Designing a Log
for the Datacenter

Micah Murray, Wen Zhang, Aisha Mushtaq,
Natacha Crooks, Aurojit Panda¥®, Scott Shenker

UC Berkeley *New York University



What are distributed shared logs?

wos @ W @
i i i
S P

A simple interface to totally order operations




Where are shared logs used?

§@ kafka e =
="
H

Google Pub/Sub Azure Event Hubs

‘ amazon

-—- Kinesis




Where are shared logs used?

* In microservice architectures for interoperability

- e.g., Heroku uses Kaftka to message between microservices

/ —~ \‘\

J/ UI Service A /Jz\ Fvent A‘
\



Where are shared logs used?

* In Change-Data-Capture for interoperability

- e.g., Debezium uses Kafka for streaming data

debezium—»%ﬁ

Source Change-Data-Capture Kafka Target
Database Database



Where are shared logs used?

* In database systems for simplicity

- e.g., Delos simplifies implementing distributed applications

SimpleLogs




Everyone has their own log...



Why not just have one?

Proposal: One log for the
entire datacenter!

Challenge: Scale??



Log must serve ~10s of billions req/s

Problem: Prior solutions don’t
support this throughput



Shared Logging Protocols

Sequencing
Sequencer
> Global Sequence
number: 0

Sequencing: Enforces total order

Replication

10



Shared Logging Protocols

Sequencing

Sequencer
@ Global Sequence @

number: 1

Sequencing: Enforces total order

Replication

11



Shared Logging Protocols

Sequencing

Sequencer
> Global Sequence

number: 1

Replication

e

Replicator

-

Sequencing: Enforces total order

Replication: Ensures durability

/Z |\

N:RNERNE

12



Shared Logging Protocols

Sequencing Replication

Replicator

Sequencer Acks: 2
| Global Sequence [ >

number: 1
== == ==
Sequencing: Enforces total order - 'i - 'i - 'i
Replication: Ensures durability 13




Shared Logging Protocols

Sequencing Replication
Replicator Replicator

Sequencer @ @ @ @ @ @

> Global Sequence :> Replicator Replicator
ber: 1

S GEU GUE

Replicator Replicator
Replicator Replicator

UL YUY -



Shared Logging Protocols

Sequencing Replication
Replicator Replicator
VLA RLL
Replicator Replicator
UUEG GUW
Replicator Replicator

UGG GEE

Replicator Replicator

T BN -

Sequencer: Not parallelizable!




Can we scale
sequencing?

Insight #1: Sequencing is simple and purely
compute

Action #1: ‘Cheat’ with specialized hardware

16




Can we scale
sequencing infinitely?

Insight #2: Need multiple sequencer nodes

Action #2: Distribute sequencing using a ring

17



Which accelerated hardware?

?27?27? 27?27?

Te2?7?

18



Programmable switches!

19



How does this
new sequencer work?

20



Message In
Queue

Cntrl In
Queue

Ring: Example

Message Out
Queue

Cntrl Out
Queue

[ Control Packet: 0 }

Message Out
Queue

Cntrl Out
Queue

Message In
Queue

Cntrl In
21
Queue




Message In
Queue

Cntrl In
Queue

Message Out
Queue

Cntrl Out
Queue

Ring:

::l mereH
0
Switch B

s
H H H H H

H H H H tEH H
|

Example

Message Out
Queue

Cntrl Out
Queue

Message In
Queue

Cntrl In
22
Queue



Message In
Queue

Cntrl In
Queue

Message Out
Queue

Cntrl Out
Queue

Ring: Example

Message Out
Queue

Cntrl Out
Queue

Message In
Queue

Cntrl In
23
Queue



Message In
Queue

Cntrl In
Queue

Message Out
Queue

Cntrl Out
Queue

Ring: Scale Via Batching

000

Message Out
Queue

Cntrl Out
Queue

Message In
Queue

Cntrl In
24
Queue



Ring: Scale Via Batching

Message In 2, 101, Message Out
Queue O O Q m; O Q Q Queue
Cntrl In cntrl: 101 ] Cntrl Out
Queue Queue

Cntrl In

Cntrl Out
25
Queue

Queue

Message Out £ } + } Message In
Queue \ - nej 000 Queue




Ring: Scale Via Batching

Message In 2, O O Q 101, Message Out
Queue |I m; Mi100 Queue

Cntrl In SWltch A cntrl: 101 ] Cntrl Out
Queue Queue
Problem: Latency?

: -
Message Out 201, 102, Message In
Queue Q O Q T } T ] Q O Q Queue
Cntrl Out =] : Cntrl In
e Sw1tch B Cntrl: 201 } e 26




Ring: Latency

1:" Tt
:: 1 ]
i :

i ----HHH“_

e

# Switch| Tput (req/s) Latency

2 1.25 billion 20us

27



Ring: Latency

# Switch| Tput (req/s) Latency
2 1.25 billion 20us
4 2.5 billion 40us

28



Ring: Latency

# Switch| Tput (req/s) Latency

2 1.25 billion 20us

Comparison:
4 2.5 billion 40us

RocksDB write
takes ~.5ms 100 62.5 billion 1ms




Key Challenges

* Failure handling and ring recovery [done]
* Streams [in progress]
* Augmented ring designs [in progress]

e And more!

30



Now time to build it! ==




Email: micahmurray@berkeley.edu

IEIEI

Goal: One log for the datacenter

Challenge: Need to scale sequencing

Insight #1: Sequencing is simple
Action #1: ‘Cheat’ with specialized hardware

Insight #2: Need multiple sequencer nodes
Action #2: Distribute sequencing using a ring

Other insight: Accelerated hardware keeps ring latency
comparable to replication 32



Extra Slide!



Why the total order?

° Kafka: Need to shard for scalability, but want
total order across partitions

° Cross data store transactions in the age of ever
expanding microservice architectures

° LLM Agents: Accessing many applications at
once and will need to know the order in which
application operations occurred

34



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

