
Towards ML System
Extensibility

Weixin Deng, Andy Ruan, Megan Frisella, Kai-Hsun Chen, SangBin Cho,
Jack Tigar Humphries, Rui Qiao, Stephanie Wang

2

Distributed optimizations for ML systems:

● 5D parallelism for pretraining
● Prefill-decode disaggregation for inference
● …

The rise of large models

Largest model sizes may be >1T parameters, training compute is
growing at 4.6x/year

But can current systems meet future application demands?

Trend: Current distributed ML systems focus on
performance at the cost of extensibility.

The extensibility problem
1. Codesign: Can the developer introduce performance optimizations specialized

to the workload?

2. Placement flexibility: Can the developer control when and where
computations should execute?

3. Interoperability: Can the system be easily and efficiently composed with other
systems?

The extensibility problem
1. Codesign: Can the developer introduce performance optimizations specialized

to the workload?

2. Placement flexibility: Can the developer control when and where
computations should execute?

3. Interoperability: Can the system be easily and efficiently composed with other
systems?

Inference
vLLM, SGLang,

TensorRT-LLM, …

worker worker worker worker

GPUGPU GPU GPU

worker worker worker worker

GPUGPU GPU GPU

Training
DeepSpeed, Megatron-LM,

PyTorch FSDP, …

Distributed ML frameworks today

Distributed execution strategies interact in complex ways.
→ Uneven support across frameworks.

Pipeline parallelism (PP)

Sequence parallelism (SP)
Expert parallelism (EP)
Context parallelism (CP)

ZeRO / FSDP

Data parallelism (DP)
Tensor parallelism (TP)

DP

ZeRO / FSDP

2019

2024

2023

2022

2021

2020 ZeRO / FSDP
PP

TP
CP

EP

DP

Megatron-LM DeepSpeed PyTorch

Placement flexibility in distributed training

Pipeline parallelism (PP)

Sequence parallelism (SP)
Expert parallelism (EP)
Context parallelism (CP)

ZeRO / FSDP

Data parallelism (DP)
Tensor parallelism (TP)

DP

ZeRO / FSDP

ZeRO / FSDP
PP

TP
CP

EP

2019

2024

2023

2022

2021

2020

DP

Megatron-LM DeepSpeed PyTorch

Not including time to:
● Optimize performance
● Support variants of each strategy
● Ensure feature compatibility
● Support more models
● Fix bugs
● …

Placement flexibility in distributed training

Placement flexibility in LLM inference
La

ye
r 1

La
ye

r 2

La
ye

r N

…

La
ye

r 1

La
ye

r 2

La
ye

r N

…
→ Improving support for one
placement worsened
performance for the other.

● Tensor parallelism (TP): Shard
within a layer

● Pipeline parallelism (PP): Shard by
layer

The extensibility problem
1. Codesign: Can the developer introduce performance optimizations specialized

to the workload?

2. Placement flexibility: Can the developer control when and where
computations should execute?

3. Interoperability: Can the system be easily and efficiently composed with other
systems?

worker worker worker worker

GPUGPU GPU GPU

Training
DeepSpeed, Megatron-LM,

PyTorch FSDP, …

Inference
vLLM, SGLang,

TensorRT-LLM, …

worker worker worker worker

GPUGPU GPU GPU

Frameworks are built monolithically.
→ Difficult to efficiently compose models and
frameworks.

Distributed ML frameworks today

Interoperability in RL for LLMs

Training

Input data with labels

GPU GPUGPU GPU

Supervised
learning

Training

GPU GPUGPU GPU

Sequence

Inference

GPU GPUGPU GPU

Interoperability in RL for LLMs
Reinforcement learning (RL) for LLMs requires composition.

Reward model

Reward

Policy

RL training

Reward model
Sequence

Reward

Policy

Reinforcement learning (RL) for LLMs requires composition.

