface IDs in
the implementation of the conversion constructors, assign-
ment operators, and cast functions for the capability tem-
plate class. The Meta interface has to provide information
about the interface ID of a requested type, in order to imple-
ment correct semantics for the dynamic cast for capabilities.

6. DISCUSSION

To evaluate the results of our mapping of object capa-
bilities to C++ primitives we discuss the overheads that
are induced by our implementation of object capabilities
in C++. We will neither discuss the performance of the
message-passing mechanism provided by the kernel nor the
costs induced by the parameter marshalling code. Instead,
we refer you to results from [15] and [5], respectively. Never-
theless, we consider the performance of the message passing
as a critical component and try to avoid any unnecessary
overheads.

Section 5.3 describes the steps for carrying out operations
on remote objects. We use the implicit this pointer pro-
vided by C++4 to store the capability selector. The this
pointer is usually stored in a register of the CPU. The con-
version from a pointer to an integer value of equal size is
usually reduced to a no-op. This means we have to add
an extra bit masking instruction to mask the lower twelve
bits of the this pointer. Additionally, we have to take the
lower twelve bits of the this pointer and put them into the
message to be transferred, which is in the case of our kernel
done in a CPU register as well.

Implicit type conversion applied by the C+-+ compiler is
based on the type conversion of C++ pointers and does not
induce any additional overhead compared to C++ point-
ers. Also, explicit type conversions based on static types are
equivalent to C++ pointer conversions. However, dynamic
types of objects require additional operations on remote ob-
jects and hence add an overhead compared to C++ dynamic
type conversions. In particular, we have to pay the penalty
of message passing to the remote object to gain access to
the dynamic type information necessary for the conversion.

7. CONCLUSION

As a result of this work we implemented a lightweight and
efficient integration of object capabilities into a C++ frame-
work, as a form of smart pointers. The resulting framework
supports static C++-based typing of capabilities, includ-
ing explicit and implicit type conversion. We also described
a mechanism for providing dynamic type information for

objects in our capability-based OS and use it to provide
cap_dynamic_cast<> similar to dynamic_cast<>.

The implementation is mostly based on well defined be-
havior of the C++ language. The noteworthy exception to
this is to use the this pointer as storage for our capability
selectors. However, under the assumption of a reasonable
compiler, we tried to achieve a robust implementation by
carefully considering the pointer offsetting applied for type
conversion.
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