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Distributed optimizations for ML systems:

● 5D parallelism for pretraining
● Prefill-decode disaggregation for inference
● …

The rise of large models

Largest model sizes may be >1T parameters, training compute is 
growing at 4.6x/year

But can current systems meet future application demands?

Trend: Current distributed ML systems focus on
performance at the cost of extensibility.



The extensibility problem
1. Codesign: Can the developer introduce performance optimizations specialized 

to the workload?

2. Placement flexibility: Can the developer control when and where 
computations should execute?

3. Interoperability: Can the system be easily and efficiently composed with other 
systems?
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Inference
vLLM, SGLang, 

TensorRT-LLM, …

worker worker worker worker

GPUGPU GPU GPU

worker worker worker worker
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Training
DeepSpeed, Megatron-LM, 

PyTorch FSDP, …

Distributed ML frameworks today

Distributed execution strategies interact in complex ways.
→ Uneven support across frameworks.
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Not including time to:
● Optimize performance
● Support variants of each strategy
● Ensure feature compatibility
● Support more models
● Fix bugs
● …

Placement flexibility in distributed training



Placement flexibility in LLM inference
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→ Improving support for one 
placement worsened 
performance for the other.

● Tensor parallelism (TP): Shard 
within a layer

● Pipeline parallelism (PP): Shard by 
layer
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Training
DeepSpeed, Megatron-LM, 

PyTorch FSDP, …

Inference
vLLM, SGLang, 

TensorRT-LLM, …

worker worker worker worker
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Frameworks are built monolithically.
→ Difficult to efficiently compose models and 
frameworks.

Distributed ML frameworks today



Interoperability in RL for LLMs

Training

Input data with labels

GPU GPUGPU GPU

Supervised 
learning
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Interoperability in RL for LLMs
Reinforcement learning (RL) for LLMs requires composition.

Reward model

Reward

Policy

RL training
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Reinforcement learning (RL) for LLMs requires composition.
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different optimal placement 
strategies
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Reinforcement learning (RL) for LLMs requires composition.
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Reinforcement learning (RL) for LLMs requires composition.

Inference

1. Training and inference have 
different optimal placement 
strategies

2. Different algorithms 
synchronize at different times

3. Models may share weights

4. Reward may require non-GPU 
resources

5. Different algorithms require 
different additional models.

Interoperability in RL for LLMs
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Sequence

Reward

Policy
Weights

Weights

Reward model

Inference

Weights

Code execution
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Reinforcement learning (RL) for LLMs requires composition.

1. Training and inference have 
different optimal placement 
strategies

2. Different algorithms 
synchronize at different times

3. Models may share weights

4. Reward may require non-GPU 
resources

5. Different algorithms require 
different additional models.

6. …

Interoperability in RL for LLMs

Diverse composition strategies
→ Diverse data movement and 
scheduling strategies



The extensibility problem
1. Codesign: Can the developer introduce performance optimizations specialized 

to the workload?

2. Placement flexibility: Can the developer control when and where 
computations should execute?

3. Interoperability: Can the system be easily and efficiently composed with other 
systems?

Current distributed ML systems use single program multiple data.
→ Codesign at the cost of placement flexibility and interoperability.



SPMD: Single program, multiple data
SPMD: Each accelerator runs a copy of the same program.

# Compose two models A and B

model = modelA if self.rank == 0 else modelB

while True:

  if self.rank == 0:

    inp = torch.rand(N, device="cuda")

    tensor: torch.Tensor = model.execute(inp)

    send(tensor, peer=1)

  else:

    tensor = torch.zeros(N)

    recv(tensor, peer=0)

    output = model.execute(tensor)

 

Pros:

● Simple
● Efficient

Cons:

● Couples user code to a 
specific placement

● Couples user code to a 
static execution strategy

● Composition is difficult

A

B

sync



TP vs PP is a placement decision.

