Lightweight Hypervisor Verification:
Putting the Hardware Burger on a Diet

Charly Castes' Francois Costa® Nate Foster?
Thomas Bourgeat'! Edouard Bugnion'

HotOS 2025
=P~L ETH:zirich

Cornell University

Hypervisors are Critical Infrastructure

Microsoft

Hyper-V
[J ' [J bhyve
U-Mode App : Firmware
Caad
|
e | [
_ : p
(«
M-Mode VW Miralis] ‘ fen
. hd x Project

>
@
Charly Castes | HotOS’25 &W

Hypervisors are Hard to Build

A hypervisor has two responsibility:

- Configure hardware
- Emulote hardware

Charly Castes | HotOS’25

Hypervisors are Hard to Build

It is hard, because hardware is complex

= intel. AElD

vz

5057 pages 3347 pages
x4 arm

RISC

842 pages 14568 pages

Charly Castes | HotOS’25

Formal Verification is Hard

We would like hypervisors to be verified
It is hard because:

- Writing a spec is hard
- Writing (and maintaining) a proof is hard

Charly Castes | HotOS’25

Lightweight Hypervisor Verification

Can we automate the verification of a
hypervisor?

Can we skip writing the spec and the proof?

Charly Castes | HotOS’25

Lightweight Hypervisor Verification

Yes, we can!

S . I

° i a I

Hype rVISOrs are very // a domain-specific language
structure d Syste ms for instruction set architectures

e Executable ISA specs are
becoming the new norm

</ arm

RISC

Charly Castes | HotOS’25

Overview

1. Hypervisor Correctness
Faithful Emulation

Faithful Execution

> W

Verifying Miralis

Charly Castes | HotOS’25

Hypervisor Correctness

The Hardware Burger

An hypervisor exposes a virtual hardware interface

~ S Virtual HW Interface
~>—Hypervisor

= e ‘¥Host HW Interface

Charly Castes | HotOS’25

10

The Hardware Burger

An hypervisor exposes a virtual hardware interface

V|V|.
HW Config —Virtual HW Interface
spee Platform ~>—Hypervisor
. e
Config | ~—Host HW Interface

Charly Castes | HotOS’25

1

Hypervisor Correctness

A VM must execute as it would on a reference machine

>=-Virtual Machine

“ = Virtual HW Interface
o T ~_>=Hypervisor
¥ Host HW Interface

Charly Castes | HotOS’25

12

Hypervisor Correctness

A VM must execute as it would on a reference machine

Slmulatlon

Virtual Machine

~>—Virtual HW Interface
>—Hypervisor

Ref Machine
~—Host HW Interface

~—Ref HW Interface

The VM must be a simulation of a reference machine

Charly Castes | HotOS’25

13

Trap & Emulate Hypervisors

Formal requirements for virtualizable third generation
architectures

1974, GJ Popek, RP Goldberg

Modern architectures are virtualizable

L Hypervisors rely on trap & emulate

Charly Castes | HotOS’25

14

Trap & Emulate Hypervisors

Two kinds of instructions:

- Unprivileged: executed
directly in hardware

- Privileged: trap to the
hypervisor

Charly Castes | HotOS’25

Host Machine

-

|

~

Reference
Machine

)

)

15

Trap & Emulate Hypervisors

Two kinds of instructions:

- Unprivileged: executed
directly in hardware

- Privileged: trap to the
hypervisor

Charly Castes | HotOS’25

Host Machine

-

'S
£

~

Reference
Machine

)

)

16

Trap & Emulate Hypervisors

Host Machine ~ Refere.nce
Machine

Two kinds of instructions: - ~=T T T s

- Unprivileged: executed
directly in hardware

20
- Privileged: trap to the Lﬂ ’

hypervisor N -7

- J \ J

Charly Castes | HotOS’25

Faithful Emulation

18

Faithful Emulation

The hypervisor should
accurately emulate
privileged instructions

Charly Castes | HotOS’25

Host Machine

— -y

~_-——

Reference
Machine

< -)

