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Background: batching in networking
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Background: batching in networking

• “Batching trades-off latency for throughput”
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Seemingly “ideal” batching

• Assume batching never waits for more objects
• Batching is only done in presence of congestion
• IX [OSDI’14] calls this “adaptive batching”



Seemingly “ideal” batching

• Assume batching never waits for more objects
• Batching is only done in presence of congestion
• IX [OSDI’14] calls this “adaptive batching”

• 3 requests have arrived together to the server
• Should the server process them as one batch?



To batch or not to batch?
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To batch or not to batch?

0 5 10 15 20 25

without batching

2 4

3 3 3

2 4 2 4
time

client

server

throughput = 3/22avg. latency = 16

0 5 10 15 20 25

with batching

time

client

server

3 3 3

2 4

throughput = 3/20avg. latency = 17

22



To batch or not to batch?

client-side cost latency throughput

1 better better

5 worse worse

3 worse better

• Same server-side activity
• Completely different results



Not just in theory
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•Without end-to-end performance metrics, 
any batching decision can be wrong!



What does the literature say?

• State-of-the-practice (Linux)
• Nagle
• Auto-corking
• TSO
• xmit_more
• …

• State-of-the-art 
• Netmap [ATC’12]
• MegaPipe [OSDI’12]
• IX [OSDI’14]
• mTCP [NSDI’14]
• Stackmap [ATC’16]
• ZygOS [SOSP’17]
• …

• None utilize end-to-end performance



What does the literature say?

• None utilize end-to-end performance
• Hypothesis: all may benefit

• State-of-the-practice (Linux)
• Nagle
• Auto-corking
• TSO
• xmit_more
• …

• State-of-the-art 
• Netmap [ATC’12]
• MegaPipe [OSDI’12]
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• ZygOS [SOSP’17]
• …



End-to-end latency is unknown

RTT?



End-to-end latency is unknown
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Little’s law

Sun Mon Tue Wed Thu

average check-in rate:
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Little’s law
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Little’s law in network queues

𝑄 = 𝜆 × 𝐷

queue size queuing delayarrival rate

On average:

𝑄 𝜆 𝐷
easy easy hard



Little’s law in network queues

𝐷 = 𝑄/𝜆

queue sizequeuing delay arrival rate

easy easy

On average:



Combining delays into end-to-end latency

• Latency is a combination of queuing delays (*)

𝐿𝑢𝑛𝑎𝑐𝑘𝑒𝑑
𝑙𝑜𝑐𝑎𝑙 + 𝐿𝑢𝑛𝑟𝑒𝑎𝑑

𝑙𝑜𝑐𝑎𝑙 + 𝐿𝑢𝑛𝑟𝑒𝑎𝑑
𝑟𝑒𝑚𝑜𝑡𝑒 − 𝐿𝑎𝑐𝑘𝑑𝑒𝑙𝑎𝑦

𝑟𝑒𝑚𝑜𝑡𝑒

• These queues already exist in the Linux kernel
• Just need to extract 𝐿 from them

unacked

unread

ackdelay

unacked

unread

ackdelay



Queue performance tracking algorithm

• Simple 4-tuple structure pluggable to any queue:

timestamp of last 
state update

current #items 
in queue

total #items that left 
the queue until now

time-weighted 
accumulator of queue size

𝑞𝑠 = (time, size, total, integral)

• Simple algorithms to maintain (Track) and extract metrics (GetAvgs)

• Passing this tuple to peers allows calculating remote performance



Bridging the semantic gap

• Previous approach needs no app assistance
• Assumption – bytes/packets correlate to messages
• Not always true

• Better correlation – count send() system calls
• Deals with messages fragmented by network stack 
• Not always true

• Most accurate – let the app tell you. How?



Bridging the semantic gap

• Simple API with two functions
• create(n)
• complete(n)

create() complete()

outstanding requests

• Just one client-side user-space “request queue”
• Same Little’s law-based algorithms in user-space
• State shared via send() metadata

• Easy adoption into libc, gRPC, etc.



Evaluation

• Offline prototype – shows potential
• Bytes as units
• No exchange
• No dynamic toggling – workload runs twice

• Nagle as batching algorithm
• Redis as server app

• Hardcoded to disable Nagle

• Lancet as client app
• Measures latency for varying load rates
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Future work and challenges

• Dynamic toggling
• Granularity
• Policy

• Metadata exchange
• Better batching heuristics



Conclusion

• The success of batching depends on end-to-end performance
• Approximating this information can improve batching
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