Batching with End-to-End
Performance Estimation

Avidan Borisov’, Nadav Amit, Dan TsafrirT

Technion

~w

M

Background: batching

per-object cost || per-batch cost

without batching {m expenstlve object expenstlve object expensflve
Operathn operatlon operatlon
with batching [object | object | object eXpe”S.'Ve
operation
“),
—~

batch

Background: batching in networking

per-byte cost per-batch cost

without batching {“ expensive }{ bytes expensive J{ bytes exXpensive }
operation operation operation
with batchin S pmeE
g bytes bytes bytes operation
— _J/
~

batch

Background: batching in networking

per-byte cost per-batch cost

without batching {“ expe”?'ve ByeE expe”?'ve Sy expe”?'ve
operation operation operation
with batchin AR
g bytes bytes bytes —
\ j
~

batch

* “Batching trades-off latency for throughput”

Seemingly “ideal” batching

* Assume batching never waits for more objects
* Batchingis only done in presence of congestion
o |X calls this “adaptive batching”

Seemingly “ideal” batching

T
1

* Assume batching never waits for more objects B |
* Batchingis only done in presence of congestion TO BATCH F
o |X calls this “adaptive batching” ORNOT TO
BATCH
THAT IS

* 3 requests have arrived together to the server THE QUESTION
* Should the server process them as one batch? 2

To batch or not to batch?

avg. latency =14

without batching [perresponse cost®

client \\\‘ 7|
server ¥V V([N DRI

(74 throughput = 3/20

> time

|pe| per-batch cost |

0 5 10

15

20

25

To batch or not to batch?

N N’

. . avg. latency = 13 £/ throughput = 3/14
with batching ol el
client \\\ /I
server - time
0) 10 15 20 25

. _ avg. latency = 14 (1 throughput = 3/20
without batching |m] (]

client \\\‘ 7[7‘ 7[
server (2] (2 4

0 5 10 15 20 25

> time

To batch or not to batch?

with batching

avg. latency = 21

£ throughput = 3/26
I

client \\\ /l
server

> time

0 5 10 15

avg. latency =18

without batching (]

¢ ¢
N

client \\\‘ / /
server ,

(2 4 J2 4)2 4

s

25

¢ ¢
A g

(71 throughput = 3/24

0 5 10 15

> time

25

To batch or not to batch?

avg. latency =17

¢ ¢
A g

£/ throughput = 3/20

> time

with batching [- 7
client \\\ /l
server
0 5 10 15 20 25
. _ avg. latency =16 (71 throughput = 3/22
without batching [l] (]

client \\\
server

(2 4) 2 4]

10

15 20

> time

25

To batch or not to batch?

* Same server-side activity
* Completely different results

client-side cost latency throughput
1 better better
5 worse worse

3 worse better

Not just in theory

120

100

80

60

40

20

(a) client CPU [%0]

baremetal

VM

120

100 |

80 |

60 |

40 |

20 |

(b) server CPU [%]

baremetal VM

240

200

160

120

80

40

(c) latency [ps]

baremetal VM

Redis at
20K req/s

Bl nagle=off
I nagle=on

Not just in theory

-
* Without end-to-end performance metrics,
any batching decision can be wrong!

g

~

J

What does the literature say?

* State-of-the-practice (Linux) * State-of-the-art
* Nagle * Netmap
* Auto-corking * MegaPipe
* TSO e IX
* Xmit_more * mICP
. .. * Stackmap
* ZygOS

* None utilize end-to-end performance

What does the literature say?

* State-of-the-practice (Linux) * State-of-the-art
* Nagle * Netmap
* Auto-corking * MegaPipe
* TSO e IX
* Xmit_more * mICP
. .. * Stackmap
* ZygOS

* None utilize end-to-end performance
* Hypothesis: all may benefit

End-to-end latency is unknown

RTT?
[METADATA]

—
? A——

Client [METADATA] Server

End-to-end latency is unknown

' METADATA
PERFORMANCE

D L = J

Client [METADATA

PERFORMANCE
COUNTERS

\ J

Little’s law

Q= AXD

average average average
occupancy rate delay

=)o =)o =)o
=)o =i)e =i)e =)o =i =)o
=)o =)o =)o =)o =iDe
=)o =i =)o =ie =i =i =)o
=)o =i =ie =il

Sun Mon Tue Wed Thu

Little’s law

Q= AXD

average average

rate

average

occupancy de[ay

average check-in rate:
2 guests per day

Mon

Tue

Thu

Little’s law

Q= AXD

average average average
occupancy rate delay

=)o =)o =)o
=)o =i)e =i)e =)o =i =)o
=)o =)o =)o =)o =iDe
=)o =i =)o =ie =i =i =)o
=)o =i =ie =il

