
Atul Adya, Phil Bogle, Colin Meek
(and help from Jonathan Ellithorpe)

Understanding the limitations
of pubsub systems

1

This paper: only 12
years in the making

Pubsub abstraction violates the end-to-end argument
Explicit storage with Watch is the way to go

Pub Sub

These slides are best seen with Powerpoint/Google Slides in
presentation mode since they have animation

Talk Outline
● What is pubsub

● Problems with pubsub

● Our approach: Watch with explicit store

● Research directions
2

Connecting datacenter services
Serverless

infrastructure

Storage
Service

management

Query
orchestration

Config
management

Billing

Account
management

Machine
learning

Auth

Caching

● Datacenter services need to interact
● RPCs are the most common way to communicate

3

Communicating beyond RPCs
● Applications need more capabilities than RPCs:

○ Decoupling of services, e.g., senders/receivers could
work at different speeds/availability

○ Reliable: No loss of messages
● Can use database but have to poll frequently

Instead, use an abstraction designed for this …
4

Pubsub: a reliable messaging abstraction
● Topics: Logical channel for

sending/receiving messages

● Internal durable log to buffer
sender messages

● Topics & log enable “loose
coupling” and “reliable delivery”

● E.g., Kafka, GCP Pubsub

● Many uses, e.g. database
replication and cache freshness

Consumer Consumer Consumer

publishProducer Producer

Log

Pubsub system

Topic A Topic B

Log

Producer

publish

subscribe

5

Talk Outline
● What is pubsub

● Problems with pubsub

● Our approach: Watch with explicit store

● Research directions
6

What is the main problem with Pubsub?

The Pubsub abstraction violates the
end-to-end argument in system design

7

Why pubsub violates end-to-end principle
Violates end-to-end principle by not giving control to “ends”

● Pubsub log contract hurts correctness and/or scalability
○ Log not really durable
○ Hidden log is not controlled by consumer end
○ Ordering guarantee is not relative to source end

● Pubsub breaks end-to-end guarantees in the presence of
dynamic partitioning

8

High latency due to backlogs

Source store 9

● Large backlogs due to slow consumers,
network, misconfiguration, …
○ Cause high latency/head-of-line blocking

Consumer

Consumer contract prevents consumer from
skipping, e.g., to latest version

old new

Lack of correctness & decoupling
Consumer

Source store 10

Reality: consumers are that slow
● Can lead to data loss or corruption
● Not decoupled: consumers must recover from

source store

Hidden log cannot be retained forever

Pubsub retention policy of few days
Expectation: consumers not “that slow”

old new

Lack of correctness, e.g. for replication
● Goal: Snapshot consistency on destination

Source store

Ins

Del

Ins Del

● Parallel ⇒ reordering, no eventual consistency!

● Even if consumer recovers per-object ordering
via versions, OCC, tombstones ⇒
no cross-object snapshot consistency!

11

● Serial publish and apply ⇒ correct, no scale?!

● In practice, settle for eventual consistency
○ Reset with daily/weekly snapshots
○ For “old” snapshot & “approximate” queries

Pubsub ordering guarantee not helpful
● Get: Pubsub delivers messages in publish order
● Need: Consumer end needs transaction order

Destination store

Lack of correctness, e.g. for cache freshness

Auto-sharder, e.g.,
Dicer/Slicer
 [OSDI ‘16]

Sharded
Cache

Write

Routing Proxy

● Cache freshness in practice
○ Backup TTLs/polling to handle unreliability

● Auto-sharding creates a moving target
for updates: Races lead to lost updates

● Messages to all pods: doesn't scale
● Pubsub system’s sharding not helpfulSharding

transition

Read

Talk Outline
● What is pubsub

● Problems with pubsub

● Our approach: Watch with explicit store

● Research directions
13

Solution: Explicit storage with Watch

Source
Store

Consumer

watch()

Read

● Producers write to source store

Producer

update

14

● Watch system: External or built-in
● Consumers watch ranges of interest
● Watch model present in Spanner, k8sWatch system

● Consumers can access source store

Watch API
trait Watchable {
 void watch(lowKey, highKey,
 version, callback);
}

trait WatchCallback {
 void onChange(key, version, change);

 void onResync();

 void onProgress(lowKey, highKey,
 version);
}

15

Watcher expresses interest for
dynamically assigned key range starting

at last known version

Versions are in source store domain

Given excessive backlog, recover from source store

Range-scoped progress signals enable strong
e2e semantics (e.g. snapshot consistency)

Architectures based on Watch
Destination store

Source store

Change
applicator

Watch system

Watch

16

Snapshot
read

Replication across databases

S

S read

S

S

Watch

Cache freshness
Source store

Sharded cache

Auto-sharder, e.g.,
Dicer/Slicer

Watch system

Range-based knowledge using Watch

v10

Source store

Consumer

v7

Ve
rs

io
ns

v5

KeysS T U

S T U

Watch

17

v3

KA KB KD

(KA- KC), v10

Progress

KC

(KA - KC), v10

Latest-known version

Earliest-known version

● Progress signals enable range-based guarantees

Snapshot
read

● Consumer can safely GC ranges to save space

Compaction

Knowledge
region

Watch system

v8

v10

Snapshots using knowledge regions

18

Ve
rs

io
ns

Keys

v5

v0

v7

v3

Knowledge region

Complete snapshot
● Serve snapshot across contiguous

regions for range of keys

● Knowledge region upper bound
increases on more progress signals

v12

● Get “jagged” windows from watch system

Contrasting with pubsub’s weaknesses

19

Consumer

watch()

Producer

Watch system

Explicit not hidden store

Read Durability: leverage source store
Resync

Source store

End-to-end ordering instead of
pubsub ordering

Dynamic partitioning: convey
arbitrary rangesV32

S

V33

S

V32V33

watch(K30- K50)

(K40 - K50), v10

Progress

Talk Outline
● What is pubsub

● Problems with pubsub

● Our approach: Watch with explicit store

● Research directions
20

Watch clients

Destination store

Change applicator Cache

Research directions

21Source store

Watch system

Watch

● Scalable Watchable storage, e.g., Spanner
requires Truetime, etcd does not scale

● Scalable & snapshot-consistent replication
for heterogeneous storage

● Scalable & correct cache freshness system
using Watch

● External scalable watch system

Freshness system

Summary

● Pubsub abstraction violates end-to-end principle: Fails to
address application needs

● Explicit storage w/ Watch enables correct & scalable solutions

● New research directions in storage, caching, replication

22

