Towards ML System
Extensibility

Weixin Deng, Andy Ruan, Megan Frisella, Kai-Hsun Chen, SangBin Cho,
Jack Tigar Humphries, Rui Qiao, Stephanie Wang

W oS» RAY

o o A > Anyscale

The rise of large models

NictribiitnA Antimiznticone for Nl ovictoarmmo:s

Trend: Current distributed ML systems focus on
performance at the cost of extensibility.

But can current systems meet future application demands?

The extensibility problem

Codesign: Can the developer introduce performance optimizations specialized
to the workload?

Placement flexibility: Can the developer control when and where
computations should execute?

Interoperability: Can the system be easily and efficiently composed with other
systems”?

The extensibility problem

Codesign: Can the developer introduce performance optimizations specialized
to the workload?

Placement flexibility: Can the developer control when and where
computations should execute?

Interoperability: Can the system be easily and efficiently composed with other
systems”?

Distributed ML frameworks today

Training Inference
DeepSpeed, Megatron-LM, vLLM, SGLang,
PyTorch FSDP, ... TensorRT-LLM, ...
worker || worker || worker || worker worker || worker || worker || worker
GPU GPU GPU GPU GPU GPU GPU GPU

Distributed execution strategies interact in complex ways.
— Uneven support across frameworks.

Placement flexibility in distributed training

Megatron-LM DeepSpeed PyTorch
2019 Data parallelism (DP) + DP + DP
Tensor parallelism (TP)
2020 - Pipeline parallelism (PP) 4 ZeRO / FSDP 1
PP
2021 + + EP 1
2022 -+ Sequence parallelism (SP) + + ZeRO / FSDP
Expert parallelism (EP)
2023 -} Context parallelism (CP) + TP 1
CP
2024 + ZeRO / FSDP 1 1

Placement flexibility in distributed training

Not including time to:

Optimize performance

Support variants of each strategy
Ensure feature compatibility
Support more models

Fix bugs

Throughput (reqs/s)

20

15

10

Placement flexibility in LLM inference

14.95

21

12

VLLM vO0.0
VvLLM today

Tensor parallelism=4

)

La?er1§

)

Layer 2

)

Layer N

Pipeline pafallelism=4

)

Layer 1

:ﬁ'

Layer 2

LayerN

| —

e Tensor parallelism (TP): Shard

within a layer

e Pipeline parallelism (PP): Shard by

layer

— Improving support for one
placement worsened
performance for the other.

The extensibility problem

Codesign: Can the developer introduce performance optimizations specialized
to the workload?

Placement flexibility: Can the developer control when and where
computations should execute?

Interoperability: Can the system be easily and efficiently composed with other
systems”?

Distributed ML frameworks today

Training Inference
DeepSpeed, Megatron-LM, vLLM, SGLang,
PyTorch FSDP, TensorRT-LLM, ...
y
worker || worker || worker || worker worker || worker || worker || worker
GPU GPU GPU GPU GPU GPU GPU GPU
— g

Frameworks are built monolithically.
— Difficult to efficiently compose models and
frameworks.

Interoperability in RL for LLMs

Input data with labels

Training

Supervised
learning

Interoperability in RL for LLMs

Reinforcement learning (RL) for LLMs requires composition.

Inference

|

Sequence

Policy

Reward model

RL training

\ m

Training

Interoperability in RL for LLMs

Reinforcement learning (RL) for LLMs requires composition.

1. Training and inference have
different optimal placement

strategies
Inference

Training

Interoperability in RL for LLMs

Reinforcement learning (RL) for LLMs requires composition.

Tralnlng anq inference have crullerullcrulleru
different optimal placement
strategies

Inference

Different algorithms
synchronize at different times

Training

Interoperability in RL for LLMs

Reinforcement learning (RL) for LLMs requires composition.

Tralnlng anq inference have SR @R ERU ER
different optimal placement
strategies

Inference

Different algorithms

synchronize at different times m M ﬂ m
Models may share weights

Reward model

Training

Interoperability in RL for LLMs

Reinforcement learning (RL) for LLMs requires composition.

Training and inference have
different optimal placement
strategies

Different algorithms
synchronize at different times

Models may share weights

Reward may require non-GPU
resources

Inference

Code execution

Reward model

Training

Interoperability in RL for LLMs

Reinforcement learning (RL) for LLMs requires composition.

Training and inference have
different optimal placement
strategies

Different algorithms
synchronize at different times

Models may share weights

Reward may require non-GPU
resources

Different algorithms require
different additional models.

