@BlueRock
Modular, Full-Stack Verification

Gregory Malecha, Hoang-Hai Dang, Paolo G. Giarrusso,
Simon Hudon, Jan-Oliver Kaiser (BlueRock Security)
David Swasey (Riverside Research)

gregory@bluerock.io

@ BlueRock

4)

We can specify real, concurrent systems in ways that
naturally align with systems design principles.

Full verification of real systems code is tractable.

\.

/

—
Modular, Full-Stack Verification

Gregory Malecha, Hoang-Hai Dang, Paolo G. Giarrusso,
Simon Hudon, Jan-Oliver Kaiser (BlueRock Security)
David Swasey (Riverside Research)

gregory@bluerock.io

The Challenge
A Virtualization Platform

%
& BlueRock oldarocicio

The Challenge
A Virtualization Platform

Features implemented
|n user-mode

Master : Unverified

NOVA

Physical Hardware

—o

[Microkernel-based

S P 4
@ BlueRock b\u:S:i:k io ©BlueRock Inc. 2025

The Challenge
A Virtualization Platform

. Real System - concurrency, dynamic

resource sharing, real systems engineers
(+mainstream PL, e.g. C++).

Two-sided Specification - single
specification used by both the
implementation and the clients.

Modular Verification - aligned with the
architecture of the actual systems
engineers.

Robust - support inter-operation with
unverified code.

Unverified
Apps

NOVA

Physical Hardware

& BlueRock

uerock.io

©BlueRock Inc. 2025

The Full-Stack Proof

=

CPU

Full Machine Model

Devices

& BlueRock

ppppp

The Full-Stack Proof

.
Decompose the | Unprivileged Model | Priv Model
CPU semantics (operational) (operational)

= o \\\ —

CPU Full Machine Model | Devices

g Page 7
@ BlueRock bluerock.io ©BlueRock Inc. 2025

The Full-Stack Proof

Unprivileged Model
(operational)

OS Spec
(Axiomatic)

(Specify the OS

L\/—

Priv Model
(operational)

CPU Full Machine Model

Devices

N
Decompose the | Unprivileged Model
CPU semantics (operational)

& BlueRock

©BlueRock Inc. 2025

The Full-Stack Proof

Verify user-mode
applications

User-mode Apps
(C++)

OS Spec
(Axiomatic)

Unprivileged Model
(operational)

OS Spec
(Axiomatic)

(Specify the OS

L\/—

Unprivileged Model
(operational)

Priv Model
(operational)

.
Decompose the
CPU semantics

\
\
\
A}

CPU Full Machine Model

Devices

S e
@ BlueRock b\j:rgocl?io

kInc. 2025

The Full-Stack Proof

User-mode Apps OS Spec
(C++) (Axiomatic)

Unprivileged Model OS Spec
(operational) (Axiomatic)
Unprivileged Model | Priv Model

(operational)

(operational)

CPU Full Machine Model

Devices

& BlueRock

pppppp

Giarrusso, et. al. Modularizing CPU Semantics for Virtualization. PriSC'24.

Decomposing CPU Semantics

Monolithic
Semantics

Communication
with messages.

System
(Mem, Dev, etc)

S
@ BlueRock b\fi?oiﬂ io ©BlueRock Inc. 2025

Giarrusso, et. al. Modularizing CPU Semantics for Virtualization. PriSC'24.

Decomposing CPU Semantics

Unprivileged Unprivileged
Monolithic
Semantics Does not directly align
with exception levels.
gl s
3 6] |
Communication EL1+EL2 é-Z'
with messages.
AN AN
System System System
(Mem, Dev, etc) (Mem, Dev, etc) (Mem, Dev, etc)

S
%’ BlueRock orage e ©BlueRock Inc. 2025

Decomposing CPU Semantics

Monolithic
Semantics

iy

System
(Mem, Dev, etc)

Passthrough unprivileged
behavior
|
Unprivileged Unprivileged — Unprivileged
g e T 4|
S —
EL1+EL2 B |||
{ Abstract privileged
~ L behavior to OS concepts.
System System System

(Mem, Dev, etc)

(Mem, Dev, etc)

(Mem, Dev, etc)

& BlueRock

uuuuuu

The Full-Stack Proof
Specify the 0S

User-mode Apps OS Spec
The "hybrid" L (C++) (Axiomatic)
specification.

