These slides are best seen with Powerpoint/Google Slides in
presentation mode since they have animation

Understanding the limitations JURASSIC DARK
of pubsub systems

An Adventure
65 Million Years In The Making.

puo st

This paper: only 12
years in the making

< databricks

Pubsub abstraction violates the end-to-end argument
Explicit storage with Watch is the way togo

Talk Outline
What is pubsub

Problems with pubsub
Our approach: Watch with explicit store

Research directions

(@

Connecting datacenter services

Serverless Billing
Query -~ infrastructure I
orchestration \
Machine

Account .~ Caching ~— learning

management
I T / Auth
_ Storage

Service — </Config

management management

e Datacenter services need to interact
e RPCs are the most common way to communicate

< 3

Communicating beyond RPCs

e Applications need more capabilities than RPCs:

o Decoupling of services, e.g., senders/receivers could
work at different speeds/availability
o Reliable: No loss of messages

e (Can use database but have to poll frequently

Instead, use an abstraction designed for this ...

©

Pubsub: a reliable messaging abstraction

e TJopics: Logical channel for
[Consumer} [Consumer} [Consumer } Sending/receiving messages

g subscribe .
\\ // kil ,./ e Internal durable log to buffer

T:/ T"&é/ sender messages

L, e Topics & log enable “loose
/Pubsub system\ coupling” and “reliable delivery”
/ publish \ e E.g., Kaftka, GCP Pubsub

[Producer} [Producer} [Producer}

e Many uses, e.g. database
replication and cache freshness

Talk Outline
What is pubsub

Problems with pubsub
Our approach: Watch with explicit store

Research directions

(@

What is the main problem with Pubsub?

The Pubsub abstraction violates the
end-to-end argument in system design

Why pubsub violates end-to-end principle

Violates end-to-end principle by not giving control to “ends”

e Pubsub log contract hurts correctness and/or scalability

o Log not really durable
o Hidden log is not controlled by consumer end
o Ordering guarantee is not relative to source end

e Pubsub breaks end-to-end guarantees in the presence of
dynamic partitioning

©

High latency due to backlogs

Consumer

J G

e lLarge backlogs due to slow consumers,

¥ . . .
: network, misconfiguration, ...

.. o Cause high latency/head-of-line blocking
old new

“.| Consumer contract prevents consumer from
skipping, e.g., to latest version

OO

Source store

«©

Lack of correctness & decoupling

Consumer

1 Hidden log cannot be retained forever

Pubsub retention policy of few days
| Expectation: consumers not “that slow”

Source store

" | Reality: consumers are that slow

e Can lead to data loss or corruption

e Not decoupled: consumers must recover from

S

source store

10

Lack of correctness, e.g. for replication

Destination store _ _ _
e Goal: Snapshot consistency on destination

D @ D e Serial publish and apply = correct, no scale

;de' e Parallel = reordering, no eventual consistency!
in
“ Pubsub ordering guarantee not helpful
4 e (Get: Pubsub delivers messages in publish order
A N
' e Need: Consumer end needs transaction order
l' " v 11 pldbllbc, SQCLLIT 1VUI ©Tvolilual bUIIDIDLUIIb_y

Ins o Reset with daily/weekly snapshots

@ @ @ o For “old” snapshot & “approximate” queries

Source store - 1

Lack of correctness, e.g. for cache freshness

Sharded e Messages to all pods: doesn't scale

¥ “Sharding e Pubsub system’s sharding not helpful
[:] [}‘\\ trapsition

A e Auto-sharding creates a moving target
Routing Bfoxy v N for updates: Races lead to lost updates
‘\‘/l ‘| N*\J
Auto-sharder, e.g.,
I Dicer/Slicer
() () [OSDI “16]

e Cache freshness in practice
o Backup TTLs/polling to handle unreliability

JOe o

Talk Outline
What is pubsub

Problems with pubsub
Our approach: Watch with explicit store

Research directions

13

Solution: Explicit storage with Watch

Consumer

Producers write to source store
Consumers can access source store

Watch system: External or built-in

Consumers watch ranges of interest
Watch model present in Spanner, k8s

14

Watch API

trai’F Watchable { | Watcher expresses interest for
void watch(lowKey, highKey, dynamically assigned key range starting
version, callback); at last known version

}

Versions are in source store domain

trait WatchCallback {
void onChange(key, version, change);

void onResync(); s Given excessive backlog, recover from source store

void onProgress(lowKey, highKey, _
version): Range-scoped progress signals enable strong

) e2e semantics (e.g. snapshot consistency)

Architectures based on Watch

Destination store

Sharded h
Change Eljj Eljj Eljj harded cac e»[}»[}

Watclfr
applicator [] N Auto-sharder, e.g., / - \‘
‘Watg:h ' Dicer/Slicer = |
- w | L read
w \ :
\Watch system / ‘, \Watch system / !
— " N II
NN J /
’ /Snapshot
@ E[lj Ej ,/ read f 1)y
- ”’
Source store Source store

Replication across databases Cache freshness

16

Range-based knowledge using Watch

Consumer A O ®
- E} Latest-known version
. Watch | o V10T ""-.. Knowledge
‘ 5 ® - .
[S| (Ky-Ke vy . oV, O O O region
\ l] .
7 I > T .
|4 : Vs T T T T TTETTTCT ... Compaction
Progress ! Snapshot -
Watchsysiem read Vag————_ . St
GKA c¥$1eo ' 3 Earliest-known version
! : : : : >
- /
N K K K K

A Keys B C D

// | \\ /
@ @ @,'/ e Progress signals enable range-based guarantees

e Consumer can safely GC ranges to save space
Source store <

Versions

Snapshots using knowledge regions

Knowledge reglon

Complete snapshot

1
1.

Keys

Get “jagged” windows from watch system

Knowledge region upper bound
Increases on more progress signals

Serve snapshot across contiguous
regions for range of keys

18

Contrasting with pubsub’s weaknesses

Consumer

V., m Q 4 Explicit not hidden store
\ WatCHﬁtCh(K5 0) .. - -
D‘ Progréss .. \'Read Durability: leverage source store
(Ko~ Kso) Vg | ‘ff’?‘fff,’.?
o 1~ |End-to-end ordering instead of
\ Hateh system /‘ pubsub ordering
Producer ,’l)
VA .| Dynamic partitioning: convey
Vss ‘/ arbitrary ranges

©

Source store

Talk Outline
What is pubsub

Problems with pubsub
Our approach: Watch with explicit store

Research directions

(@

20

pestination store - R@search directions

-1

i i i e Scalable Watchable storage, e.g., Spanner

Cache requires Truetime, etcd does not scale

e External scalable watch system

———————————————
s ., T=~
L

:‘~\Freshness system / e Scalable & snapshot-consistent replication
for heterogeneous storage

——————

Ej Ej Ej 1 e Scalable & correct cache freshness system

Source store using Watch i o

Summary

Pubsub abstraction violates end-to-end principle: Fails to
address application needs

Explicit storage w/ Watch enables correct & scalable solutions

New research directions in storage, caching, replication

22

©