Training

Inference

GPU GPUGPU GPU

1. Training and inference have
different optimal placement
strategies

Interoperability in RL for LLMs

GPU GPUGPU GPU

GPU GPUGPU GPU

Reward model
Sequence

Reward

Policy

Reinforcement learning (RL) for LLMs requires composition.

Training

Inference

Interoperability in RL for LLMs

1. Training and inference have
different optimal placement
strategies

2. Different algorithms
synchronize at different times

GPU GPUGPU GPU

GPU GPUGPU GPU

Sequence

Reward

Policy

Reinforcement learning (RL) for LLMs requires composition.

Training

Inference

Reward model

1. Training and inference have
different optimal placement
strategies

2. Different algorithms
synchronize at different times

3. Models may share weights

Interoperability in RL for LLMs

GPU GPUGPU GPU

GPU GPUGPU GPU

GPU GPUGPU GPU

Sequence

Reward

Policy

Reward model

Reinforcement learning (RL) for LLMs requires composition.

Inference

1. Training and inference have
different optimal placement
strategies

2. Different algorithms
synchronize at different times

3. Models may share weights

4. Reward may require non-GPU
resources

Interoperability in RL for LLMs

Code execution

Training

GPU GPUGPU GPU

GPU GPUGPU GPU

Sequence

Reward

Policy

Reward model

Reinforcement learning (RL) for LLMs requires composition.

Inference

1. Training and inference have
different optimal placement
strategies

2. Different algorithms
synchronize at different times

3. Models may share weights

4. Reward may require non-GPU
resources

5. Different algorithms require
different additional models.

Interoperability in RL for LLMs

Training
Critic
model

Reference
policy

GPU GPUGPU GPU

GPU GPUGPU GPU

Sequence

Reward

Policy
Weights

Weights

Reward model

Inference

Weights

Code execution

GPU GPUGPU GPU

Training

Weights

GPU GPUGPU GPU

Reinforcement learning (RL) for LLMs requires composition.

1. Training and inference have
different optimal placement
strategies

2. Different algorithms
synchronize at different times

3. Models may share weights

4. Reward may require non-GPU
resources

5. Different algorithms require
different additional models.

6. …

Interoperability in RL for LLMs

Diverse composition strategies
→ Diverse data movement and
scheduling strategies

The extensibility problem
1. Codesign: Can the developer introduce performance optimizations specialized

to the workload?

2. Placement flexibility: Can the developer control when and where
computations should execute?

3. Interoperability: Can the system be easily and efficiently composed with other
systems?

Current distributed ML systems use single program multiple data.
→ Codesign at the cost of placement flexibility and interoperability.

SPMD: Single program, multiple data
SPMD: Each accelerator runs a copy of the same program.

Compose two models A and B

model = modelA if self.rank == 0 else modelB

while True:

 if self.rank == 0:

 inp = torch.rand(N, device="cuda")

 tensor: torch.Tensor = model.execute(inp)

 send(tensor, peer=1)

 else:

 tensor = torch.zeros(N)

 recv(tensor, peer=0)

 output = model.execute(tensor)

Pros:

● Simple
● Efficient

Cons:

● Couples user code to a
specific placement

● Couples user code to a
static execution strategy

● Composition is difficult

A

B

sync

TP vs PP is a placement decision.

Improving support for one
placement worsened
performance for the other.

La
ye

r 1

La
ye

r 2

La
ye

r N

…

La
ye

r 1

La
ye

r 2

La
ye

r N

…

Placement flexibility in LLM inference

Using SPMD

worker

Scheduler

worker worker worker
GPU GPU GPU GPU

Placement flexibility: Single controller vs. SPMD

Scheduler

vLLM v0.0: Single controller
(using Ray)

RPC

vLLM today: SPMD

worker worker worker worker

GPUGPU GPU GPU

H2D

NCCL

H2D

SPMD colocates scheduler with worker 0:
- Reduces overhead of metadata transfer
- But couples the scheduler and worker

Sequence

Inference

Training

Reward model

Reward

Policy

Interoperability: SPMD for composition?
Reinforcement learning (RL) for LLMs requires composition.