[Resources_J Unprivileged Model OS Spec

— (operational) (Axiomatic)
Unified reasoning with

separation logic. Unprivileged Model | Priv Model
[—— (operational) (operational)

Weakest preconditions] [Logical Atomicity]

i CPU Full Machine Model | Devices

S
@ BlueRock bﬁi?fcf io

Dang, et. al. Towards Modular Specification of Concurrent Hypervisor-based Isolation. PriSC'24.
Dang, et. al. A Formal Specification of the NOVA Microhypervisor API. BlueRock Technical Report.

The NOVA Machine

(This is a "thread"-local W
L reasoning principle!
L—

Theorem wp_nova_ec_intro : V ec regs,
(V evt regs',
[| cpu.step regs evt regs' |] -*

- Unprivileged
c Hypercall behavior
one D_hova_e eQ
ome 3 D DEerca S
ome S adc D_ME adc 1—f=

Address translation specified

end using NOVA state.
F wp_nova_ec ecCc regs.
e A Ty SCCTTT Iy STCTIT SyStem

(Mem, Dev, etc)

S
@ BlueRock b\ii?:c]lio ©BlueRock Inc. 2025

NOVA’s Capability API:

kernel objects, hypercalls, and HW-assisted virtualization
PD: protection domain with capabilities in Object spaces user-owned
EC: executign contexts Memory spaces SM: semaphores DMA spaces pkernel-owned
SC: scheduling contexts
PT: portals
security-irrelevant communication / memory memory interrupt device
Events instructions scheduling config access config/delivery config
) ctrl_ecipc_call I : '
i Ctr|_SC:ipc_repIy ctrl_pd| | assign_int, assign_dev,
| ctrl_pt] ! ! ctrl_sm | !
E CPUAPI - Memory AP ~ Interrupt APl — Device API
Kemel APl | | o) AR 7 Imtem S e
| | © o iHwasssed 1 I e
! I ! ! virtualization, ! ! | !
| jm—————— - i i translation with | | | '
User i | | | page tables ! ! ! '
| 1 | | . .
- . : : Device 1 Device 2
Kernel i Memory i i Interrupt SMMU /
Hypervisor |---- " | Controller | i Controllers IOMMU
CPU o
NOVA Memory User Memory

& BlueRock

Page 16
bluerock.io

©BlueRock Inc. 2025

NOVA’s Capability API:
kernel objects, hypercalls, and HW-assisted virtualization

user-owned

Orthogonal APIs are easy to specify
and evolve independently.

CPUAPI - MemoryAP| — InterruptAPI — Device APl

KemelAPI | .~ o0 & PO pee g o D e N
| 1 |
User
Device 1 Device 2
Kernel Memory Interrupt SMMU / cvee cviee
Hypervisor Controller Controllers IOMMU
NOVA Memory User Memory

e
@ BlueRock uiiffcfio

NOVA’s Capability API:
kernel objects, hypercalls, and HW-assisted virtualization

Memory APi — InterruptAPI — Device APl —
..................... e b e
P Hweassisted b
: ! virtualization,
———————————— 1 translation with
| | page tables
Memory i i Interrupt SMMU /
Controller | i Controllers IOMMU

Proofs must cover the C++ and the hardware.

[NOVA behavior is tightly connected to hardware.
- Concurrency is unavoidable.

& BlueRock

Fair Semaphores

4.4.5 Control Semaphore

Parameters:
status = ctrl sm (SELgg sm, // Semaphore
UINT ticks); // Deadline Timeout
Flags:

Description:
Prior to the hypercall:
e If D=0 (Up): | PDcugrenr, SELgsy sm) must refer to a SM Object Capability (CAPgg),,) with
permission CTRLyp.
e If D=1 (Down): { PDcymgenr, SELggy sm) must refer to a SM Object Capability (CAPgg),,) with
permission CTRLpy.

If the hypercall completed successfully:

o If D=0 (Up): if there were ECs blocked on the semaphore, then the microhypervisor has released one
of those blocked ECs. Otherwise, the microhypervisor has incremented the semaphore counter. The
deadline timeout value and the Z-flag were ignored.

e If D=1 (Down): if the semaphore counter was larger than zero, then the microhypervisor has
decremented the semaphore counter (Z=8) or set it to zero (Z=1). Otherwise, the microhypervisor has
blocked ECcypgpexr on the semaphore. If the deadline timeout value was non-zero, ECcygaent unblocks
with a timeout status when the architectural timer reaches or exceeds the specified ticks value.