Sun Mon Tue Wed Thu

Little’s law

days of
stay
average average average . . . average stay:
occupancy rate delay 'H‘ 'm 'H‘ 3 days

Little’s law

average ,ﬁ‘
occupancy: . !
6 guests 'ﬂ‘ 'ﬂ‘ 'H‘

= AXD

average average average

)
)
ocCcupancy rate delay ﬂ
)
)

go =§o go

Sun Mon Tue Wed Thu

Little’s law in network queues

On average:

) =AXD
/ | \

queue size arrival rate queuing delay

Little’s law in network queues

D=0/]
/ | N\

queuing delay queue size arrival rate

Combining delays into end-to-end latency

* Latency is a combination of queuing delays (*)
Lloc + Llocal 4T remote Lremote
unacked unread unread ackdelay

* These queues already exist in the Linux kernel
* Just need to extract L from them

%: unacked

unacked %: HIHI —> :
| |
unread > ||} | —>

%: unread

ackdelay :ﬁ | —> ==l

I
J Client Server

%I ackdelay

Queue performance tracking algorithm

* Simple 4-tuple structure pluggable to any queue:
qs = (time, size, total, integral)

_—— N T

timestamp of last current #items total #items that left time-weighted
state update In queue the queue untilnow accumulator of queue size

* Simple algorithms to maintain (Track) and extract metrics (GetAvgs)

* Passing this tuple to peers allows calculating remote performance

Bridging the semantic gap

* Previous approach needs no app assistance
* Assumption — bytes/packets correlate to messages
* Not always true

* Better correlation — count send() system calls
* Deals with messages fragmented by network stack
* Not always true

* Most accurate — let the app tell you. How?

Bridging the semantic gap

* Just one client-side user-space “request queue”
 Same Little’s law-based algorithms in user-space
» State shared via send() metadata

create() complete()

* Simple APl with two functions S |

* create(n) outstanding requests
« complete(n)

* Easy adoption into libc, gRPC, etc.

Evaluation

* Offline prototype — shows potential
* Bytes as units

* No exchange
* No dynamic toggling —workload runs twice

* Nagle as batching algorithm

* Redis as server app
* Hardcoded to disable Nagle

* Lancet as client app
* Measures latency for varying load rates

Evaluation

(a) 100% SET

104§

latency 4 :

3] L

10°,

O 10 20 30 40 50 60 70 80
sustained throughput [KRPS]

 m—

- nagle=off measured - nagle=on measured
O nagle=off approximated O nagle=on approximated
A+ approximated cutoff v measured cutoff

Evaluation

latency 3_
ps) 19

107,

1O4§

(a) 100% SET

(b) 95% SET

good
correlation

AAAAAAA

bad
correlation

0 10

 m—

- nagle=off measured

A approximated cutoff

20 30 40 50 60 70 80 O

1
 m— Y

10 20 30 40 50 60

sustained throughput [KRPS]

- nagle=on measured

O nagle=off approximated O nagle=on approximated

v measured cutoff

Future work and challenges

* Dynamic toggling
* Granularity
* Policy

* Metadata exchange
* Better batching heuristics

Conclusion

* The success of batching depends on end-to-end performance
* Approximating this information can improve batching

	Slide 1: Batching with End-to-End Performance Estimation
	Slide 2: Background: batching
	Slide 3: Background: batching in networking
	Slide 4: Background: batching in networking
	Slide 5: Seemingly “ideal” batching
	Slide 6: Seemingly “ideal” batching
	Slide 7: To batch or not to batch?
	Slide 8: To batch or not to batch?
	Slide 9: To batch or not to batch?
	Slide 10: To batch or not to batch?
	Slide 11: To batch or not to batch?
	Slide 12: Not just in theory
	Slide 13: Not just in theory
	Slide 14: What does the literature say?
	Slide 15: What does the literature say?
	Slide 16: End-to-end latency is unknown
	Slide 17: End-to-end latency is unknown
	Slide 18: Little’s law
	Slide 19: Little’s law
	Slide 20: Little’s law
	Slide 21: Little’s law
	Slide 22: Little’s law
	Slide 23: Little’s law in network queues
	Slide 24: Little’s law in network queues
	Slide 25: Combining delays into end-to-end latency
	Slide 26: Queue performance tracking algorithm
	Slide 27: Bridging the semantic gap
	Slide 28: Bridging the semantic gap
	Slide 29: Evaluation
	Slide 30: Evaluation
	Slide 31: Evaluation
	Slide 32: Future work and challenges
	Slide 33: Conclusion

