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Consensus is an Insurance Policy

Fault Model

Performance
CVEIEIEES
and Cost
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You buy protection for your world view!
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Fault Models Must Match Reality

Optimistic Reality Pessimistic
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Current fault models do not
accurately capture reality

Protocols overpay for protection or do not
fully protect against failures!
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Consensus in the Real World

Application Guarantees

Operations... Safety: Operations commit in
the same global order

Consensus Protocol

Liveness: Every operation
Log of operations eventually commits
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Consensus in the Real World

Application Fault Model
Write(key, value)

-
A
Key-Value Store (Etcd) VL

Raft f=1

Read/Write
Operation Log
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Consensus in the Real World

f-Threshold Fault Model Consensus Guarantees
when #faults< f

Crash and
Crash Byzantine Byzantine
Faults Faults Faults
O O O
2+ 1 3If+ 1 Upright

Replicas Replicas Replication
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Key Observations

The f-threshold fault model fails to
captures reality

In practice, machine failures are
probabilistic

Protocols cannot provide better
than probabilistic guarantees
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f-Threshold Fault Model Fails to Capture Reality

Nodes are either correct or faulty All nodes can fail

Faults are uniform Some nodes are more likely to fail
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(a) Fault rates are not uniform

Algorand: Scaling Byzantine Agreements
for Cryptocurrencies

3] Memory-Harvesting VMs in Cloud Platforms, ASPLOS’ 22

[ . ; ta-

[2] https://www, kblaz m /bl kblaze-drive-stats-for-2024

[

[4] Snape: Reliable and Low-Cost Computing with Mixture of Spot and On-Demand VMs, ASPLOS’23
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(b) Fault rates evolve over time

Evictions Evictions
. . VIVIS 10 mins 1 day
~ |Infancy: Useful life ‘Wearout } SpotVMs 10% 55.3%
S > < > <
e, ‘“:é <+ 2
< S E 8 g

0,0 Age of disk

[1] Cluster storage systems gotta have HeART: improving storage efficiency by exploiting disk-reliability heterogeneity
[2] https://www.backblaze.com /blog/drive-failure-over-time-the-bathtub-curve-is-leaking /
[3] Snape: Reliable and Low-Cost Computing with Mixture of Spot and On-Demand VMs, ASPLOS’23
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(c) Faults may be correlated

AN
.

CROWDSTRIKE

=" Microsoft

https:/ /blogs.microsoft.com /blog /2024 20 /helping-our-customers-through-the-crowdstrike-out
https: //www.techtarget.com/whatis /feature /Explaining-the-largest-IT-outage-in-history-and-whats-next
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(d) Faults are complex

Silent Data Corruptions at Scale
L
Cores that don’t count Harish Dattatraya Sneha Pendharkar Matt Beadon Chris Mason
Peter H. Hochschild Rama Govindaraju David E. Culler Dixit Facebook, Inc. Facebook, Inc. Facebook, Inc.
Paul Turner Parthasarathy Amin Vahdat Facebook, Inc. spendharkar@fb.com mbeadon@fb.com clm@fb.com
Jeffrey C. Mogul Ranganathan Google hdd@fb.com
Google Google Sumyvale, €A, US Tejasvi Chakravarthy ~ Bharath Muthiah Sriram Sank
Sunnyvale, CA, US Sunnyvale, CA, US €jasvl avarthy arat. uthia riram Sankar
Facebook, Inc. Facebook, Inc. Facebook Inc.
teju@fb.com bharathm@fb.com sriramsankar@fb.com

[1] Cluster storage systems gotta have HeART: improving storage efficiency by exploiting disk-reliability heterogeneity
[2] https:/ /www.backblaze.com/blog /drive-failure-over-time-the-bathtub-curve-is-leaking /
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f-Threshold Fault Model Fails to Capture Reality

(d) Faults are complex

In practice, machine faults are probabilistic

22
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Consensus Guarantees are Mismatched

All-or-nothing guarantees

Safe and Live
when failures < f

Undefined guarantees
if failures > f

23
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Consensus Guarantees are Mismatched

All-or-nothing guarantees 100% - € guarantees
Safe and Live Safe: Every node has a non-zero
when failures < f failure probability and eventually

all nodes will fail

Undefined guarantees
if failures > f

No protocol can do better than probabilistic guarantees
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Consensus Guarantees are Mismatched

All-or-nothing guarantees 100% - € guarantees
Safe and Live Raft is only 99.97% [safe&live] in
when failures < f three-node deployments if nodes

suffer a 1% fault rate!

Undefined guarantees
if failures > f
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Consensus Guarantees are Mismatched

Standard S3 S3 Intelligent Tiering S3 Express One Zone

Designed for availability 99.99% 99.9% 99.95%
Availability SLA 99.9% 99% 99.9%

S3 is designed to exceed 11 nines of data durability

Google Spanner is designed to support 5 nines of availability

[1] https://aws.amazon.com/s3/storage-classes/
[2] https://www.frictionlesspost.com/p/google-spanner-serves-trillions-of-rows-with-99-999-reliability
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Our Vision: Probabilistic Consensus
for the Real World!

Probabilistic fault models
that accurately capture reality
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Simple Abstractions: Key Challenge

Traditional Consensus
Single parameter f to decide number of replicas

100% safety + liveness (*)
* fnodes fail, and others are correct

28
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Accurate Per-Node Fault Curves

Software Update Cluster Reconfiguration

Node Restarts

Probability of Failure

Time
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Accurate Per-Node Fault Curves

Software Update Cluster Reconfiguration

I |
Node Restarts I

Probability of Failure

Time
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Potential Opportunities
Protocols can better utilize reliable nodes
Larger clusters of less reliable nodes can help

Explore constant instead of linear size quorums

31
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Potential Opportunities

Protocols can better utilize reliable nodes
Larger clusters of less reliable nodes can help
Explore constant instead of linear size quorums

Exploit the tradeoff between safety and liveness

32
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1. Protocols can better utilize reliable nodes

Cluster-1 Cluster-2

o EEE

Both clusters guarantee safety and liveness
Cluster-2 tolerates f = 3 faults

33
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1. Protocols can better utilize reliable nodes

Op = 1%

v = 8%

Cluster-1 Cluster-2

With fault rates, they achieve 9s of safety and liveness
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1. Protocols can better utilize reliable nodes
Opu=1%
Pu = 8%
Cluster-3 @

1. Leader selection from more
reliable nodes

2. Skewing quorums to
Three 9s include reliable nodes

Protocols can leverage accurate fault rates for better guarantees

35
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2. Larger clusters of less reliable nodes can help

Op = 1%

v = 8%

Cluster-1 CluCtast2r-2
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3. Exploring constant size quorums
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Probabilistic Consensus for Real World!

Current fault models fail to accurately capture reality

Today, consensus is probabilistic — like it or not!

Accurate fault curves for better fault modeling

Probability-native consensus protocols

More efficient, cost-effective, and sustainable, and reliable

soujanya@berkeley.edu
reginaldfrank77 @berkeley.edu
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