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We can specify real, concurrent systems in ways that 
naturally align with systems design principles.

Full verification of real systems code is tractable.
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The Challenge
A Virtualization Platform
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The Challenge
A Virtualization Platform
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The Challenge
A Virtualization Platform

1. Real System – concurrency, dynamic 
resource sharing, real systems engineers 
(+mainstream PL, e.g. C++).

2. Two-sided Specification – single 
specification used by both the 
implementation and the clients.

3. Modular Verification – aligned with the 
architecture of the actual systems 
engineers.

4. Robust – support inter-operation with 
unverified code.

VMMVMM UMX

NOVA

VMM Unverified 
Apps

Master 
Ctrl vSwitch

Physical Hardware

NOVA
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The Full-Stack Proof

Full Machine Model Devices

Behavioral Specification

CPU
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The Full-Stack Proof
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Verify user-mode 
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Decomposing CPU Semantics

System
(Mem, Dev, etc)

Monolithic
Semantics

Giarrusso, et. al. Modularizing CPU Semantics for Virtualization. PriSC'24.

Communication 
with messages.



Page 12
bluerock.io ©BlueRock Inc.  2025

Decomposing CPU Semantics

System
(Mem, Dev, etc)

System
(Mem, Dev, etc)

System
(Mem, Dev, etc)

Unprivileged

EL1+EL2

Unprivileged

EL1

Monolithic
Semantics

Giarrusso, et. al. Modularizing CPU Semantics for Virtualization. PriSC'24.

Communication 
with messages.

Does not directly align 
with exception levels.
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Unprivileged

NOVA

System
(Mem, Dev, etc)

Passthrough unprivileged 
behavior

Decomposing CPU Semantics

System
(Mem, Dev, etc)

System
(Mem, Dev, etc)

System
(Mem, Dev, etc)

Unprivileged

EL1+EL2

Unprivileged

EL1

Monolithic
Semantics

Abstract privileged 
behavior to OS concepts.
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The Full-Stack Proof
Specify the OS

Full Machine Model Devices

Unprivileged Model
(operational)

OS Spec
(Axiomatic)

User-mode Apps
(C++)

OS Spec
(Axiomatic)

Behavioral Specification

CPU

The "hybrid" 
specification.

Unified reasoning with 
separation logic.

Resources

Logical AtomicityWeakest preconditions

Unprivileged Model
(operational)

Priv Model
(operational)
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Unprivileged

NOVA

System
(Mem, Dev, etc)

The NOVA Machine

System
(Mem, Dev, etc)

System
(Mem, Dev, etc)

System
(Mem, Dev, etc)

Monolithic
Semantics

Unprivileged

EL1+EL2

Unprivileged

EL1

Unprivileged
(S-ASL)

EL1+EL2

Unprivileged
(S-ASL)

EL1

Unprivileged
(S-ASL)

EL1+EL2

Unprivileged
(S-ASL)

EL1

Theorem wp_nova_ec_intro : ∀ ec regs,
  (∀ evt regs',
    [| cpu.step regs evt regs' |] -*
    match evt with
    | None => wp_nova_ec regs' 
    | Some syscall => wp_hypercall ec ..
    | Some (mem vaddr) => wp_mem vaddr
    | ...
    end)
 ⊢ wp_nova_ec ec regs.

Address translation specified 
using NOVA state.

This is a "thread"-local 
reasoning principle!

Hypercall behavior

Dang, et. al. Towards Modular Specification of Concurrent Hypervisor-based Isolation. PriSC'24.
Dang, et. al. A Formal Specification of the NOVA Microhypervisor API. BlueRock Technical Report.
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kernel objects, hypercalls, and HW-assisted virtualization
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NOVA's Capability API:
kernel objects, hypercalls, and HW-assisted virtualization

Orthogonal APIs are easy to specify 
and evolve independently.