Blocking and releasing of ECs on a semaphore uses the FIFO gueueing discipline.
Status:
SUCCESS
o The hypercall completed successfully.
TIMEOUT
o If D=1: Down opération aborted when the timeout triggered.
OVRFLOW
o If D=0: Up operation aborted because the semaphore counter would overflow.
BAD_CAP

o [PDameenr, SELggy; sm) did not refer to a SM Object Capability (CAPqg).,) or that capability
had insufficient permissions.

BAD_CPU
o If D=1 on an interrupt semaphore: Attempt to wait for the interrupt on a different CPU than the CPU

& BlueRock

to which that interrupt has been routed via assign_int.

Page 19
bluerock.io ©BlueRock Inc. 2025

4.4.5 Control Semaphore

Parameters:

status = ctrl sm (SELgg sm, // Semaphore
UINT ticks); // Deadline Timeout

Fair Semaphores
State

A minimal piece of independent
state and an ownership
discipline/"protocol”

Prior to the hypercall:
Reﬂected as sepa ration Iogic resources o If D=0 (Up): { PDcumsenr, SELgsy sm) must refer to a SM Object Capability (CAPys).) with
permission CTRLyp.

e If D=1 (Down): { PDcymgenr, SELggy sm) must refer to a SM Object Capability (CAPgg),,) with
permission CTRLpy"

° S e | e Cto rs ma p to ca pa b| | |t| es If the hypercall completed successfully:

o If D=0 (Up): if there were ECs blocked on the semaphore, then the microhypervisor has released one
of those blocked ECs. Otherwise, the microhypervisor has incremented the semaphore counter. The

pd ’Sel = (O bj, pe rm) deadline timeout value and the Z-flag were ignored.
e If D=1 (Down): if the semaphore counter was larger than zero, then the microhypervisor has
decremented the semaphore counter (Z=0) or set it to zero (Z=1). Otherwise, the microhypervisor has

blocked ECcyrges the semaphore. If the deadline timeout value was non-zero, ECcypag; blocks
Py The Counter Of a Semaphore ocke currexr on the semaphore e ne put value was non-zero, ECcypaeyr unblocks

with a timeout status when the architectural timer reaches or exceeds the specified ticks value.

Blocking and releasing of ECs on a semaphore uses the FIFO gueueing discipline.

sm.counter obj n Status:

SUCCESS

e The hypercall com, suecessfully.
e The queue of blocked threads o TR K
o If D=1: Down opération aborted when the timeout triggered.
. OVRFLOW
sm. q ueue ObJ IS o If D=0: Up operation aborted because the semaphore counter would overflow.
BAD_CAP
® | PDameent, SELosy sm) did not refer to a SM Object Capability (CAPgs).,) or that capability
had insufficient permissions.
BAD_CPU

o If D=1 on an interrupt semaphore: Attempt to wait for the interrupt on a different CPU than the CPU
to which that interrupt has been routed via assign_int.

g

@ BlueRock bm?zczk% ©BlueRock Inc. 2025

4.4.5 Control Semaphore

Fair Semaphores
Behavior _____EEEN

Prior to the hypercall:

Reﬂected as separation |ogic resources e If D=0 (Up): { PDcuppenr, SELosy sm) must refer to a SM Object Capability (CAPgsy..) with

permission CTRLyp

e If D=1 (Down): { PDcymgent, SELggy sm) must refer to a SM Object Capability (CAPgg).) with
permission CTRLpy

PY Selectors map to Capabi“ties If the hypercall completed successfully

o If D=0 (Up): if there were ECs blocked on the semaphore, then the microhypervisor has released one

of those blocked ECs. Otherwise, the microhypervisor has incremented the semaphore counter. The

pd ;Sel (= (Obj, perm) [Seq uenci ng 1 deadline timeout value and the Z-flag were ignored
/

If N—1 (Do) £ tha camant 2 connte locoae sk N than sha emicenl ot he

e The counter of a semaphore - let (Some obj) :=

resolve_sm ec.pd {UP} sel else K BAD_CAP;
sm.counter obj n sm.incr obj K

e The queue of blocked threads = wp_hypercall ec ctrl_sm(e, sel, _) K

S e If D=1: Down opération aborted when the tim . .
_ ovRFLOW Continuation.
Sm -queue ObJ IS e [f D=0: Up operation aborted because the semapHOTe COUNTET WOUTd OVCTTTOW:
BAD_CAP
® { PDameent, SELos; sm } did not refer to a SM Object Capability (CAPgs).,) or that capability
had insufficient permissions
BAD_CPU
e [f D=1 on an interrupt semaphore: Attempt to wait for the interrupt on a different CPU than the CPU
to which that interrupt has been routed via assign_int.
@ BlueRock blusrockio Bluehockine 2oz

4.4.5 Control Semaphore

Parameters:

status ctrl sm (SELpg; sm,
UINT ticks);

Fair Semaphores

Exchange this...

