
Modular, Full-Stack Verification
Gregory Malecha, Hoang-Hai Dang, Paolo G. Giarrusso,
Simon Hudon, Jan-Oliver Kaiser (BlueRock Security)
David Swasey (Riverside Research)

gregory@bluerock.io

Modular, Full-Stack Verification
Gregory Malecha, Hoang-Hai Dang, Paolo G. Giarrusso,
Simon Hudon, Jan-Oliver Kaiser (BlueRock Security)
David Swasey (Riverside Research)

gregory@bluerock.io

We can specify real, concurrent systems in ways that
naturally align with systems design principles.

Full verification of real systems code is tractable.

Page 3
bluerock.io ©BlueRock Inc. 2025

The Challenge
A Virtualization Platform

Page 4
bluerock.io ©BlueRock Inc. 2025

The Challenge
A Virtualization Platform

VMMVMM UMX

NOVA

VMM Unverified
Apps

Master
Ctrl vSwitch

Physical Hardware

NOVA

Microkernel-based

Features implemented
in user-mode

Page 5
bluerock.io ©BlueRock Inc. 2025

The Challenge
A Virtualization Platform

1. Real System – concurrency, dynamic
resource sharing, real systems engineers
(+mainstream PL, e.g. C++).

2. Two-sided Specification – single
specification used by both the
implementation and the clients.

3. Modular Verification – aligned with the
architecture of the actual systems
engineers.

4. Robust – support inter-operation with
unverified code.

VMMVMM UMX

NOVA

VMM Unverified
Apps

Master
Ctrl vSwitch

Physical Hardware

NOVA

Page 6
bluerock.io ©BlueRock Inc. 2025

The Full-Stack Proof

Full Machine Model Devices

Behavioral Specification

CPU

Page 7
bluerock.io ©BlueRock Inc. 2025

The Full-Stack Proof

Full Machine Model Devices

Behavioral Specification

CPU

Unprivileged Model
(operational)

Priv Model
(operational)

Decompose the
CPU semantics

Page 8
bluerock.io ©BlueRock Inc. 2025

The Full-Stack Proof

Full Machine Model Devices

Unprivileged Model
(operational)

OS Spec
(Axiomatic)

Behavioral Specification

CPU

Unprivileged Model
(operational)

Priv Model
(operational)

Specify the OS

Decompose the
CPU semantics

Page 9
bluerock.io ©BlueRock Inc. 2025

The Full-Stack Proof

Full Machine Model Devices

Unprivileged Model
(operational)

OS Spec
(Axiomatic)

User-mode Apps
(C++)

OS Spec
(Axiomatic)

Behavioral Specification

CPU

Unprivileged Model
(operational)

Priv Model
(operational)

Verify user-mode
applications

Specify the OS

Decompose the
CPU semantics

Page 10
bluerock.io ©BlueRock Inc. 2025

The Full-Stack Proof

Full Machine Model Devices

Unprivileged Model
(operational)

OS Spec
(Axiomatic)

User-mode Apps
(C++)

OS Spec
(Axiomatic)

Behavioral Specification

CPU

Unprivileged Model
(operational)

Priv Model
(operational)

Page 11
bluerock.io ©BlueRock Inc. 2025

Decomposing CPU Semantics

System
(Mem, Dev, etc)

Monolithic
Semantics

Giarrusso, et. al. Modularizing CPU Semantics for Virtualization. PriSC'24.

Communication
with messages.

Page 12
bluerock.io ©BlueRock Inc. 2025

Decomposing CPU Semantics

System
(Mem, Dev, etc)

System
(Mem, Dev, etc)

System
(Mem, Dev, etc)

Unprivileged

EL1+EL2

Unprivileged

EL1

Monolithic
Semantics

Giarrusso, et. al. Modularizing CPU Semantics for Virtualization. PriSC'24.

Communication
with messages.

Does not directly align
with exception levels.

Page 13
bluerock.io ©BlueRock Inc. 2025

Unprivileged

NOVA

System
(Mem, Dev, etc)

Passthrough unprivileged
behavior

Decomposing CPU Semantics

System
(Mem, Dev, etc)

System
(Mem, Dev, etc)

System
(Mem, Dev, etc)

Unprivileged

EL1+EL2

Unprivileged

EL1

Monolithic
Semantics

Abstract privileged
behavior to OS concepts.

Page 14
bluerock.io ©BlueRock Inc. 2025

The Full-Stack Proof
Specify the OS

Full Machine Model Devices

Unprivileged Model
(operational)

OS Spec
(Axiomatic)

User-mode Apps
(C++)

OS Spec
(Axiomatic)

Behavioral Specification

CPU

The "hybrid"
specification.