The future is built on BedRock.Page 18
bluerock.io ©BlueRock Inc.  2025

User Memory

Interrupt 
Controllers

SMMU / 
IOMMU

Device 1 Device 2
Memory 

Controller

User
Kernel

Hypervisor

NOVA Memory
CPU

Kernel API CPU API Memory API Interrupt API Device API

security-irrelevant 
instructions

memory 
config

memory 
access

interrupt 
config/delivery

device 
configEvents

communication / 
scheduling

EC: execution contexts
SC: scheduling contexts
PT: portals

PD: protection domain with capabilities in Object spaces

SM: semaphoresMemory spaces DMA spaces

assign_int
ctrl_sm

assign_devctrl_pd
ctrl_ec
ctrl_sc
ctrl_pt

ipc_call
ipc_reply

HW-assisted
virtualization,
translation with 
page tables

user-owned

μkernel-owned

NOVA's Capability API:
kernel objects, hypercalls, and HW-assisted virtualization

NOVA behavior is tightly connected to hardware.
Proofs must cover the C++ and the hardware. 

Concurrency is unavoidable.
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Fair Semaphores
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Fair Semaphores
State

Reflected as separation logic resources

● Selectors map to capabilities

● The counter of a semaphore

● The queue of blocked threads

sm.counter obj n

sm.queue obj ls

pd;sel ↦ (obj, perm)

A minimal piece of independent 
state and an ownership 
discipline/"protocol"
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Fair Semaphores
Behavior

   let (Some obj) :=
     resolve_sm ec.pd {UP} sel else K BAD_CAP;
   sm.incr obj K
⊢ wp_hypercall ec ctrl_sm(0, sel, _) K

Continuation.

Sequencing

Reflected as separation logic resources

● Selectors map to capabilities

● The counter of a semaphore

● The queue of blocked threads

sm.counter obj n

sm.queue obj ls

pd;sel ↦ (obj, perm)
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Reflected as separation logic resources

● Selectors map to capabilities

● The counter of a semaphore

● The queue of blocked threads

sm.counter obj n

sm.queue obj ls

pd;sel ↦ (obj, perm)

Fair Semaphores
Behavior

   let (Some obj) :=
     resolve_sm ec.pd {UP} sel else K BAD_CAP;
   sm.incr obj K
⊢ wp_hypercall ec ctrl_sm(0, sel, _) K

sm.incr g K :=
  AU<<∃ n. sm.counter g n>> @NOVA
    <<sm.counter g (cap (n+1)),
      COMM K (if overflows (n+1)
              then OVERFLOW else SUCCESS)>>

Exchange this…

Afterwards, continue

…for this
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Reflected as separation logic resources

● Selectors map to capabilities

● The counter of a semaphore

● The queue of blocked threads

sm.counter obj n

sm.queue obj ls

pd;sel ↦ (obj, perm)

Fair Semaphores
Behavior

   let (Some obj) :=
     resolve_sm ec.pd {UP} sel else K BAD_CAP;
   sm.incr obj K
⊢ wp_hypercall ec ctrl_sm(0, sel, _) K
sm.incr g K :=
  AU<<∃ n. sm.counter g n>> @NOVA
    <<sm.counter g (cap (n+1)),
      COMM K (if overflows (n+1)
              then OVERFLOW else SUCCESS)>>

resolve_sm pd sel K :=
  AU<<∃ obj,perm. pd;sel↦(obj,perm)>> @NOVA
    <<ec.pd;sel↦(obj,perm),
      COMM K (if {UP} ⊆ perm
              then Some obj else None)>>

Two atomic steps.Two atomic steps.
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Fair Semaphores
Behavior

Reflected as separation logic resources

● Selectors map to capabilities

● The counter of a semaphore

● The queue of blocked threads

sm.counter obj n

sm.queue obj ls

pd;sel ↦ (obj, perm)

   let (Some obj) :=
     resolve_sm ec.pd {UP} sel else K BAD_CAP;
   sm.incr obj K
⊢ wp_hypercall ec ctrl_sm(0, sel, _) K
sm.incr g K :=
  AU<<∃ n. sm.counter g n>> @NOVA
    <<sm.counter g (cap (n+1)),
      COMM K (if overflows (n+1)
              then OVERFLOW else SUCCESS)>>

resolve_sm pd sel K :=
  AU<<∃ obj,perm. pd;sel↦(obj,perm)>> @NOVA
    <<ec.pd;sel↦(obj,perm),
      COMM K (if {UP} ⊆ perm then Some obj
              else None)>>Verified

1. Connect the abstract state to C++ state
2. Apply the linearization points when 

updating the state.
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Spawning Threads
Concurrent Behavior
Thread creation occurs when 
scheduling contexts are bound to 
global execution contexts.

