
Lightweight Hypervisor Verification:
Putting the Hardware Burger on a Diet

HotOS 2025

Charly Castes1 François Costa2 Nate Foster3

Thomas Bourgeat1 Edouard Bugnion1

Charly Castes | HotOS’25

Hypervisors are Critical Infrastructure

U-Mode

S-Mode

M-Mode

OS

App Firmware

2

Charly Castes | HotOS’25

Hypervisors are Hard to Build

A hypervisor has two responsibility:

- Configure hardware
- Emulate hardware

3

Charly Castes | HotOS’25

Hypervisors are Hard to Build

It is hard, because hardware is complex

842 pages

5057 pages 3347 pages

14568 pages

4

Charly Castes | HotOS’25

Formal Verification is Hard

We would like hypervisors to be verified

5

It is hard because:

- Writing a spec is hard
- Writing (and maintaining) a proof is hard

Charly Castes | HotOS’25

Lightweight Hypervisor Verification

Can we automate the verification of a
hypervisor?

6

Can we skip writing the spec and the proof?

Charly Castes | HotOS’25

Lightweight Hypervisor Verification

Yes, we can!

● Hypervisors are very
structured systems

● Executable ISA specs are
becoming the new norm

7

Charly Castes | HotOS’25

Overview

1. Hypervisor Correctness

2. Faithful Emulation

3. Faithful Execution

4. Verifying Miralis

8

Hypervisor Correctness

9

Charly Castes | HotOS’25

The Hardware Burger

An hypervisor exposes a virtual hardware interface

10

Charly Castes | HotOS’25

The Hardware Burger

HW
Spec

VM
Config

Platform
Config

An hypervisor exposes a virtual hardware interface

11

Charly Castes | HotOS’25

Hypervisor Correctness

A VM must execute as it would on a reference machine

12

Charly Castes | HotOS’25

Hypervisor Correctness

The VM must be a simulation of a reference machine

A VM must execute as it would on a reference machine

13

Charly Castes | HotOS’25

Trap & Emulate Hypervisors

Modern architectures are virtualizable

↳ Hypervisors rely on trap & emulate

14

Formal requirements for virtualizable third generation
architectures

1974, GJ Popek, RP Goldberg

Charly Castes | HotOS’25

Trap & Emulate Hypervisors

Two kinds of instructions:

- Unprivileged: executed
directly in hardware

- Privileged: trap to the
hypervisor

Host Machine Reference
Machine

15

Charly Castes | HotOS’25

Trap & Emulate Hypervisors

Two kinds of instructions:

- Unprivileged: executed
directly in hardware

- Privileged: trap to the
hypervisor

Host Machine Reference
Machine

16

Charly Castes | HotOS’25

Trap & Emulate Hypervisors

Two kinds of instructions:

- Unprivileged: executed
directly in hardware

- Privileged: trap to the
hypervisor

Host Machine Reference
Machine

≃

≃

17

Faithful Emulation

18

Charly Castes | HotOS’25

Faithful Emulation

The hypervisor should
accurately emulate
privileged instructions

Host Machine Reference
Machine

≃

≃

19

Charly Castes | HotOS’25

Faithful Emulation

For all input state and
privileged instruction, the
hypervisor produces the
same state as the reference
machine

VM
Config

S i

S’ S’’≃?

20

Faithful Execution

21

Charly Castes | HotOS’25

Faithful Execution

Direct execution should be
indistinguishable from a
reference machine

Host Machine Reference
Machine

≃

≃

22

Charly Castes | HotOS’25

Faithful Execution

The behavior of instructions depends on the privileged state

pv

ph

23

Charly Castes | HotOS’25

Faithful Execution

The host hardware
must be programmed
to execute as if the
VM was running on
the reference
machine

VM
Config

u i

u’’≃?

pv

ph

u’

Host
Config

24

Verifying Miralis

25

Charly Castes | HotOS’25

Miralis Overview

Miralis is a RISC-V virtual firmware monitor

U-Mode

S-Mode

M-Mode

vM-Mode

OS

App Firmware

26

Charly Castes | HotOS’25

Miralis Overview

Pain points during development:

- Emulation of 84 privileged registers
- Virtual interrupts losses
- Memory isolation

27

Now all verified!

Charly Castes | HotOS’25

Verifying Miralis - A Rust RISC-V Model

Miralis is written in Rust

The RISC-V spec is written in Sail

28

Charly Castes | HotOS’25

Verifying Miralis - A Rust RISC-V Model

We wrote a Sail-to-Rust backend to generate a Rust RISC-V model

29

Charly Castes | HotOS’25

Verifying Miralis - A Rust RISC-V Model

We wrote a Sail-to-Rust backend to generate a Rust RISC-V model

30

Charly Castes | HotOS’25

Verifying Miralis - Faithful Emulation of mret

S i

S’ S’’≃?

31

Charly Castes | HotOS’25

Verifying Miralis - Bugs

21 bugs fixed!

32

Functional Correctness
- mret: set MPP to U-mode after mret
- mvendorid, scounteren, mcountinhibit,

mcounteren: 32 bits.
- mepc, sepc: last bits must be 0
- mtvec, stvec: invalid vector modes
- medeleg: bit 11 is read-only zero
- satp: discard invalid writes
- vstart: invalid write mask
- mcause, scause: allow any value
- sie, sip: filter based on mideleg
- Interrupts priority
- and more…

Crash or Sandbox Escape

- pmpaddr: invalid legalization mask
- pmpaddr: W = 1 & R = 0 is reserved
- pmpcfg: out of bound access
- mtvec: PC overflow
- pmpcfg: odd pmpcfg register are invalid

Charly Castes | HotOS’25

Verifying Miralis - Bugs

Guest access to lock bit

33

Charly Castes | HotOS’25

Verifying Miralis - Bugs

34

Wrong immediate offset in compressed load/stores

Charly Castes | HotOS’25

Verifying Miralis - Bugs

35

mepc mask depends on C extension

Charly Castes | HotOS’25

Lightweight Hypervisor Verification

● There exists official ISA specs
○ Can be leveraged to verify systems properties

● Faithful Emulation + Faithful Execution
○ Reasonable hypervisor spec

● We verified core components of Miralis
○ Instructions emulation, virtual interrupts, memory protection

36