Interoperability: SPMD for composition?
def train(self, …):

 def vllm_generate(...):

 r = vllm_engine.generate.remote(...)

 queue.put(ray.get(r))

 def broadcast_to_vllm(...):

 for param in self.model.weights:

 dist.broadcast(param, 0, group=...)

 threading.Thread(vllm_generate).start()

 for _ in range(training_steps):

 broadcast_to_vllm(...)

 g_vllm_responses = queue.get()

 dist.broadcast(g_vllm_responses, 0)

 …

Inference

Weight syncing

Data transfer

Training

Interoperability: SPMD for composition?
def train(self, …):

 def vllm_generate(...):

 r = vllm_engine.generate.remote(...)

 queue.put(ray.get(r))

 def broadcast_to_vllm(...):

 for param in self.model.weights:

 dist.broadcast(param, 0, group=...)

 threading.Thread(vllm_generate).start()

 for _ in range(training_steps):

 broadcast_to_vllm(...)

 g_vllm_responses = queue.get()

 dist.broadcast(g_vllm_responses, 0)

 …

- Tightly coupled to particular
algorithm (e.g., on-policy vs.
off-policy)

- Collective ops and groups
need to be manually
scheduled

- Additional optimizations are
challenging: reducing data
movement, elastic scaling, …

SPMD: Each accelerator runs a copy of the same program.

Compose two models A and B

model = modelA if self.rank == 0 else modelB

while True:

 if self.rank == 0:

 inp = torch.rand(N, device="cuda")

 tensor: torch.Tensor = model.execute(inp)

 send(tensor, peer=1)

 else:

 tensor = torch.zeros(N)

 recv(tensor, peer=0)

 output = model.execute(tensor)

Pros:

● Simple
● Efficient

SPMD: Single program, multiple data

Does not support:

● Variable-size tensors
● Asynchronous

communication
● Failure handling
● CPU metadata + GPU

data
● …

Compose two models A and B

model = modelA if self.rank == 0 else modelB

while True:

 if self.rank == 0:

 inp = torch.rand(N, device="cuda")

 tensor: torch.Tensor = model.execute(inp)

 send(tensor, peer=1)

 else:

 tensor = torch.zeros(N)

 recv(tensor, peer=0)

 output = model.execute(tensor)

SPMD: Single program, multiple data
SPMD: Each accelerator runs a copy of the same program.

Does not support:

● Variable-size tensors
● Asynchronous

communication
● Failure handling
● CPU metadata + GPU

data
● …

Improving extensibility requires more CPU coordination.
But performance requires GPUs to run ahead of CPUs.

Static, inflexible and fast vs.
Dynamic, flexible and slow

The extensibility problem
SPMD:

→ works well for codesign with one to few static strategies

→ is difficult to adapt to different placement choices

→ discourages interoperability, because composition requires changes to each
program to implement the global schedule

DAFT: An intermediate representation for
distributed GPU programming

DAFT
Distributed: Program distributed GPUs with a “single controller” program

Actors: Stateful and remote workers, wrap any framework

Futures: Async execution, dataflow programming

Tasks: RPC-like interface

Controller

actor actor actor actor

GPUGPU GPU GPU

task

Dataflow graph

task data

Related work
● Most other distributed ML control planes based on SPMD or limited MPMD

● Single controller frameworks:

○ Pathways, TensorFlow v1: Tied to XLA compiler

○ RLlib, Hybridflow (veRL): RL-specific

● Previous DAFT systems are CPU-centric: Ray, Ciel, Dask

→ OS coordinates CPU execution and communication

→ CPU coordinates GPU execution and communication

A DAFT example (using Ray)
@ray.remote(num_gpus=1)
class ModelA:

 def execute(self, input: torch.Tensor) -> torch.Tensor:
 return self.model.execute(input)

