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Understanding the limitations JURASSIC DARK
of pubsub systems

An Adventure
65 Million Years In The Making.
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This paper: only 12
years in the making
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Pubsub abstraction violates the end-to-end argument
Explicit storage with Watch is the way togo
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Connecting datacenter services

Serverless Billing
Query -~ infrastructure I
orchestration \
Machine

Account .~ Caching ~— learning

management
I T / Auth
_ Storage

Service — </Config

management management

e Datacenter services need to interact
e RPCs are the most common way to communicate
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Communicating beyond RPCs

e Applications need more capabilities than RPCs:

o Decoupling of services, e.g., senders/receivers could
work at different speeds/availability
o Reliable: No loss of messages

e (Can use database but have to poll frequently

Instead, use an abstraction designed for this ...
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Pubsub: a reliable messaging abstraction

e TJopics: Logical channel for
[ Consumer} [ Consumer} [ Consumer } Sending/receiving messages

g subscribe .
\\ // kil ,./ e Internal durable log to buffer

T:/ T"&é/ sender messages

L, e Topics & log enable “loose
/Pubsub system\ coupling” and “reliable delivery”
/ publish \ e E.g., Kaftka, GCP Pubsub

[ Producer} [ Producer} [ Producer}

e Many uses, e.g. database
replication and cache freshness
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What is the main problem with Pubsub?

The Pubsub abstraction violates the
end-to-end argument in system design



Why pubsub violates end-to-end principle

Violates end-to-end principle by not giving control to “ends”

e Pubsub log contract hurts correctness and/or scalability

o Log not really durable
o Hidden log is not controlled by consumer end
o Ordering guarantee is not relative to source end

e Pubsub breaks end-to-end guarantees in the presence of
dynamic partitioning
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High latency due to backlogs

Consumer

J G

e lLarge backlogs due to slow consumers,

¥ . . .
: network, misconfiguration, ...

.. o Cause high latency/head-of-line blocking
old new

“.| Consumer contract prevents consumer from
skipping, e.g., to latest version

OO

Source store
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Lack of correctness & decoupling

Consumer

1 Hidden log cannot be retained forever

Pubsub retention policy of few days
| Expectation: consumers not “that slow”

Source store

" | Reality: consumers are that slow

e Can lead to data loss or corruption

e Not decoupled: consumers must recover from

S

source store
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Lack of correctness, e.g. for replication

Destination store _ _ _
e Goal: Snapshot consistency on destination

D @ D e Serial publish and apply = correct, no scale

;de' e Parallel = reordering, no eventual consistency!
in
“ Pubsub ordering guarantee not helpful
4 e (Get: Pubsub delivers messages in publish order
A N
' e Need: Consumer end needs transaction order
l' " v 11 pldbllbc, SQCLLIT 1VUI ©Tvolilual bUIIDIDLUIIb_y

Ins o Reset with daily/weekly snapshots

@ @ @ o For “old” snapshot & “approximate” queries

Source store - 1



Lack of correctness, e.g. for cache freshness

Sharded e Messages to all pods: doesn't scale

¥ “Sharding e Pubsub system’s sharding not helpful
[ :] [ }‘\\ trapsition

A e Auto-sharding creates a moving target
Routing Bfoxy v N for updates: Races lead to lost updates
‘\‘/l ‘| N\\*\J
Auto-sharder, e.g.,
I Dicer/Slicer
() () [OSDI “16]

e Cache freshness in practice
o Backup TTLs/polling to handle unreliability
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Solution: Explicit storage with Watch

Consumer

Producers write to source store
Consumers can access source store

Watch system: External or built-in

Consumers watch ranges of interest
Watch model present in Spanner, k8s
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Watch API

trai’F Watchable { | Watcher expresses interest for
void watch(lowKey, highKey, dynamically assigned key range starting
version, callback); at last known version

}

Versions are in source store domain

trait WatchCallback {
void onChange(key, version, change);

void onResync(); s Given excessive backlog, recover from source store

void onProgress(lowKey, highKey, _
version): Range-scoped progress signals enable strong

) e2e semantics (e.g. snapshot consistency)




Architectures based on Watch

Destination store

Sharded h
Change Eljj Eljj Eljj harded cac e»[ }»[ }

Watclfr
applicator [ ] N Auto-sharder, e.g., / - \‘
‘Watg:h ' Dicer/Slicer = |
- w | L read
w \ :
\Watch system / ‘, \Watch system / !
— " N II
NN J /
’ /Snapshot
@ E[lj Ej ,/ read f 1 )y
- ”’
Source store Source store

Replication across databases Cache freshness
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Range-based knowledge using Watch

Consumer A O ®
- E} Latest-known version
. Watch | o V10T ""-..  Knowledge
‘ 5 ® - .
[ S| (Ky-Ke vy . oV, O O O region
\ l ] .
7 I > T .
|4 : Vs T T T T TTETTTCT ... Compaction
Progress ! Snapshot -
Watchsysiem read Vag————_ . St
GKA c¥$1eo ' 3 Earliest-known version
! : : : : >
- /
N K K K K

A Keys B C D

// | \\ /
@ @ @,'/ e Progress signals enable range-based guarantees

e Consumer can safely GC ranges to save space
Source store <



Versions

Snapshots using knowledge regions

Knowledge reglon

Complete snapshot

1
1.

Keys

Get “jagged” windows from watch system

Knowledge region upper bound
Increases on more progress signals

Serve snapshot across contiguous
regions for range of keys
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Contrasting with pubsub’s weaknesses

Consumer

V., m Q 4 Explicit not hidden store
\ WatCHﬁtCh( K5 0) .. - -
D‘ Progréss .. \'Read Durability: leverage source store
(Ko~ Kso) Vg | ‘ff’?‘fff,’.?
o 1~ |End-to-end ordering instead of
\ Hateh system /‘ pubsub ordering
Producer ,’l )
VA .| Dynamic partitioning: convey
Vss ‘/ arbitrary ranges
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pestination store - R@search directions

-1
________________________

i i i e Scalable Watchable storage, e.g., Spanner

Cache requires Truetime, etcd does not scale

e External scalable watch system

———————————————
s ., T=~
L

:‘~\Freshness system / e Scalable & snapshot-consistent replication
for heterogeneous storage

____________________
——————

Ej Ej Ej 1 e Scalable & correct cache freshness system

Source store using Watch i o



Summary

Pubsub abstraction violates end-to-end principle: Fails to
address application needs

Explicit storage w/ Watch enables correct & scalable solutions

New research directions in storage, caching, replication
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