Unified reasoning with
separation logic.

Resources

Logical AtomicityWeakest preconditions

Unprivileged Model
(operational)

Priv Model
(operational)

Page 15
bluerock.io ©BlueRock Inc. 2025

Unprivileged

NOVA

System
(Mem, Dev, etc)

The NOVA Machine

System
(Mem, Dev, etc)

System
(Mem, Dev, etc)

System
(Mem, Dev, etc)

Monolithic
Semantics

Unprivileged

EL1+EL2

Unprivileged

EL1

Unprivileged
(S-ASL)

EL1+EL2

Unprivileged
(S-ASL)

EL1

Unprivileged
(S-ASL)

EL1+EL2

Unprivileged
(S-ASL)

EL1

Theorem wp_nova_ec_intro : ∀ ec regs,
 (∀ evt regs',
 [| cpu.step regs evt regs' |] -*
 match evt with
 | None => wp_nova_ec regs'
 | Some syscall => wp_hypercall ec ..
 | Some (mem vaddr) => wp_mem vaddr
 | ...
 end)
 ⊢ wp_nova_ec ec regs.

Address translation specified
using NOVA state.

This is a "thread"-local
reasoning principle!

Hypercall behavior

Dang, et. al. Towards Modular Specification of Concurrent Hypervisor-based Isolation. PriSC'24.
Dang, et. al. A Formal Specification of the NOVA Microhypervisor API. BlueRock Technical Report.

The future is built on BedRock.Page 16
bluerock.io ©BlueRock Inc. 2025

User Memory

Interrupt
Controllers

SMMU /
IOMMU

Device 1 Device 2
Memory

Controller

User
Kernel

Hypervisor

NOVA Memory
CPU

Kernel API CPU API Memory API Interrupt API Device API

security-irrelevant
instructions

memory
config

memory
access

interrupt
config/delivery

device
configEvents

communication /
scheduling

EC: execution contexts
SC: scheduling contexts
PT: portals

PD: protection domain with capabilities in Object spaces

SM: semaphoresMemory spaces DMA spaces

assign_int
ctrl_sm

assign_devctrl_pd
ctrl_ec
ctrl_sc
ctrl_pt

ipc_call
ipc_reply

HW-assisted
virtualization,
translation with
page tables

user-owned

μkernel-owned

NOVA's Capability API:
kernel objects, hypercalls, and HW-assisted virtualization

The future is built on BedRock.Page 17
bluerock.io ©BlueRock Inc. 2025

User Memory

Interrupt
Controllers

SMMU /
IOMMU

Device 1 Device 2
Memory

Controller

User
Kernel

Hypervisor

NOVA Memory
CPU

Kernel API CPU API Memory API Interrupt API Device API

security-irrelevant
instructions

memory
config

memory
access

interrupt
config/delivery

device
configEvents

communication /
scheduling

EC: execution contexts
SC: scheduling contexts
PT: portals

PD: protection domain with capabilities in Object spaces

SM: semaphoresMemory spaces DMA spaces

assign_int
ctrl_sm

assign_devctrl_pd
ctrl_ec
ctrl_sc
ctrl_pt

ipc_call
ipc_reply

HW-assisted
virtualization,
translation with
page tables

user-owned

μkernel-owned

NOVA's Capability API:
kernel objects, hypercalls, and HW-assisted virtualization

Orthogonal APIs are easy to specify
and evolve independently.

The future is built on BedRock.Page 18
bluerock.io ©BlueRock Inc. 2025

User Memory

Interrupt
Controllers

SMMU /
IOMMU

Device 1 Device 2
Memory

Controller

User
Kernel

Hypervisor

NOVA Memory
CPU

Kernel API CPU API Memory API Interrupt API Device API

security-irrelevant
instructions

memory
config

memory
access

interrupt
config/delivery

device
configEvents

communication /
scheduling

EC: execution contexts
SC: scheduling contexts
PT: portals

PD: protection domain with capabilities in Object spaces

SM: semaphoresMemory spaces DMA spaces

assign_int
ctrl_sm

assign_devctrl_pd
ctrl_ec
ctrl_sc
ctrl_pt

ipc_call
ipc_reply

HW-assisted
virtualization,
translation with
page tables

user-owned

μkernel-owned

NOVA's Capability API:
kernel objects, hypercalls, and HW-assisted virtualization

NOVA behavior is tightly connected to hardware.
Proofs must cover the C++ and the hardware.

Concurrency is unavoidable.