Improving support for one 
placement worsened 
performance for the other.
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Placement flexibility in LLM inference

Using SPMD



worker

Scheduler

worker worker worker
GPU GPU GPU GPU

Placement flexibility: Single controller vs. SPMD

Scheduler

vLLM v0.0: Single controller 
(using Ray)

RPC

vLLM today: SPMD

worker worker worker worker

GPUGPU GPU GPU

H2D

NCCL

H2D

SPMD colocates scheduler with worker 0:
- Reduces overhead of metadata transfer
- But couples the scheduler and worker
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Reward model
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Interoperability: SPMD for composition?
Reinforcement learning (RL) for LLMs requires composition.



Interoperability: SPMD for composition?
def train(self, …):

  def vllm_generate(...):

    r = vllm_engine.generate.remote(...)

    queue.put(ray.get(r))

  def broadcast_to_vllm(...):

    for param in self.model.weights:

      dist.broadcast(param, 0, group=...)

  threading.Thread(vllm_generate).start()

  for _ in range(training_steps):

    broadcast_to_vllm(...)

    g_vllm_responses = queue.get()

    dist.broadcast(g_vllm_responses, 0)

    …

 

Inference

Weight syncing

Data transfer

Training
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  def broadcast_to_vllm(...):
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      dist.broadcast(param, 0, group=...)
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  for _ in range(training_steps):

    broadcast_to_vllm(...)

    g_vllm_responses = queue.get()

    dist.broadcast(g_vllm_responses, 0)

    …

 

- Tightly coupled to particular 
algorithm (e.g., on-policy vs. 
off-policy)

- Collective ops and groups 
need to be manually 
scheduled

- Additional optimizations are 
challenging: reducing data 
movement, elastic scaling, …



SPMD: Each accelerator runs a copy of the same program.

# Compose two models A and B
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SPMD: Single program, multiple data

Does not support:

● Variable-size tensors
● Asynchronous 

communication
● Failure handling
● CPU metadata + GPU 

data
● …



# Compose two models A and B

model = modelA if self.rank == 0 else modelB

while True:

  if self.rank == 0:

    inp = torch.rand(N, device="cuda")

    tensor: torch.Tensor = model.execute(inp)

    send(tensor, peer=1)

  else:

    tensor = torch.zeros(N)

    recv(tensor, peer=0)

    output = model.execute(tensor)

 

SPMD: Single program, multiple data
SPMD: Each accelerator runs a copy of the same program.

Does not support:

● Variable-size tensors
● Asynchronous 

communication
● Failure handling
● CPU metadata + GPU 

data
● …

Improving extensibility requires more CPU coordination.
But performance requires GPUs to run ahead of CPUs.

Static, inflexible and fast vs.
Dynamic, flexible and slow



The extensibility problem
SPMD:

→ works well for codesign with one to few static strategies

→ is difficult to adapt to different placement choices

→ discourages interoperability, because composition requires changes to each 
program to implement the global schedule



DAFT: An intermediate representation for 
distributed GPU programming



DAFT
Distributed: Program distributed GPUs with a “single controller” program

Actors: Stateful and remote workers, wrap any framework

Futures: Async execution, dataflow programming

Tasks: RPC-like interface

Controller

actor actor actor actor

GPUGPU GPU GPU

task

Dataflow graph

task data



Related work
● Most other distributed ML control planes based on SPMD or limited MPMD

● Single controller frameworks:

○ Pathways, TensorFlow v1: Tied to XLA compiler

○ RLlib, Hybridflow (veRL): RL-specific

● Previous DAFT systems are CPU-centric: Ray, Ciel, Dask

→ OS coordinates CPU execution and communication

→ CPU coordinates GPU execution and communication



A DAFT example (using Ray)
@ray.remote(num_gpus=1)
class ModelA:

  def execute(self, input: torch.Tensor) -> torch.Tensor:
    return self.model.execute(input)

