
 1

Designing a Log
for the Datacenter
Micah Murray, Wen Zhang, Aisha Mushtaq,

Natacha Crooks, Aurojit Panda*, Scott Shenker

UC Berkeley *New York University

 2

What are distributed shared logs?

m0 m1 m2 m3 m4 m5

append
read

Log

Clients

A simple interface to totally order operations

 3

Where are shared logs used?

kafka

 Google Pub/Sub Azure Event Hubs

 4

● In microservice architectures for interoperability
– e.g., Heroku uses Kafka to message between microservices

Where are shared logs used?

kafkaUI Service Event
Consumer

 5

● In Change-Data-Capture for interoperability
– e.g., Debezium uses Kafka for streaming data

Where are shared logs used?

Source
Database

Target
Database

Change-Data-Capture Kafka

 6

● In database systems for simplicity
– e.g., Delos simplifies implementing distributed applications

Where are shared logs used?

 7

Everyone has their own log...

 8

Why not just have one?

Proposal: One log for the
entire datacenter!

Challenge: Scale??

 9

Log must serve ~10s of billions req/s

Problem: Prior solutions don’t
support this throughput

 10

Shared Logging Protocols
Sequencing Replication

Sequencing: Enforces total order

m0

Sequencer
Global Sequence

number: 0

 11

Shared Logging Protocols
Sequencing Replication

Sequencing: Enforces total order

m0

Sequencer
Global Sequence

number: 1
1, m0

 12

Shared Logging Protocols
Sequencing Replication

m0

Sequencer
Global Sequence

number: 1
1, m0

Replicator

1, m0

Sequencing: Enforces total order

Replication: Ensures durability

 13

ReplicationSequencing

Shared Logging Protocols

ack 1 ack 1

Sequencing: Enforces total order

Replication: Ensures durability

m0

Sequencer
Global Sequence

number: 1
1, m0

Replicator
Acks: 2

1, m0 1, m0 1, m0

 14

ReplicationSequencing

Shared Logging Protocols

Replicator

Replication: Infinitely parallelizable!

Replicator

Replicator Replicator

ReplicatorReplicator

Replicator Replicator

m0

Sequencer
Global Sequence

number: 1
1, m0

 15

ReplicationSequencing

Shared Logging Protocols

Replicator

Sequencer: Not parallelizable!

Replicator

Replicator Replicator

ReplicatorReplicator

Replicator Replicator

Replication: Infinitely parallelizable!

m0

Sequencer
Global Sequence

number: 1
1, m0

 16

Can we scale
sequencing?

Insight #1: Sequencing is simple and purely
compute

Action #1: ‘Cheat’ with specialized hardware

 17

Can we scale
sequencing infinitely?

Insight #2: Need multiple sequencer nodes

Action #2: Distribute sequencing using a ring

 18

Which accelerated hardware?

???
???

???
???

 19

Programmable switches!

 20

How does this
new sequencer work?

 21

Ring: Example

Cntrl: 0

m0
Message In

Queue

Cntrl In
Queue

Message Out
Queue

Cntrl Out
Queue

Message Out
Queue

Cntrl Out
Queue

Message In
Queue

Cntrl In
Queue

Control Packet: 0

Switch A

Switch B

 22

Ring: Example

Cntrl: 0

m0
Message In

Queue

Cntrl In
Queue

Message Out
Queue

Cntrl Out
Queue

Message Out
Queue

Cntrl Out
Queue

Message In
Queue

Cntrl In
Queue

1, m0

Cntrl: 1Switch A

Switch B

 23

Ring: Example
Message In

Queue

Cntrl In
Queue

Message Out
Queue

Cntrl Out
Queue

Message Out
Queue

Cntrl Out
Queue

Message In
Queue

Cntrl In
Queue

1, m0

Cntrl: 1

Cntrl: 1

Switch A

Switch B

 24

Ring: Scale Via Batching

Cntrl: 1

mi
Message In

Queue

Cntrl In
Queue

Message Out
Queue

Cntrl Out
Queue

Message Out
Queue

Cntrl Out
Queue

Message In
Queue

Cntrl In
Queue

mi+1

mk mk+1

Switch A

Switch B

 25

Ring: Scale Via Batching

Cntrl: 1

mi
Message In

Queue

Cntrl In
Queue

Message Out
Queue

Cntrl Out
Queue

Message Out
Queue

Cntrl Out
Queue

Message In
Queue

Cntrl In
Queue

mi+1

Cntrl: 101

101,
mi+100

2,
mi

mk mk+1

Switch A

Switch B

 26

Ring: Scale Via Batching
Message In

Queue

Cntrl In
Queue

Message Out
Queue

Cntrl Out
Queue

Message Out
Queue

Cntrl Out
Queue

Message In
Queue

Cntrl In
Queue

Cntrl: 101

2,
mi

Cntrl: 201

102,
mk

201,
mk+100

Problem: Latency?

101,
mi+100

Switch A

Switch B

mk mk+1

 27

Ring: Latency

10μs

Switch Tput (req/s) Latency

2 1.25 billion 20μs

 28

Ring: Latency
10μs

Switch Tput (req/s) Latency

2 1.25 billion 20μs

4 2.5 billion 40μs

 29

Ring: Latency
10μs

Switch Tput (req/s) Latency

2 1.25 billion 20μs

4 2.5 billion 40μs

100 62.5 billion 1ms

Comparison:
RocksDB write

takes ~.5ms

 30

Key Challenges
● Failure handling and ring recovery [done]
● Streams [in progress]
● Augmented ring designs [in progress]
● And more!

 31

Now time to build it! 🚧

 32

Goal: One log for the datacenter

Challenge: Need to scale sequencing

Insight #1: Sequencing is simple
Action #1: ‘Cheat’ with specialized hardware

Insight #2: Need multiple sequencer nodes
Action #2: Distribute sequencing using a ring

Other insight: Accelerated hardware keeps ring latency
comparable to replication

Email: micahmurray@berkeley.edu

 33

Extra Slide!

 34

Why the total order?
● Kafka: Need to shard for scalability, but want

total order across partitions
● Cross data store transactions in the age of ever

expanding microservice architectures
● LLM Agents: Accessing many applications at

once and will need to know the order in which
application operations occurred

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

