
These slides are best seen with Powerpoint/Google Slides in presentation mode since they have animation

Understanding the limitations of pubsub systems

Atul Adya, Phil Bogle, Colin Meek

(and help from Jonathan Ellithorpe)

Pubsub abstraction violates the end-to-end argument Explicit storage with Watch is the way to go

Talk Outline

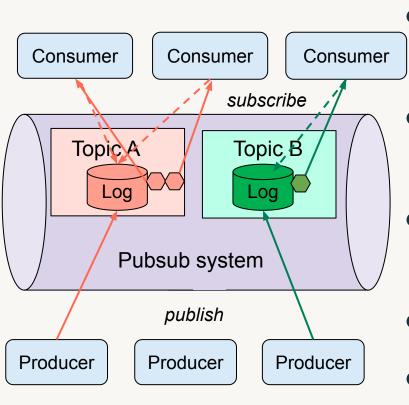
What is pubsub

Problems with pubsub

Our approach: Watch with explicit store

Connecting datacenter services

- Datacenter services need to interact
- RPCs are the most common way to communicate


Communicating beyond RPCs

- Applications need more capabilities than RPCs:
 - Decoupling of services, e.g., senders/receivers could work at different speeds/availability
 - Reliable: No loss of messages
- Can use database but have to poll frequently

Instead, use an abstraction designed for this ...

Pubsub: a reliable messaging abstraction

- Topics: Logical channel for sending/receiving messages
- Internal durable log to buffer sender messages
- Topics & log enable "loose coupling" and "reliable delivery"
- E.g., Kafka, GCP Pubsub
 - Many uses, e.g. database replication and cache freshmess

Talk Outline

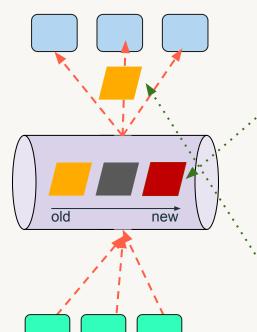
What is pubsub

Problems with pubsub

Our approach: Watch with explicit store

What is the main problem with Pubsub?

The Pubsub abstraction violates the end-to-end argument in system design

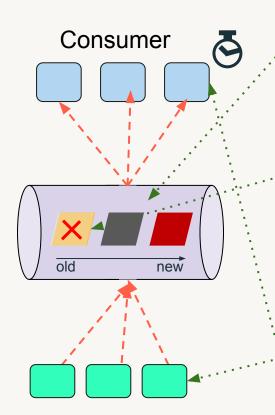

Why pubsub violates end-to-end principle

Violates end-to-end principle by not giving control to "ends"

- Pubsub log contract hurts correctness and/or scalability
 - Log not really durable
 - Hidden log is not controlled by consumer end
 - Ordering guarantee is not relative to source end
- Pubsub breaks end-to-end guarantees in the presence of dynamic partitioning

High latency due to backlogs

Consumer



- Large backlogs due to slow consumers, network, misconfiguration, ...
 - Cause high latency/head-of-line blocking

Consumer contract prevents consumer from skipping, e.g., to latest version

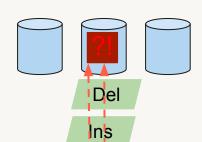
Source store

Lack of correctness & decoupling

Hidden log cannot be retained forever

Pubsub retention policy of few days

Expectation: consumers not "that slow"


Reality: consumers are that slow

- Can lead to data loss or corruption
- Not decoupled: consumers must recover from source store

Source store

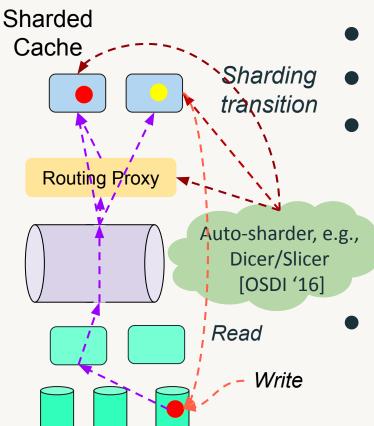
Lack of correctness, e.g. for replication

Destination store

- Goal: Snapshot consistency on destination
- Serial publish and apply ⇒ correct, no scale
- Parallel ⇒ reordering, no eventual consistency!

Pubsub ordering guarantee not helpful

- Get: Pubsub delivers messages in publish order
- Need: Consumer end needs transaction order
- III practice, settle for evertual corisistericy
 - Reset with daily/weekly snapshots
 - For "old" snapshot & "approximate" queries



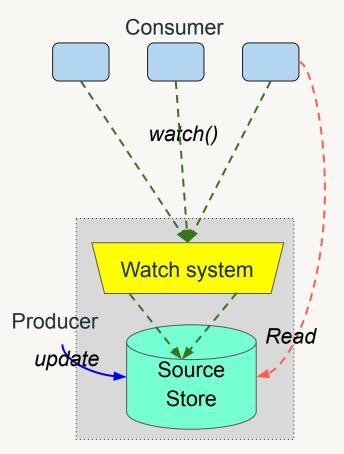
Del

Ins

Lack of correctness, e.g. for cache freshness

- Messages to all pods: doesn't scale
- Pubsub system's sharding not helpful
- Auto-sharding creates a moving target for updates: Races lead to lost updates