@ray.remote(num_gpus=1)
class ModelB:
  def execute(self, tensor: torch.Tensor) -> torch.Tensor:
    return self.model.execute(tensor)

A, B = ModelA.remote(), ModelB.remote()
def schedule(A: Actor[ModelA], B: Actor[ModelB]):
  inp: torch.Tensor = torch.rand(N, device="cuda")
  tensor_ref: Ref = A.execute.remote(inp)
  output_ref: Ref = B.execute.remote(tensor_ref)
  out: torch.Tensor = ray.get(output_ref)

BAinp out

  @ray.method(tensor_transport="nccl")

Distributed future: Reference to 
remote, eventual value

Dataflow graph

System triggers p2p (or collective 
communication) operation



A DAFT example (using Ray)

BA

Already supports:

● Variable-size tensors
● Asynchronous 

communication
● Failure handling
● CPU metadata + GPU 

data
● …

@ray.remote(num_gpus=1)
class ModelA:

  def execute(self, input: torch.Tensor) -> torch.Tensor:
    return self.model.execute(input)

@ray.remote(num_gpus=1)
class ModelB:
  def execute(self, tensor: torch.Tensor) -> torch.Tensor:
    return self.model.execute(tensor)

A, B = ModelA.remote(), ModelB.remote()
def schedule(A: Actor[ModelA], B: Actor[ModelB]):
  inp: torch.Tensor = torch.rand(N, device="cuda")
  tensor_ref: Ref = A.execute.remote(inp)
  output_ref: Ref = B.execute.remote(tensor_ref)
  out: torch.Tensor = ray.get(output_ref)

  @ray.method(tensor_transport="nccl")



DAFT for composition in RL for LLMs
# Multi-GPU inference replica.

vllm_workers: WorkerGroup[vllm.LLMEngine]

# Multi-GPU training replica.

train_workers: WorkerGroup[Trainer]

# Single controller program.

def train():

  outputs = vllm_workers.generate.remote(...)

  weights = train_workers.weights.remote()

  vllm_workers.update.remote(weights)

  train_workers.train.remote(outputs)

 

+ Algorithm decoupled from 
worker code

+ Transparent scheduling 
for collectives

+ Reduce data movement by 
creating different dataflows

+ Elastic scaling of 
WorkerGroups



DAFT as an IR for distributed GPUs
Problem: Dynamic dispatch can add high overheads compared to SPMD.

Solution: Interpreted vs. compiled execution.

● Interpreted: Program executes eagerly, one task at a time
→ For coarse-grained composition, debugging, dynamic failover, …

● Compiled: Freeze a dataflow (sub)graph, schedule all tasks in one round-trip
→ For fine-grained GPU orchestration, static control flow

Allow user to control tradeoff between dynamicity vs. system overheads!



Interpreted vs. Compiled DAFT

inp

out

inp out

DAFT 
dataflows

Control plane optimizations:
● Reduce communication 

overhead by using shared 
memory

● Reduce scheduling 
overhead by executing 
multiple tasks in one 
round trip

● …



Open systems challenges



A distributed tensor runtime

Distributed tensor API

Interpreted and compiled DAFT

Compiler frontend
Extract non-distributed static 
tensor subgraphs

Distributed tensor runtime
Apply distributed strategy, 
plan distributed ops

User-controllable distributed strategy

Intermediate representation for 
distributed GPU programming

Opportunity: Codesigning compilers and distributed systems?



Message passing APIs
An alternative API to DAFT for application composition:
● Scales better than single controller
● Best for loosely coupled systems/applications

Opportunity: A message-passing API for distributed GPUs?

And current collective communication libraries are limited :
● Statically declared collective groups
● User must manually schedule calls to the library

But there is no good message-passing APIs for distributed GPUs:
● Messages can be executed in any order → collective operations may deadlock
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But also more complicated: RL, multimodal models, 
multi-model routing, heterogeneous resources, …

Performance is important.
But so is extensibility!

The rise of large models

Models are getting larger.