Inference

Reward model

Training

Reference
policy

Critic
model

Interoperability in RL for LLMs

Reinforcement learning (RL) for LLMs requires composition.

Training and inference have
different optimal placement
strategies

Different algorithms Diverse composition strategies

synchronize at different times — Diverse data movement and
Models may share weights scheduling strategies

Reward may require non-GPU

resources

Different algorithms require
different additional models.

The extensibility problem

1. Codesign: Can the developer introduce performance optimizations specialized
to the workload?

2. Placement flexibility: Can the developer control when and where
computations should execute?

3. Interoperability: Can the system be easily and efficiently composed with other
systems”?

Current distributed ML systems use single program multiple data.
— Codesign at the cost of placement flexibility and interoperability.

SPMD: Single program, multiple data

SPMD: Each accelerator runs a copy of the same program.

Compose two models A and B
model = modelA if self.rank == 0 else modelB Pros:

while True: e Simple
if self.rank == 0: e [fficient
inp = torch.rand(N, device="cuda")
tensor: torch.Tensor = model.execute(inp) Cons:
send(tensor, peer=1) A) e Couples user code to a
sSync else: specific placement

e Couples user code to a
Static execution strategy
e Composition is difficult

tensor = torch.zeros(N)
recv(tensor, peer=0)
output = model.execute(tensor) B

Throughput (reqs/s)

20

15

10

Placement flexibility in LLM inference

21.12

\
14.25 /

14.95

VLLM vO0.0

VvLLM today

9.77

— Using SPMD

Tensor parallelism=4

N\

Layer 1
. Layer 2!

)

Layer N

Pipeline pa'rallelism=4

)

Layer 1

:,—I

Layer 2

i)

Layer N

Placement flexibility: Single controller vs. SPMD

vLLM vO0.0: Single controller

vLLM today: SPMD

(using Ray)

senseluler . RPC - Scheduler

N v H2D /
worker || worker || worker Worker‘) HZ\D worker wiatar N wetes N weier
GPU GPU GPU GPU \ GPU GPU GPU GPU

v =
SPMD colocates scheduler with worker 0: NCCL

- Reduces overhead of metadata transfer
- But couples the scheduler and worker

Interoperability: SPMD for composition?

Reinforcement learning (RL) for LLMs requires composition.

Inference

l

Sequence Reward model

Training

Policy

Interoperability: SPMD for composition?

def train(self, ...):

(def vllm generate(...): A
r = vllm_engine.generate.remote(...) Inference
_ queue.put(ray.get(r)))
(def broadcast to vllm(...): A
for param in self.model.weights: Weight syncing
9 dist.broadcast(param, 0, group=...))

threading.Thread(vllm _generate).start()

for _ in range(training steps):
broadcast_to_vllm(...)

[g vllm responses = queue.get()

dist.broadcast(g_vllm_responses, 0) Data transfer

[| Training

Interoperability: SPMD for composition?

def train(self, ...):

- : N
def Vllm—gener‘?te(' ++) - Tightly coupled to particular
r = vllm _engine.generate.remote(...) algorithm (e.g., on-policy vs,
_ queue.put(ray.get(r))) off-policy)
(def broadcast to vllm(...): A |
for param in self.model.weights: - Collective ops and groups
_ dist.broadcast(param, @, group=...)) need to be manually
scheduled
threading.Thread(vllm_generate).start() - Additional optimizations are
for _ in range(training_steps): challenging: reducing data
broadcast_to_vllm(...) movement, elastic scaling, ...

[dist.broadcast(g _vllm responses, 0)

[

g vllm_responses = queue.get()]
]

SPMD: Single program, multiple data

SPMD: Each accelerator runs a copy of the same program.

Compose two models A and B
model = modelA if self.rank == 0 else modelB Does not support:
while True:

if self rank —- Variable-size tensors

inp = torch.rand(N, device="cuda") e Asynchronous
tensor: torch.Tensor = model.execute(inp) communication
send(tensor, peer=1) e Failure handling

else: e (CPU metadata + GPU
tensor = torch.zeros(N) data

recv(tensor, peer=0)
output = model.execute(tensor)

SPMD: Single program, multiple data

SPMD: Each accelerator runs a copy of the same program.

Compose two models A and B

Improving extensibility requires more CPU coordination.
But performance requires GPUs to run ahead of CPUs.