- Cache freshness in practice
 - Backup TTLs/polling to handle unreliability

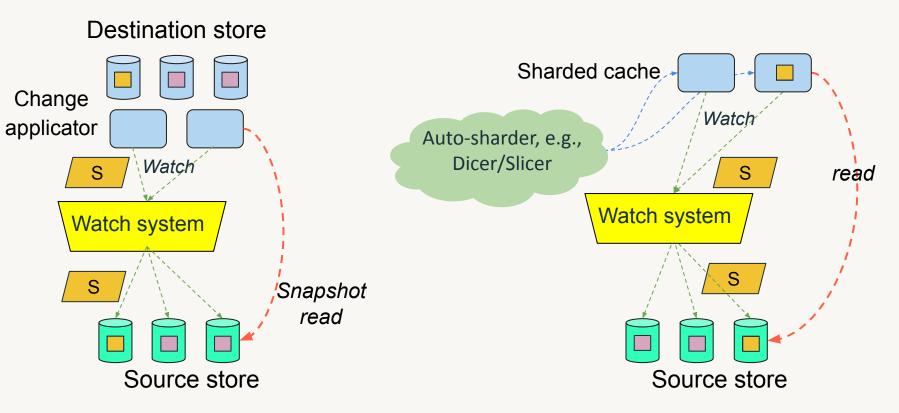

Talk Outline

What is pubsub

Problems with pubsub

Our approach: Watch with explicit store

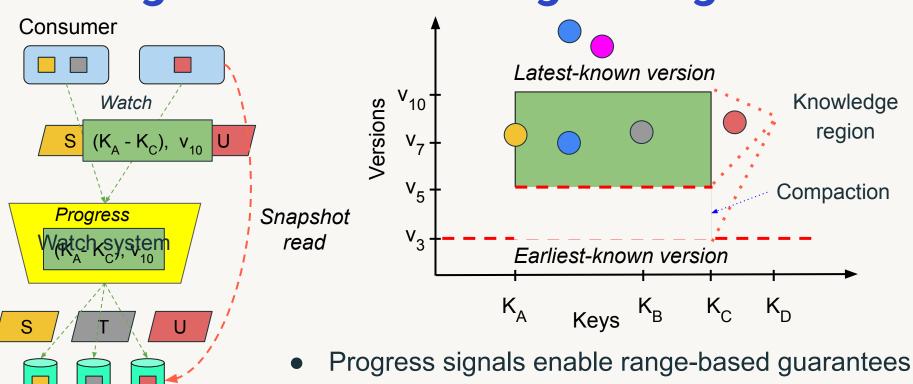
Solution: Explicit storage with Watch



- Producers write to source store
- Consumers can access source store
- Watch system: External or built-in
- Consumers watch ranges of interest
- Watch model present in Spanner, k8s

Watch API

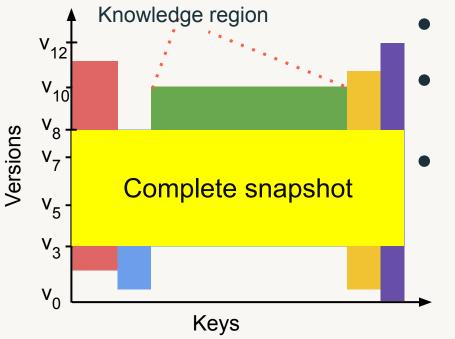
```
trait Watchable {
                                               Watcher expresses interest for
  void watch(lowKey, highKey,
                                           dynamically assigned key range starting
              version, callback); -
                                                   at last known version
                                             Versions are in source store domain
trait WatchCallback {
  void onChange(key, version, change);
                                    Given excessive backlog, recover from source store
  void onResync();
  Range-scoped progress signals enable strong
                   version); -
                                      e2e semantics (e.g. snapshot consistency)
```


Architectures based on Watch

Replication across databases

Cache freshness

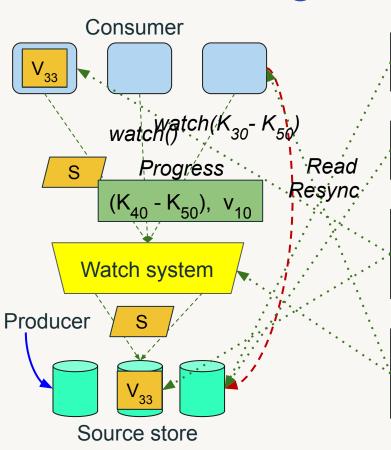
Range-based knowledge using Watch



Source store

- - Consumer can safely GC ranges to save space

Snapshots using knowledge regions



Get "jagged" windows from watch system

Knowledge region upper bound increases on more progress signals

Serve snapshot across contiguous regions for range of keys

Contrasting with pubsub's weaknesses

Explicit not hidden store

Durability: leverage source store

End-to-end ordering instead of pubsub ordering

Dynamic partitioning: convey arbitrary ranges

Talk Outline

What is pubsub

Problems with pubsub

Our approach: Watch with explicit store

Destination store Cache Watch Freshness system Source store

- Scalable Watchable storage, e.g., Spanner requires Truetime, etcd does not scale
- External scalable watch system
- Scalable & snapshot-consistent replication for heterogeneous storage
- Scalable & correct cache freshness system using Watch

Summary

 Pubsub abstraction violates end-to-end principle: Fails to address application needs

Explicit storage w/ Watch enables correct & scalable solutions

New research directions in storage, caching, replication