Reflected AU<<3 n. sm.counter g n>> @N ...for this
<<sm.counter g (cap (n+1)),) vt
COMM K (if overflows (n+1) | owgn

then OVERFLOW else SUCCESS)>>
erwards, continue
asolve_sm ec.pd AD_CAP;
sm.counter obj n

sm.incr obj K
e The queue of blocked threads

e Selg

= wp_hypercall ec ctrl_sm(0, sel, _) K

e If D=1: Down opération aborted when the timeout triggered d
. OVRFLOW
Sm -queue ObJ IS o If D=0: Up operation aborted because the semaphore counter would overflow.
BAD_CAP
® { PDameent, SELos; sm } did not refer to a SM Object Capability (CAPgs).,) or that capability
had insufficient permissions
BAD_CPU

e [f D=1 on an interrupt semaphore: Attempt to wait for the interrupt on a different CPU than the CPU

to which that interrupt has been routed via assign_int.

%
& BlueRock blusroco

4.4.5 Control Semaphore

Parameters:

status ctrl_sm (SELgg; sm,

Fair Semaphores UINT ticks);

Flags:

Behavior EEEREREN

Description:

Reflected as separation logic resourcefig=t{oJ AV-IR:11 I oJe BE-1-0 N G
AU<<3 obj,perm. pd;sel~(obj,perm)>> @NOVA

e Selectors map to capabilities <<ec.pd;sel~(obj,perm),
COMM K (if {UP} < perm
pd;sel ~ (obj, perm) then Some obj else None)>>

L

e The counter of==sessaboes let (Some obj) :
Two atomic steps. resolve_sm ec.pd {UP} sel else K BAD_CAP;
sm.counter obym sm.incr obj K

e The queue of blocked threads sm.incr g K :=

. AU<<3 n. sm.counter g n>> @NOVA
sm.queue obj Is <<sm.counter g (cap (n+1)),
COMM K (if overflows (n+1)
then OVERFLOW else SUCCESS)>>

to which that interrupt has been routed via assign_inf:

%
& BlueRock bloerock

luerock.io BlueRock Inc. 2025

4.4.5 Control Semaphore

Parameters:

status ctrl_sm (SELgg; sm,
UINT ticks);

Fair Semaphores
Behavior —

Reflected as separation logic resou
o
e Selectors map to ca ®
pd;sel - (obj, ry/ e‘ \
e The counter c/
1. Connect the abstract state to C++ state

2. Apply the linearization points when
updating the state.

. AU<<3 n. sm.counter g n>> @NOVA
sm.queue obj Is <<sm.counter g (cap (n+1)),
COMM K (if overflows (n+1)
then OVERFLOW else SUCCESS)>>

(11D~~~

RAD_CAP;
sm.counter

e The queue of blocke

to which that interrupt has been routed via assign_inf:

>< Page 24
@ BlueRock Buseddo . cBlueRockinc 202 &

Spawning Threads
Concurrent Behavior

Thread creation occurs when
scheduling contexts are bound to
global execution contexts.

The proof obligation for a thread
creation is expressed as a WP for the
new thread.

5.3.3 Create Scheduling Context

Parameters:
status = create_sc (SELop; sel, // Created SC
SELop; pd, // Owner PD
SELop; ec, // Bound EC
SCD scd) // Scheduling Context Descriptor
Flags:

[oeJoeJoe o]

Description:
Creates a new Scheduling Context (SC).
Prior to the hypercall:
® SPCopjcymme [S€1] must refer to a Null Capability (CAP,).
® SPCOBI uaen: [PA] must refer to a PD Capability (CAPogy,,,) with permission SC.
® SPCOBI. uuenr | €€] must refer to an EC Capability (CAPogj,.) with permission BINDsc.
If the hypercall completed successfully:
e A new Scheduling Context (SC) has been created.

e The created SC is bound to the EC referred to by SPCop, ..., [€C] on the CPU of that EC, with its
scheduling parameters set according to scd.

o The resources for the created SC were accounted to the PD referred to by SPCogy, ... [Pd].

