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What are distributed shared logs?

wos @ W @
i i i
S P

A simple interface to totally order operations




Where are shared logs used?
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Where are shared logs used?

* In microservice architectures for interoperability

- e.g., Heroku uses Kaftka to message between microservices
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Where are shared logs used?

* In Change-Data-Capture for interoperability

- e.g., Debezium uses Kafka for streaming data
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Source Change-Data-Capture Kafka Target
Database Database



Where are shared logs used?

* In database systems for simplicity

- e.g., Delos simplifies implementing distributed applications

SimpleLogs




Everyone has their own log...



Why not just have one?

Proposal: One log for the
entire datacenter!

Challenge: Scale??



Log must serve ~10s of billions req/s

Problem: Prior solutions don’t
support this throughput



Shared Logging Protocols

Sequencing
Sequencer
> Global Sequence
number: 0

Sequencing: Enforces total order

Replication
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Shared Logging Protocols
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Shared Logging Protocols

Sequencing

Sequencer
> Global Sequence

number: 1

Replication
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Replicator
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Sequencing: Enforces total order

Replication: Ensures durability
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Shared Logging Protocols

Sequencing Replication

Replicator

Sequencer Acks: 2
| Global Sequence [ >

number: 1
== == ==
Sequencing: Enforces total order - 'i - 'i - 'i
Replication: Ensures durability 13




Shared Logging Protocols

Sequencing Replication
Replicator Replicator
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Shared Logging Protocols

Sequencing Replication
Replicator Replicator
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Sequencer: Not parallelizable!




Can we scale
sequencing?

Insight #1: Sequencing is simple and purely
compute

Action #1: ‘Cheat’ with specialized hardware
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Can we scale
sequencing infinitely?

Insight #2: Need multiple sequencer nodes

Action #2: Distribute sequencing using a ring
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Which accelerated hardware?
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Programmable switches!
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How does this
new sequencer work?
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Message In
Queue
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Ring: Scale Via Batching
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Ring: Scale Via Batching

Message In 2, O O Q 101, Message Out
Queue |I m; Mi100 Queue

Cntrl In SWltch A cntrl: 101 ] Cntrl Out
Queue Queue
Problem: Latency?
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Ring: Latency
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# Switch| Tput (req/s) Latency

2 1.25 billion 20us
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Ring: Latency

# Switch| Tput (req/s) Latency
2 1.25 billion 20us
4 2.5 billion 40us
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Ring: Latency

# Switch| Tput (req/s) Latency

2 1.25 billion 20us

Comparison:
4 2.5 billion 40us

RocksDB write
takes ~.5ms 100 62.5 billion 1ms




Key Challenges

* Failure handling and ring recovery [done]
* Streams [in progress]
* Augmented ring designs [in progress]

e And more!
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Now time to build it! ==




Email: micahmurray@berkeley.edu
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Goal: One log for the datacenter

Challenge: Need to scale sequencing

Insight #1: Sequencing is simple
Action #1: ‘Cheat’ with specialized hardware

Insight #2: Need multiple sequencer nodes
Action #2: Distribute sequencing using a ring

Other insight: Accelerated hardware keeps ring latency
comparable to replication 32



Extra Slide!



Why the total order?

° Kafka: Need to shard for scalability, but want
total order across partitions

° Cross data store transactions in the age of ever
expanding microservice architectures

° LLM Agents: Accessing many applications at
once and will need to know the order in which
application operations occurred
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