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Background: batching in networking
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Background: batching in networking
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* “Batching trades-off latency for throughput”



Seemingly “ideal” batching

* Assume batching never waits for more objects
* Batchingis only done in presence of congestion
o |X calls this “adaptive batching”



Seemingly “ideal” batching
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* Assume batching never waits for more objects B |
* Batchingis only done in presence of congestion TO BATCH F
o |X calls this “adaptive batching” ORNOT TO
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* 3 requests have arrived together to the server THE QUESTION
* Should the server process them as one batch? 2




To batch or not to batch?
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To batch or not to batch?
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To batch or not to batch?
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To batch or not to batch?
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To batch or not to batch?

* Same server-side activity
* Completely different results

client-side cost latency throughput
1 better better
5 worse worse

3 worse better



Not just in theory
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Not just in theory

-
* Without end-to-end performance metrics,
any batching decision can be wrong!
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What does the literature say?

* State-of-the-practice (Linux) * State-of-the-art
* Nagle * Netmap
* Auto-corking * MegaPipe
* TSO e IX
* Xmit_more * mICP
. .. * Stackmap
* ZygOS

* None utilize end-to-end performance



What does the literature say?

* State-of-the-practice (Linux) * State-of-the-art
* Nagle * Netmap
* Auto-corking * MegaPipe
* TSO e IX
* Xmit_more * mICP
. .. * Stackmap
* ZygOS

* None utilize end-to-end performance
* Hypothesis: all may benefit



End-to-end latency is unknown
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End-to-end latency is unknown
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Little’s law
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Little’s law

Q= AXD
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Little’s law

days of
stay
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Little’s law
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Little’s law in network queues

On average:

) =AXD
/ | \

queue size arrival rate queuing delay



Little’s law in network queues
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Combining delays into end-to-end latency

* Latency is a combination of queuing delays (*)
Lloc + Llocal 4T remote Lremote
unacked unread unread ackdelay

* These queues already exist in the Linux kernel
* Just need to extract L from them
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Queue performance tracking algorithm

* Simple 4-tuple structure pluggable to any queue:
qs = (time, size, total, integral)

_—— N T

timestamp of last current #items total #items that left  time-weighted
state update In queue the queue untilnow  accumulator of queue size

* Simple algorithms to maintain (Track) and extract metrics (GetAvgs)

* Passing this tuple to peers allows calculating remote performance



Bridging the semantic gap

* Previous approach needs no app assistance
* Assumption — bytes/packets correlate to messages
* Not always true

* Better correlation — count send() system calls
* Deals with messages fragmented by network stack
* Not always true

* Most accurate — let the app tell you. How?



Bridging the semantic gap

* Just one client-side user-space “request queue”
 Same Little’s law-based algorithms in user-space
» State shared via send() metadata

create() complete()

* Simple APl with two functions S |

* create(n) outstanding requests
« complete(n)

* Easy adoption into libc, gRPC, etc.



Evaluation

* Offline prototype — shows potential
* Bytes as units

* No exchange
* No dynamic toggling —workload runs twice

* Nagle as batching algorithm

* Redis as server app
* Hardcoded to disable Nagle

* Lancet as client app
* Measures latency for varying load rates



Evaluation
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Future work and challenges

* Dynamic toggling
* Granularity
* Policy

* Metadata exchange
* Better batching heuristics



Conclusion

* The success of batching depends on end-to-end performance
* Approximating this information can improve batching
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