@ray.remote(num_gpus=1)
class ModelB:
 def execute(self, tensor: torch.Tensor) -> torch.Tensor:
 return self.model.execute(tensor)

A, B = ModelA.remote(), ModelB.remote()
def schedule(A: Actor[ModelA], B: Actor[ModelB]):
 inp: torch.Tensor = torch.rand(N, device="cuda")
 tensor_ref: Ref = A.execute.remote(inp)
 output_ref: Ref = B.execute.remote(tensor_ref)
 out: torch.Tensor = ray.get(output_ref)

BAinp out

 @ray.method(tensor_transport="nccl")

Distributed future: Reference to
remote, eventual value

Dataflow graph

System triggers p2p (or collective
communication) operation

A DAFT example (using Ray)

BA

Already supports:

● Variable-size tensors
● Asynchronous

communication
● Failure handling
● CPU metadata + GPU

data
● …

@ray.remote(num_gpus=1)
class ModelA:

 def execute(self, input: torch.Tensor) -> torch.Tensor:
 return self.model.execute(input)

@ray.remote(num_gpus=1)
class ModelB:
 def execute(self, tensor: torch.Tensor) -> torch.Tensor:
 return self.model.execute(tensor)

A, B = ModelA.remote(), ModelB.remote()
def schedule(A: Actor[ModelA], B: Actor[ModelB]):
 inp: torch.Tensor = torch.rand(N, device="cuda")
 tensor_ref: Ref = A.execute.remote(inp)
 output_ref: Ref = B.execute.remote(tensor_ref)
 out: torch.Tensor = ray.get(output_ref)

 @ray.method(tensor_transport="nccl")

DAFT for composition in RL for LLMs
Multi-GPU inference replica.

vllm_workers: WorkerGroup[vllm.LLMEngine]

Multi-GPU training replica.

train_workers: WorkerGroup[Trainer]

Single controller program.

def train():

 outputs = vllm_workers.generate.remote(...)

 weights = train_workers.weights.remote()

 vllm_workers.update.remote(weights)

 train_workers.train.remote(outputs)

+ Algorithm decoupled from
worker code

+ Transparent scheduling
for collectives

+ Reduce data movement by
creating different dataflows

+ Elastic scaling of
WorkerGroups

DAFT as an IR for distributed GPUs
Problem: Dynamic dispatch can add high overheads compared to SPMD.

Solution: Interpreted vs. compiled execution.

● Interpreted: Program executes eagerly, one task at a time
→ For coarse-grained composition, debugging, dynamic failover, …

● Compiled: Freeze a dataflow (sub)graph, schedule all tasks in one round-trip
→ For fine-grained GPU orchestration, static control flow

Allow user to control tradeoff between dynamicity vs. system overheads!

Interpreted vs. Compiled DAFT

inp

out

inp out

DAFT
dataflows

Control plane optimizations:
● Reduce communication

overhead by using shared
memory

● Reduce scheduling
overhead by executing
multiple tasks in one
round trip

● …

Open systems challenges

A distributed tensor runtime

Distributed tensor API

Interpreted and compiled DAFT

Compiler frontend
Extract non-distributed static
tensor subgraphs

Distributed tensor runtime
Apply distributed strategy,
plan distributed ops

User-controllable distributed strategy

Intermediate representation for
distributed GPU programming

Opportunity: Codesigning compilers and distributed systems?

Message passing APIs
An alternative API to DAFT for application composition:
● Scales better than single controller
● Best for loosely coupled systems/applications

Opportunity: A message-passing API for distributed GPUs?

And current collective communication libraries are limited :
● Statically declared collective groups
● User must manually schedule calls to the library

But there is no good message-passing APIs for distributed GPUs:
● Messages can be executed in any order → collective operations may deadlock

40

But also more complicated: RL, multimodal models,
multi-model routing, heterogeneous resources, …

Performance is important.
But so is extensibility!

The rise of large models

Models are getting larger.

