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What are distributed shared logs?

m0 m1 m2 m3 m4 m5

append
read

Log

Clients

A simple interface to totally order operations
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Where are shared logs used?

kafka

 Google Pub/Sub Azure Event Hubs



  4

● In microservice architectures for interoperability
– e.g., Heroku uses Kafka to message between microservices 

Where are shared logs used?

kafkaUI Service Event 
Consumer
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● In Change-Data-Capture for interoperability
– e.g., Debezium uses Kafka for streaming data

Where are shared logs used?

Source 
Database

Target 
Database

Change-Data-Capture Kafka
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● In database systems for simplicity
– e.g., Delos simplifies implementing distributed applications

Where are shared logs used?
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Everyone has their own log...
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Why not just have one?

Proposal: One log for the 
entire datacenter!

Challenge: Scale??
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Log must serve ~10s of billions req/s

Problem: Prior solutions don’t 
support this throughput
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Shared Logging Protocols
Sequencing Replication

Sequencing: Enforces total order

m0

Sequencer
Global Sequence 

number: 0
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Shared Logging Protocols
Sequencing Replication

Sequencing: Enforces total order

m0

Sequencer
Global Sequence 

number: 1
1, m0
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Shared Logging Protocols
Sequencing Replication

m0

Sequencer
Global Sequence 

number: 1
1, m0

Replicator

1, m0

Sequencing: Enforces total order

Replication: Ensures durability  
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ReplicationSequencing

Shared Logging Protocols

ack 1 ack 1

Sequencing: Enforces total order

Replication: Ensures durability  

m0

Sequencer
Global Sequence 

number: 1
1, m0

Replicator
Acks: 2

1, m0 1, m0 1, m0
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ReplicationSequencing

Shared Logging Protocols

Replicator

Replication: Infinitely parallelizable!  

Replicator

Replicator Replicator

ReplicatorReplicator

Replicator Replicator

m0

Sequencer
Global Sequence 

number: 1
1, m0



  15

ReplicationSequencing

Shared Logging Protocols

Replicator

Sequencer: Not parallelizable!

Replicator

Replicator Replicator

ReplicatorReplicator

Replicator Replicator

Replication: Infinitely parallelizable!  

m0

Sequencer
Global Sequence 

number: 1
1, m0
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Can we scale 
sequencing?

Insight #1: Sequencing is simple and purely 
compute 

Action #1: ‘Cheat’ with specialized hardware 
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Can we scale 
sequencing infinitely?

Insight #2: Need multiple sequencer nodes 
 
Action #2: Distribute sequencing using a ring 
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Which accelerated hardware?

???
???

???
???
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Programmable switches!
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How does this 
new sequencer work?
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Ring: Example

Cntrl: 0

m0
Message In 

Queue

Cntrl In 
Queue

Message Out 
Queue

Cntrl Out 
Queue

Message Out 
Queue

Cntrl Out 
Queue

Message In 
Queue

Cntrl In 
Queue

Control Packet: 0

Switch A

Switch B
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Ring: Example

Cntrl: 0

m0
Message In 

Queue

Cntrl In 
Queue

Message Out 
Queue

Cntrl Out 
Queue

Message Out 
Queue

Cntrl Out 
Queue

Message In 
Queue

Cntrl In 
Queue

1, m0

Cntrl: 1Switch A

Switch B
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Ring: Example
Message In 

Queue

Cntrl In 
Queue

Message Out 
Queue

Cntrl Out 
Queue

Message Out 
Queue

Cntrl Out 
Queue

Message In 
Queue

Cntrl In 
Queue

1, m0

Cntrl: 1

Cntrl: 1

Switch A

Switch B
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Ring: Scale Via Batching

Cntrl: 1

mi
Message In 

Queue

Cntrl In 
Queue

Message Out 
Queue

Cntrl Out 
Queue

Message Out 
Queue

Cntrl Out 
Queue

Message In 
Queue

Cntrl In 
Queue

mi+1

mk mk+1

Switch A

Switch B
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Ring: Scale Via Batching

Cntrl: 1

mi
Message In 

Queue

Cntrl In 
Queue

Message Out 
Queue

Cntrl Out 
Queue

Message Out 
Queue

Cntrl Out 
Queue

Message In 
Queue

Cntrl In 
Queue

mi+1

Cntrl: 101

101, 
mi+100

2, 
mi

mk mk+1

Switch A

Switch B
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Ring: Scale Via Batching
Message In 

Queue

Cntrl In 
Queue

Message Out 
Queue

Cntrl Out 
Queue

Message Out 
Queue

Cntrl Out 
Queue

Message In 
Queue

Cntrl In 
Queue

Cntrl: 101

2, 
mi

Cntrl: 201

102, 
mk

201, 
mk+100

Problem: Latency?

101, 
mi+100

Switch A

Switch B

mk mk+1
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Ring: Latency

10μs 

# Switch Tput (req/s) Latency

2 1.25 billion 20μs
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Ring: Latency
10μs

# Switch Tput (req/s) Latency

2 1.25 billion 20μs

4 2.5 billion 40μs
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Ring: Latency
10μs

# Switch Tput (req/s) Latency

2 1.25 billion 20μs

4 2.5 billion 40μs

100 62.5 billion 1ms

Comparison: 
RocksDB write 

takes ~.5ms
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Key Challenges
● Failure handling and ring recovery [done]
● Streams [in progress]
● Augmented ring designs [in progress]
● And more!
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Now  time to build it! 🚧
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Goal: One log for the datacenter

Challenge: Need to scale sequencing

Insight #1: Sequencing is simple
Action #1: ‘Cheat’ with specialized hardware

Insight #2: Need multiple sequencer nodes
Action #2: Distribute sequencing using a ring

Other insight: Accelerated hardware keeps ring latency 
comparable to replication

Email: micahmurray@berkeley.edu
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Extra Slide!
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Why the total order?
● Kafka: Need to shard for scalability, but want 

total order across partitions
● Cross data store transactions in the age of ever 

expanding microservice architectures
● LLM Agents: Accessing many applications at 

once and will need to know the order in which 
application operations occurred
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