Page 19
bluerock.io ©BlueRock Inc. 2025

Fair Semaphores

Page 20
bluerock.io ©BlueRock Inc. 2025

Fair Semaphores
State

Reflected as separation logic resources

● Selectors map to capabilities

● The counter of a semaphore

● The queue of blocked threads

sm.counter obj n

sm.queue obj ls

pd;sel ↦ (obj, perm)

A minimal piece of independent
state and an ownership
discipline/"protocol"

Page 21
bluerock.io ©BlueRock Inc. 2025

Fair Semaphores
Behavior

 let (Some obj) :=
 resolve_sm ec.pd {UP} sel else K BAD_CAP;
 sm.incr obj K
⊢ wp_hypercall ec ctrl_sm(0, sel, _) K

Continuation.

Sequencing

Reflected as separation logic resources

● Selectors map to capabilities

● The counter of a semaphore

● The queue of blocked threads

sm.counter obj n

sm.queue obj ls

pd;sel ↦ (obj, perm)

Page 22
bluerock.io ©BlueRock Inc. 2025

Reflected as separation logic resources

● Selectors map to capabilities

● The counter of a semaphore

● The queue of blocked threads

sm.counter obj n

sm.queue obj ls

pd;sel ↦ (obj, perm)

Fair Semaphores
Behavior

 let (Some obj) :=
 resolve_sm ec.pd {UP} sel else K BAD_CAP;
 sm.incr obj K
⊢ wp_hypercall ec ctrl_sm(0, sel, _) K

sm.incr g K :=
 AU<<∃ n. sm.counter g n>> @NOVA
 <<sm.counter g (cap (n+1)),
 COMM K (if overflows (n+1)
 then OVERFLOW else SUCCESS)>>

Exchange this…

Afterwards, continue

…for this

Page 23
bluerock.io ©BlueRock Inc. 2025

Reflected as separation logic resources

● Selectors map to capabilities

● The counter of a semaphore

● The queue of blocked threads

sm.counter obj n

sm.queue obj ls

pd;sel ↦ (obj, perm)

Fair Semaphores
Behavior

 let (Some obj) :=
 resolve_sm ec.pd {UP} sel else K BAD_CAP;
 sm.incr obj K
⊢ wp_hypercall ec ctrl_sm(0, sel, _) K
sm.incr g K :=
 AU<<∃ n. sm.counter g n>> @NOVA
 <<sm.counter g (cap (n+1)),
 COMM K (if overflows (n+1)
 then OVERFLOW else SUCCESS)>>

resolve_sm pd sel K :=
 AU<<∃ obj,perm. pd;sel↦(obj,perm)>> @NOVA
 <<ec.pd;sel↦(obj,perm),
 COMM K (if {UP} ⊆ perm
 then Some obj else None)>>

Two atomic steps.Two atomic steps.

Page 24
bluerock.io ©BlueRock Inc. 2025

Fair Semaphores
Behavior

Reflected as separation logic resources

● Selectors map to capabilities

● The counter of a semaphore

● The queue of blocked threads

sm.counter obj n

sm.queue obj ls

pd;sel ↦ (obj, perm)

 let (Some obj) :=
 resolve_sm ec.pd {UP} sel else K BAD_CAP;
 sm.incr obj K
⊢ wp_hypercall ec ctrl_sm(0, sel, _) K
sm.incr g K :=
 AU<<∃ n. sm.counter g n>> @NOVA
 <<sm.counter g (cap (n+1)),
 COMM K (if overflows (n+1)
 then OVERFLOW else SUCCESS)>>

resolve_sm pd sel K :=
 AU<<∃ obj,perm. pd;sel↦(obj,perm)>> @NOVA
 <<ec.pd;sel↦(obj,perm),
 COMM K (if {UP} ⊆ perm then Some obj
 else None)>>Verified

1. Connect the abstract state to C++ state
2. Apply the linearization points when

updating the state.

Page 25
bluerock.io ©BlueRock Inc. 2025

Spawning Threads
Concurrent Behavior
Thread creation occurs when
scheduling contexts are bound to
global execution contexts.

The proof obligation for a thread
creation is expressed as a WP for the
new thread.

 let g_pd := resolve_pd ec.pd sel_pd {SC} Q in
 let g_ec := resolve_ec ec.pd sel_ec {EC_BIND_SC} Q in
 let g_sc := sc.create ec.pd sel_sc Q in
 let run := ec.bind g_ec g_sc in

 (if run then wp_nova_ec g_ec else emp)∗ K SUCCESS
⊢ wp_hypercall ec create_sc(sel_sc, sel_pd, sel_ec, scd) K

Page 26
bluerock.io ©BlueRock Inc. 2025

Spawning Threads
Concurrent Behavior
Thread creation occurs when
scheduling contexts are bound to
global execution contexts.

