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Hypervisors are Critical Infrastructure
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Hypervisors are Hard to Build

A hypervisor has two responsibility:

- Configure hardware
- Emulote hardware
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Hypervisors are Hard to Build

It is hard, because hardware is complex
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Formal Verification is Hard

We would like hypervisors to be verified
It is hard because:

- Writing a spec is hard
- Writing (and maintaining) a proof is hard
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Lightweight Hypervisor Verification

Can we automate the verification of a
hypervisor?

Can we skip writing the spec and the proof?
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Lightweight Hypervisor Verification

Yes, we can!
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e Executable ISA specs are
becoming the new norm
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Overview

1. Hypervisor Correctness
Faithful Emulation

Faithful Execution
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Verifying Miralis
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Hypervisor Correctness



The Hardware Burger

An hypervisor exposes a virtual hardware interface
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The Hardware Burger

An hypervisor exposes a virtual hardware interface
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Hypervisor Correctness

A VM must execute as it would on a reference machine
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Hypervisor Correctness

A VM must execute as it would on a reference machine
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The VM must be a simulation of a reference machine
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Trap & Emulate Hypervisors

Formal requirements for virtualizable third generation
architectures

1974, GJ Popek, RP Goldberg

Modern architectures are virtualizable

L Hypervisors rely on trap & emulate
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Trap & Emulate Hypervisors

Two kinds of instructions:

- Unprivileged: executed
directly in hardware

- Privileged: trap to the
hypervisor
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Trap & Emulate Hypervisors

Two kinds of instructions:

- Unprivileged: executed
directly in hardware

- Privileged: trap to the
hypervisor
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Trap & Emulate Hypervisors

Host Machine ~ Refere.nce
Machine

Two kinds of instructions: - ~=T T T s

- Unprivileged: executed
directly in hardware

20
- Privileged: trap to the Lﬂ ’

hypervisor N -7

- J \ J

Charly Castes | HotOS’25



Faithful Emulation
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Faithful Emulation

The hypervisor should
accurately emulate
privileged instructions
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Faithful Emulation

For all input state and
privileged instruction, the
hypervisor produces the
same state as the reference
machine
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Faithful Execution
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Faithful Execution

Direct execution should be
indistinguishable from a
reference machine
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Faithful Execution

The behavior of instructions depends on the privileged state
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Faithful Execution

The host hardware
must be programmed
to execute as if the
VM was running on
the reference
machine
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Verifying Miralis
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Miralis Overview

Miralis is a RISC-V virtual firmware monitor
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Miralis Overview

Pain points during development:

- Emulation of 84 privileged registers A

- Virtual interrupts losses > Now all verified!
- Memory isolation

Charly Castes | HotOS’25 27



Verifying Miralis - A Rust RISC-V Model

Miralis is written in Rust v ®
The RISC-V spec is written in Sail : ‘ %/J
RISC
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Verifying Miralis - A Rust RISC-V Model

We wrote a Sail-to-Rust backend to generate a Rust RISC-V model

RISC
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Verifying Miralis - A Rust RISC-V Model

We wrote a Sail-to-Rust backend to generate a Rust RISC-V model
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Verifying Miralis - Faithful Emulation of mret

#[cfg_attr(kani, kani::proof)]
pub fn check_mret() {
let (mut ctx, mut mctx, mut sail_ctx) =
symbolic::new_symbolic_contexts(); l

ctx.emulate_mret(&mut mctx);
execute_MRET(&mut sail_ctx); : ‘

assert_eq!(
ctx,
adapters::sail_to_miralis(sail_ctx, &mctx),
"mret instruction emulation is not correct"

) =~
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Verifying Miralis - Bugs
21 bugs fixed!

Functional Correctness Crash or Sandbox Escape

- mret: set MPP to U-mode after mret - pmpaddr: invalid legalization mask

- mvendorid, scounteren, mcountinhibit,
mcounteren: 32 bits.

- mepc, sepc: last bits must be 0

- mtvec, stvec: invalid vector modes

- medeleg: bit 11 is read-only zero

- satp: discard invalid writes

- vstart: invalid write mask

- mcause, scause: allow any value

- sie, sip: filter based on mideleg

- Interrupts priority

- and more...

- pmpaddr: W=1&R =0 is reserved

- pmpcfg: out of bound access

- mtvec: PC overflow

- pmpcfg: odd pmpcfg register are invalid
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Verifying Miralis - Bugs

Guest access to lock bit

let reg_idx = idx / 8;
let inner_idx = 1dx % 8;
let shift = inner_idx * 8; // 8 bits per config

self.set_pmpcfg(idx + offset, cfg as u8);
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Verifying Miralis - Bugs

Wrong immediate offset in compressed load/stores

C_LwW => {

LoadInstr {
rd,
s
imm,
b
}
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Verifying Miralis - Bugs

mepc mask depends on C extension
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Lightweight Hypervisor Verification

e There exists official ISA specs
o Can be leveraged to verify systems properties

e Faithful Emulation + Faithful Execution
o Reasonable hypervisor spec

e We verified core components of Miralis
o Instructions emulation, virtual interrupts, memory protection

Charly Castes | HotOS’25

36