~

19

Faithful Emulation

For all input state and
privileged instruction, the
hypervisor produces the
same state as the reference
machine

Charly Castes | HotOS’25

v i
5 -

ISC [Conflg]

20

Faithful Execution

21

Faithful Execution

Direct execution should be
indistinguishable from a
reference machine

Charly Castes | HotOS’25

Host Machine

-

-~

@

~
—

—-—

Reference
Machine

~

oS)

\

———~

22

Faithful Execution

The behavior of instructions depends on the privileged state

P, Virtual Machine
> Virtual HW Interface
P h< ~—_Hypervisor

~——Host HW Interface

Charly Castes | HotOS’25

23

Faithful Execution

The host hardware
must be programmed
to execute as if the
VM was running on
the reference
machine

Charly Castes | HotOS’25

24

Verifying Miralis

25

Miralis Overview

Miralis is a RISC-V virtual firmware monitor

r N |
U-Mode App '[Firmware J vM-Mode
_ Y, :
r N |
S-Mode 0S I
q y :
M-Mode [& Miralis J

Charly Castes | HotOS’25

26

Miralis Overview

Pain points during development:

- Emulation of 84 privileged registers A

- Virtual interrupts losses > Now all verified!
- Memory isolation

Charly Castes | HotOS’25 27

Verifying Miralis - A Rust RISC-V Model

Miralis is written in Rust v ®
The RISC-V spec is written in Sail : ‘ %/J
RISC

Charly Castes | HotOS’25 28

Verifying Miralis - A Rust RISC-V Model

We wrote a Sail-to-Rust backend to generate a Rust RISC-V model

RISC

Charly Castes | HotOS’25

29

Verifying Miralis - A Rust RISC-V Model

We wrote a Sail-to-Rust backend to generate a Rust RISC-V model

—

A

RISC RISC
%
‘ kan
Charly Castes | HotOS’25 30

</

Verifying Miralis - Faithful Emulation of mret

#[cfg_attr(kani, kani::proof)]
pub fn check_mret() {
let (mut ctx, mut mctx, mut sail_ctx) =
symbolic::new_symbolic_contexts(); l

ctx.emulate_mret(&mut mctx);
execute_MRET(&mut sail_ctx); : ‘

assert_eq!(
ctx,
adapters::sail_to_miralis(sail_ctx, &mctx),
"mret instruction emulation is not correct"

) =~

Charly Castes | HotOS’25

31

Verifying Miralis - Bugs
21 bugs fixed!

Functional Correctness Crash or Sandbox Escape

- mret: set MPP to U-mode after mret - pmpaddr: invalid legalization mask

- mvendorid, scounteren, mcountinhibit,
mcounteren: 32 bits.

- mepc, sepc: last bits must be 0

- mtvec, stvec: invalid vector modes

- medeleg: bit 11 is read-only zero

- satp: discard invalid writes

- vstart: invalid write mask

- mcause, scause: allow any value

- sie, sip: filter based on mideleg

- Interrupts priority

- and more...

- pmpaddr: W=1&R =0 is reserved

- pmpcfg: out of bound access

- mtvec: PC overflow

- pmpcfg: odd pmpcfg register are invalid

Charly Castes | HotOS’25

Verifying Miralis - Bugs

Guest access to lock bit

let reg_idx = idx / 8;
let inner_idx = 1dx % 8;
let shift = inner_idx * 8; // 8 bits per config

self.set_pmpcfg(idx + offset, cfg as u8);

Charly Castes | HotOS’25

33

Verifying Miralis - Bugs

Wrong immediate offset in compressed load/stores

C_LwW => {

LoadInstr {
rd,
s
imm,
b
}

Charly Castes | HotOS’25

34

Verifying Miralis - Bugs

mepc mask depends on C extension

Charly Castes | HotOS’25

35

Lightweight Hypervisor Verification

e There exists official ISA specs
o Can be leveraged to verify systems properties

e Faithful Emulation + Faithful Execution
o Reasonable hypervisor spec

e We verified core components of Miralis
o Instructions emulation, virtual interrupts, memory protection

Charly Castes | HotOS’25

36