The proof obligation for a thread
creation is expressed as a WP for the
new thread.

 let g_pd := resolve_pd ec.pd sel_pd {SC} Q in
 let g_ec := resolve_ec ec.pd sel_ec {EC_BIND_SC} Q in
 let g_sc := sc.create ec.pd sel_sc Q in
 let run := ec.bind g_ec g_sc in

 (if run then wp_nova_ec g_ec else emp)∗ K SUCCESS
⊢ wp_hypercall ec create_sc(sel_sc, sel_pd, sel_ec, scd) K

Prove an extra WP for
the new thread.

Continue running the
current thread.

Page 27
bluerock.io ©BlueRock Inc. 2025

Spawning Threads
Concurrent Behavior
Thread creation occurs when
scheduling contexts are bound to
global execution contexts.

The proof obligation for a thread
creation is expressed as a WP for the
new thread.

 let g_pd := resolve_pd ec.pd sel_pd {SC} Q in
 let g_ec := resolve_ec ec.pd sel_ec {EC_BIND_SC} Q in
 let g_sc := sc.create ec.pd sel_sc Q in
 let run := ec.bind g_ec g_sc in

 (if run then wp_nova_ec g_ec else emp)∗ K SUCCESS
⊢ wp_hypercall ec create_sc(sel_sc, sel_pd, sel_ec, scd) K

Prove an extra WP for
the new thread.

Continue running the
current thread.

Independence is the
core of concurrency!

Need logical atomicity
to make this complete.

Page 28
bluerock.io ©BlueRock Inc. 2025

The Full-Stack Proof
User-mode Verification

Full Machine Model Devices

Unprivileged Model
(operational)

OS Spec
(Axiomatic)

User-mode Apps
(C++)

OS Spec
(Axiomatic)

Behavioral Specification

CPU

Unprivileged Model
(operational)

Priv Model
(operational)

● Device drivers.
○ PL011
○ (Simple-mode) Zynqmp

● Terminal multiplexor

● VIRTIO-based layer 2 switch.

● Virtual Machine Monitor

Unified reasoning with
separation logic.

Highly reusable proofs

Malecha, et. al. Developing with Formal Methods at BedRock Systems. IEEE S&P
Giarrusso, et. al. Verifying a Virtual Machine Monitor. BlueRock Technical Report

Page 29
bluerock.io ©BlueRock Inc. 2025

Uniform Reasoning
in Separation Logic

29

User-mode entry point (from
hardware virtualization)

Page 30
bluerock.io ©BlueRock Inc. 2025

Uniform Reasoning
in Separation Logic

30

NOVA State

C++ state.

Specification state

Simulation

and some
NOVA state

User-mode entry point (from
hardware virtualization)

Page 31
bluerock.io ©BlueRock Inc. 2025

Virtual Machine Monitor
Verification Architecture

spec.init (cpu)
spec init

(cpu)

CPU

VCPU (GPR)

MSRBus

MSR

⊢

Giarrusso, et. al. Verifying a Virtual Machine Monitor. BlueRock Technical Report

Page 32
bluerock.io ©BlueRock Inc. 2025

Virtual Machine Monitor
Verification Architecture

Board

spec.init (cpu)

spec init
(machine)

spec init
(cpu)

spec init
(memory)

spec init
(dev)

spec init
(interrupt ctrl)

spec init
(bus)

Memory

GuestAS

Devices

vUART

vPCI

(passthru)

vBus

Interrupt
Controller

GIC-D

GIC-R

CPU

VCPU (GPR)

MSRBus

MSR

Component-based
decomposition.

⊢ ⊢ ⊢ ⊢ ⊢

Giarrusso, et. al. Verifying a Virtual Machine Monitor. BlueRock Technical Report

Page 33
bluerock.io ©BlueRock Inc. 2025

Takeaways

● Separation logic is a powerful formalism
for reasoning about dynamic systems.

● It can be used to specify complex,
concurrent behavior.

● It can be used to modularly verify
complex, concurrent behavior.

● It works for the (good) code that you have
right now.

The Future
● Specify your next system using SL!
● Verify the implementation!

Future Research
● Refine low-level hardware models

○ Security reasoning.
○ Weak memory.

● Liveness verification.
○ Availability.

● Hyper-properties.
○ Confidentiality.
○ Isolation.