The proof obligation for a thread 
creation is expressed as a WP for the 
new thread.

   let g_pd := resolve_pd ec.pd sel_pd {SC} Q in
   let g_ec := resolve_ec ec.pd sel_ec {EC_BIND_SC} Q in
   let g_sc := sc.create ec.pd sel_sc Q in
   let run := ec.bind g_ec g_sc in

   (if run then wp_nova_ec g_ec else emp)∗ K SUCCESS
⊢ wp_hypercall ec create_sc(sel_sc, sel_pd, sel_ec, scd) K
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Prove an extra WP for 
the new thread.

Continue running the 
current thread.
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Spawning Threads
Concurrent Behavior
Thread creation occurs when 
scheduling contexts are bound to 
global execution contexts.

The proof obligation for a thread 
creation is expressed as a WP for the 
new thread.

   let g_pd := resolve_pd ec.pd sel_pd {SC} Q in
   let g_ec := resolve_ec ec.pd sel_ec {EC_BIND_SC} Q in
   let g_sc := sc.create ec.pd sel_sc Q in
   let run := ec.bind g_ec g_sc in

   (if run then wp_nova_ec g_ec else emp)∗ K SUCCESS
⊢ wp_hypercall ec create_sc(sel_sc, sel_pd, sel_ec, scd) K

Prove an extra WP for 
the new thread.

Continue running the 
current thread.

Independence is the 
core of concurrency!

Need logical atomicity 
to make this complete.
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The Full-Stack Proof
User-mode Verification

Full Machine Model Devices

Unprivileged Model
(operational)

OS Spec
(Axiomatic)

User-mode Apps
(C++)

OS Spec
(Axiomatic)

Behavioral Specification

CPU

Unprivileged Model
(operational)

Priv Model
(operational)

● Device drivers.
○ PL011
○ (Simple-mode) Zynqmp

● Terminal multiplexor

● VIRTIO-based layer 2 switch.

● Virtual Machine Monitor

Unified reasoning with 
separation logic.

Highly reusable proofs

Malecha, et. al. Developing with Formal Methods at BedRock Systems. IEEE S&P
Giarrusso, et. al. Verifying a Virtual Machine Monitor. BlueRock Technical Report
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Uniform Reasoning
in Separation Logic

29

User-mode entry point (from 
hardware virtualization)
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Uniform Reasoning
in Separation Logic

30

NOVA State

C++ state.

Specification state

Simulation

and some 
NOVA state

User-mode entry point (from 
hardware virtualization)
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Virtual Machine Monitor
Verification Architecture

spec.init (cpu)
spec init

(cpu)

CPU

VCPU (GPR)

MSRBus

MSR

⊢

Giarrusso, et. al. Verifying a Virtual Machine Monitor. BlueRock Technical Report
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Virtual Machine Monitor
Verification Architecture

Board

spec.init (cpu)

spec init
(machine)

spec init
(cpu)

spec init 
(memory)

spec init 
(dev)

spec init
(interrupt ctrl)

spec init 
(bus)

Memory

GuestAS

Devices

vUART

vPCI

(passthru)

vBus

Interrupt 
Controller

GIC-D

GIC-R

CPU

VCPU (GPR)

MSRBus

MSR

Component-based 
decomposition.

⊢ ⊢ ⊢ ⊢ ⊢

Giarrusso, et. al. Verifying a Virtual Machine Monitor. BlueRock Technical Report
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Takeaways

● Separation logic is a powerful formalism 
for reasoning about dynamic systems.

● It can be used to specify complex, 
concurrent behavior.

● It can be used to modularly verify 
complex, concurrent behavior.

● It works for the (good) code that you have 
right now.

The Future
● Specify your next system using SL!
● Verify the implementation!

Future Research
● Refine low-level hardware models

○ Security reasoning.
○ Weak memory.

● Liveness verification.
○ Availability.

● Hyper-properties.
○ Confidentiality.
○ Isolation.