-

let
let
let
let

(if

&

g_pd := resolve_pd ec.pd sel_pd {SC} Q in

g_ec := resolve_ec ec.pd sel_ec {EC_BIND_SC} Q in
g_sc := sc.create ec.pd sel_sc Q in

run := ec.bind g_ec g_sc in

run then wp_nova_ec g_ec else emp)>!< K SUCCESS

= wp_hypercall ec create_sc(sel_sc, sel_pd, sel_ec, scd) K

BAD_PAR

& BlueRock

o At least one SCD field in scd was invalid.
o MEM_OBJ

e The Protection Domain referred to bv SPConi. . Ipdl] had insufficient memorv resources for

5.3.3 Create Scheduling Context

Parameters:

status = create_sc (SELop; sel, // Created SC
SELop; pd, // Owner PD

Spawning Threads R A
Concurrent Behavior

[oeJoeJoe o]
3 2 1 0

Description:

Thread creation occurs when Creates a hew Schadiiling Goalaxt (SCJ.
scheduling contexts are bound to i N

® SPCopjcymme [S€1] must refer to a Null Capability (CAP,).
g lobal execution contexts. o SPCoBleugun [pd] must refer to a PD Capability (CAPopy,,) with permission SC.

® SPCoBIc e [€€] must refer to an EC Capability (CAPopy,..) with permission BINDsc.

If the hypercall completed successfully:

Th e p I’OOf (0] bl |gat| on fO ra th rea d e A new Scheduling Context (SC) has been created.
Creatlon |S expressed as a WP for the . 1&;::1;?pii:ell;o:r$tl(;)ci}:)erdl]?fgl;zfesrzzd 10 by SPCopj e [€€] 0N the CPU of that EC, with its
new th rea d . e The resources for the created SC were accounted to the PD referred to by SPCopy.,.... [pd].

let g_pd resolve_pd ec.pd sel_pd {SC} Q in W

lot o on = raeq]ve_ec ec.pd sel_ec {EC_B™MDCCL N _sin
Prove an extra WP for |reate ec.pd sel_sc Q in Continue running the
the new thread. d g_ec g_sc in current thread.

(if run then wp_nova_ec g_ec else emp)>f< K SUCCESS

= wp_hypercall ec create_sc(sel_sc, sel_pd, sel_ec, scd) K

BAD_PAR
e At least one SCD field in scd was invalid.
>
& BlueRock blateaio MEM_OBJ

e The Protection Domain referred to bv SPCaonri. . [Ipd] had insufficient memorv resources for

5.3.3 Create Scheduling Context

Parameters:

status = create_sc (SELop; sel, // Created SC
SELop; pd, // Owner PD

Spawning Threads oy =t

Concurrent Behavior

SCD scd) // Scheduling Context Descriptor

[oeJoeJoe o]
3 2 1 0

Description:

Thread creation occurs when Creates a hew Schadiiling Goalaxt (SCJ.

scheduling contexts are bound to

global execution contexts.

Prior to the hypercall:

® SPCopjcymme [S€1] must refer to a Null Capability (CAP,).

® SPCOBI uaen: [PA] must refer to a PD Capability (CAPogy,,,) with permission SC.

® SPCoBIc e [€€] must refer to an EC Capability (CAPopy,..) with permission BINDsc.
If the hypercall completed successfully:

The pI’OOf Ob|igati0n fOI’ d th read e A new Scheduling Context (SC) has been created.
Creatlon |S expressed as a WP for the e The crefned SC is bound to the l?_C referred to by SPCopj,, e [€€] 0N the CPU of that EC, with its
new thread. f Need logical atomicity [T —
let g_pd := resolve_pdl tomake thiscomplete. |5, W
1+ ~ A~ L rrone 1ve ‘.— TAID S0l N an
Prove an extra WP for |reat Indepefndence > thel Continue running the
the new thread. e, O Of concurrency: current thread.
(if run then wp_nova_ec g_ec else emp)>X< K SUCCESS
= wp_hypercall ec create_sc(sel_sc, sel_pd, sel_ec, scd) K
BAD_PAR
e At least one SCD field in scd was invalid.
€& BlueRock bloerockio MEM_OBJ

e The Protection Domain referred to bv SPCaonri. . [Ipd] had insufficient memorv resources for

Malecha, et. al. Developing with Formal Methods at BedRock Systems. |IEEE S&P
Giarrusso, et. al. Verifying a Virtual Machine Monitor. BlueRock Technical Report

The Full-Stack Proof
User-mode Verification

e Device drivers.
o PLO11 User-mode Apps OS Spec

o (Simple-mode) Zyngmp (C++) (Axiomatic)

e Terminal multiplexor —
Unprivileged Model OS Spec

e VIRTIO-based layer 2 switch. (operational) (Axiomatic)

e Virtual Machine Monitor

Unprivileged Model | Priv Model
(operational) (operational)

Unified reasoning with
separation logic.