Static, inflexible and fast vs.
Dynamic, flexible and slow

IIIIIII CUIT Wil e &1 UJ\I‘/ ude
recv(tensor, peer=0) °

output = model.execute(tensor)

The extensibility problem

SPMD:
— works well for codesign with one to few static strategies
— Is difficult to adapt to different placement choices

— discourages interoperability, because composition requires changes to each
program to implement the global schedule

DAFT: An intermediate representation for
distributed GPU programming

DAFT

Distributed: Program distributed GPUs with a “single controller” program

Actors: Stateful and remote workers, wrap any framework
Futures: Async execution, dataflow programming

Tasks: RPC-like interface

Controller (—
/ task
—)

actor actor actor actor

[9]||@))|[@)][[®!

Dataflow graph

Q

task data

Related work

Most other distributed ML control planes based on SPMD or limited MPMD
Single controller frameworks:
o Pathways, TensorFlow v1: Tied to XLA compiler
o RLlib, Hybridflow (veRL): RL-specific
Previous DAFT systems are CPU-centric: Ray, Ciel, Dask
— OS coordinates CPU execution and communication

— CPU coordinates GPU execution and communication

A DAFT example (using Ray)

@ray.remote(num_gpus=1)
class ModelA:

@ray.method(tensor_transport="nccl")
def execute(self, input: torch.Tensor) -> torch.Tensor:

return self.model.execute(input) Dataflow graph

inp out

Distributed future: Reference to

remote, eventual value ,
System triggers p2p (or collective

[) — communication) operation

A DAFT example (using Ray)

@ray.remote(num_gpus=1)
class ModelA:
@ray.method(tensor_transport="nccl")

def execute(self, input: torch.Tensor) -> torch.Tensor: \Variabl 76 t
return self.model.execute(input) ¢ ariable-siZe 1ensors

e Asynchronous
@ray.remote(num_gpus=1) .
class ModelB: communication
def execute(self, tensor: torch.Tensor) -> torch.Tensor: e Failure handling

return self.model.execute(tensor) CPU metadata + GPU

A, B = ModelA.remote(), ModelB.remote() data

def schedule(A: Actor[ModelA], B: Actor[ModelB]):
inp: torch.Tensor = torch.rand(N, device="cuda")
tensor_ref: Ref = A.execute.remote(inp)
output_ref: Ref = B.execute.remote(tensor_ref)
out: torch.Tensor = ray.get(output_ref)

Already supports:

N W > |

DAFT for composition in RL for LLMs

vllm_workers: WorkerGroup[vllm.LLMEngine] + Algorithm decoupled from

, . worker code
train_workers: WorkerGroup[Trainer]

+ Transparent scheduling
for collectives

def train(): + Reduce data movement by

creating different dataflows

Elastic scaling of
WorkerGroups

DAFT as an IR for distributed GPUs

Problem: Dynamic dispatch can add high overheads compared to SPMD.
Solution: Interpreted vs. compiled execution.

e Interpreted:. Program executes eagerly, one task at a time
— For coarse-grained composition, debugging, dynamic failover, ...

e Compiled: Freeze a dataflow (sub)graph, schedule all tasks in one round-trip
— For fine-grained GPU orchestration, static control flow

Allow user to control tradeoff between dynamicity vs. system overheads!

Interpreted vs. Compiled DAFT

2112

- I b

VvLLM v0.0: Ray interpreted

Throughput (reqgs/s)
= = N
I

(9,1

VvLLM today
BN vLLM today+Ray compiled
0 i—
TP=4
inp inp
DAFT
dataflows

out

out

Control plane optimizations:

e Reduce communication
overhead by using shared
memory

e Reduce scheduling
overhead by executing
multiple tasks in one
round trip

Open systems challenges

A distributed tensor runtime

Distributed tensor API User-controllable distributed strategy

Extract non-distributed static

Compiler frontend tensor subgraphs

Apply distributed strategy,

Distributed tensor runtime plan distributed ops

Intermediate representation for

Interpreted and compiled DAFT distributed GPU programming

Opportunity: Codesigning compilers and distributed systems?

Message passing APIs

An alternative API to DAFT for application composition:
e Scales better than single controller
e Best for loosely coupled systems/applications

But there is no good message-passing APls for distributed GPUs:
e Messages can be executed in any order — collective operations may deadlock

And current collective communication libraries are limited :
e Statically declared collective groups
e User must manually schedule calls to the library

Opportunity: A message-passing API for distributed GPUSs"?

The rise of large models

Models are getting larger.
But also more complicated: RL, multimodal models,

multi-model routing, heterogeneous resources, ...

Performance is important.
But so is extensibility!

40

