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Understanding the limitations 
of pubsub systems

1

This paper: only 12 
years in the making

Pubsub abstraction violates the end-to-end argument
Explicit storage with Watch is the way to go

Pub Sub

These slides are best seen with Powerpoint/Google Slides in 
presentation mode since they have animation



Talk Outline
● What is pubsub

● Problems with pubsub

● Our approach: Watch with explicit store

● Research directions
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Connecting datacenter services
Serverless 

infrastructure

Storage
Service 

management

Query 
orchestration

Config 
management

Billing

Account 
management

Machine 
learning

Auth

Caching

● Datacenter services need to interact
● RPCs are the most common way to communicate
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Communicating beyond RPCs
● Applications need more capabilities than RPCs:

○ Decoupling of services, e.g., senders/receivers could 
work at different speeds/availability

○ Reliable: No loss of messages
● Can use database but have to poll frequently

Instead, use an abstraction designed for this …
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Pubsub: a reliable messaging abstraction 
● Topics: Logical channel for 

sending/receiving messages 

● Internal durable log to buffer 
sender messages

● Topics & log enable “loose 
coupling” and “reliable delivery”

● E.g., Kafka, GCP Pubsub

● Many uses, e.g. database 
replication and cache freshness

Consumer Consumer Consumer

publishProducer Producer

Log

Pubsub system

Topic A Topic B

Log

Producer

publish

subscribe
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What is the main problem with Pubsub?

The Pubsub abstraction violates the
end-to-end argument in system design
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Why pubsub violates end-to-end principle
Violates end-to-end principle by not giving control to “ends”

● Pubsub log contract hurts correctness and/or scalability
○ Log not really durable
○ Hidden log is not controlled by consumer end
○ Ordering guarantee is not relative to source end

● Pubsub breaks end-to-end guarantees in the presence of 
dynamic partitioning

8



High latency due to backlogs

Source store 9

● Large backlogs due to slow consumers, 
network, misconfiguration, …
○ Cause high latency/head-of-line blocking

Consumer

Consumer contract prevents consumer from 
skipping, e.g., to latest version

old new



Lack of correctness & decoupling
Consumer

Source store 10

Reality: consumers are that slow
● Can lead to data loss or corruption
● Not decoupled: consumers must recover from 

source store

Hidden log cannot be retained forever 

Pubsub retention policy of few days
Expectation: consumers not “that slow” 

old new



Lack of correctness, e.g. for replication
● Goal: Snapshot consistency on destination 

Source store

Ins

Del

Ins Del

● Parallel ⇒ reordering, no eventual consistency!

● Even if consumer recovers per-object ordering 
via versions, OCC, tombstones ⇒ 
no cross-object snapshot consistency!

11

● Serial publish and apply ⇒ correct, no scale?!

● In practice, settle for eventual consistency
○ Reset with daily/weekly snapshots
○ For “old” snapshot & “approximate” queries

Pubsub ordering guarantee not helpful
● Get: Pubsub delivers messages in publish order
● Need: Consumer end needs transaction order

Destination store



Lack of correctness, e.g. for cache freshness

Auto-sharder, e.g.,
Dicer/Slicer
 [OSDI ‘16]

Sharded
Cache

Write 

Routing Proxy

● Cache freshness in practice
○ Backup TTLs/polling to handle unreliability

● Auto-sharding creates a moving target 
for updates: Races lead to lost updates

● Messages to all pods: doesn't scale
● Pubsub system’s sharding not helpfulSharding 

transition

Read
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Solution: Explicit storage with Watch

Source 
Store

Consumer

watch()

Read

● Producers write to source store

Producer

update
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● Watch system: External or built-in
● Consumers watch ranges of interest
● Watch model present in Spanner, k8sWatch system

● Consumers can access source store 



Watch API
trait Watchable {
  void watch(lowKey, highKey,
             version, callback);
}

trait WatchCallback {
  void onChange(key, version, change);

  void onResync();

  void onProgress(lowKey, highKey,
                  version);
}
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Watcher expresses interest for 
dynamically assigned key range starting 

at last known version

Versions are in source store domain

Given excessive backlog, recover from source store

Range-scoped progress signals enable strong 
e2e semantics (e.g. snapshot consistency) 



Architectures based on Watch
Destination store

Source store

Change 
applicator

Watch system

Watch
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Snapshot 
read

Replication across databases

S 

S read

S 

S 

Watch

Cache freshness
Source store

Sharded cache

Auto-sharder, e.g.,
Dicer/Slicer

Watch system



Range-based knowledge using Watch
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v3

KA KB KD

(KA- KC), v10

Progress

KC

(KA - KC),  v10

Latest-known version

Earliest-known version

● Progress signals enable range-based guarantees

Snapshot 
read

● Consumer can safely GC ranges to save space

Compaction

Knowledge
region

Watch system



v8

v10

Snapshots using knowledge regions
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Knowledge region

Complete snapshot
● Serve snapshot across contiguous 

regions for range of keys

● Knowledge region upper bound 
increases on more progress signals

v12

● Get “jagged” windows from watch system



Contrasting with pubsub’s weaknesses
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Consumer

watch()

Producer

Watch system

Explicit not hidden store

Read Durability: leverage source store 
Resync

Source store 

End-to-end ordering instead of 
pubsub ordering

Dynamic partitioning: convey 
arbitrary rangesV32

S 

V33

S 

V32V33

watch(K30- K50)

(K40 - K50),  v10

Progress
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Watch clients

Destination store

Change applicator Cache

Research directions

21Source store

Watch system

Watch

● Scalable Watchable storage, e.g., Spanner 
requires Truetime, etcd does not scale

● Scalable & snapshot-consistent replication 
for heterogeneous storage

● Scalable & correct cache freshness system 
using Watch

● External scalable watch system

Freshness  system



Summary

● Pubsub abstraction violates end-to-end principle: Fails to 
address application needs

● Explicit storage w/ Watch enables correct & scalable solutions

● New research directions in storage, caching, replication
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