CPU Full Machine Model | Devices

[Highly reusable proofs]

% Ps 28
@ BlueRock b\uaeg,:ck io ©BlueRock Inc. 2025

Uniform Reasoning
in Separation Logic

Definition portal_spec_cpu
(exit_reason : evt.t nova.
(vg : GlobalRoundupInfo.ghos
(cy : bm.cpu.Name > Vcpu.gnal

(bm_cid : bm.cpu.Name)
: WpSpec_cpp :=

& BlueRock

. other ownership ... %)

~
*

(shareds : bm.cpu.Name > Vcpu?

User-mode entry point (from
hardware virtualization)

)

Uniform Reasoning
in Separation Logic

[pefinition portal_spec_cpu

(exit_reason : evt.t nova.
(vg : GlobalRoundupInfo.ghos
(cy : bm.cpu.Name > Vcpu.gnal
(shareds : bm.cpu.Name > Vcpu?
(bm_cid : bm.cpu.Name)

User-mode entry point (from |
hardware virtualization)

: WpSpec_cpp :=

\let yvcpu := cy bm_cid
\pre{mSeq : Vcpu.seq_t} vcpu |-> Vcpu.seqR (cQp.m 1) bm_cid yvcpu Mseq

and some
NOVA state

C++ state.

Shared handle to the Board -— C++/NOVA
et pd := (Model.Cpu.pd_name (Vcpu.base_basey yvcpu))
\prepost{yboard qpoard Mpoard! Model.Board.P pd qpoard Yboard mpaoapq
\require yboard .” Model.BoardImpl.Model._stage = Model.Board.SteadyState

ared handles to other V -— C++/NOVA

\prepost{q_vcpus} _global "Model::vcpus" |-> Vcpu.vcpusR cy shareds q_vcpus vg

NOVA State ! (**x VCPU registers —— NOVA)

prepost{vcpu_regs : arch.regs_t guest}
Model.Cpu.ecRegs (Vcpu.base_basey yvcpu) vcpu_regs

xx Specification state of the Guest -- spec *)
SpeCIflcatlon state tre{bm_state : lts_state (bm.cpu.lts _)} bm.cpu.core bm_cid bm_state

equire{decode_assist} cpu.pendingInstruction bm_state decode_assist
\require{fault_regs} VCPU.FaultRegs.reg_accessor_encodes_decodeassist fault_regs
exit_reason decode_assist

—

Simulation

& BlueRock

ﬁreqm’re CPU.related_full_states bm_state vcpu_regs

)

* ... other ownership ... %)

\

Virtual Machine Monitor
Verification Architecture

[spec init
(cpu)

VCPU (GPR)

MSRBus

MSR

Giarrusso, et. al. Verifying a Virtual Machine Monitor. BlueRock Technical Report

& BlueRock

uuuuuu

Giarrusso, et. al. Verifying a Virtual Machine Monitor. BlueRock Technical Report

Virtual Mlachine Monitor
Verification Architecture [Component-based }

spec init decomposition.
(machine)
I
I

[[[|
spec init spec init spec init spec init spec init
(cpu) (interrupt ctrl) (memory) (dev) (bus)
C

- - - - -

VCPU (GPR) GIC-D | | GuestAS | VUART vBus
| MSRBus iiloicR] [veel
[wsR L Interrupt || | (passthru) 1 |
| CPU!!! Controller|: Memory i Devices || ¥
_____________________ 7 - TG

S
%’ BlueRock hagesz ©BlueRock Inc. 2025

Takeaways

e Separation logic is a powerful formalism
for reasoning about dynamic systems.

e |t can be used to specify complex,
concurrent behavior.

e It can be used to modularly verify
complex, concurrent behavior.

e It works for the (good) code that you have
right now.

The Future
e Specify your next system using SL!
e Verify the implementation!

Future Research

e Refine low-level hardware models
o Security reasoning.
o Weak memory.

e Liveness verification.
o Availability.

e Hyper-properties.
o Confidentiality.
o Isolation.

5 age
@ BlueRock Blusoekio

Inc. 2025

