Apiary: An OS for the Modern FPGA

Katie Lim¥2, Matthew Giordano?, Irene Zhang?,

Baris Kasikcit, Tom Anderson?

LUniversity of Washington, *Microsoft Research

Outline

Motivation

Apiary Goals
Use-case Study
Apiary Architecture

Conclusion

How do you use FPGAs in a datacenter?

PCle-attached, hosted by CPU
(e.g. AWS F1/F2 EC2)

Datacenter
Networ

How do you use FPGAs in a datacenter?

PCle-attached, hosted by CPU
(e.g. AWS F1/F2 EC2)

Request .

~~— Request enter
..Nor

How do you use FPGAs in a datacenter?

PCle-attached, hosted by CPU
(e.g. AWS F1/F2 EC2)

Direct-attached

Accael.

ssssssss
nnnnnnnnnn

JJJJJJJ

\Microsoft Catapult V2

/

Datacenter
Networ

How do you use FPGAs in a datacenter?

PCle-attached, hosted by CPU
Accel] @

Pros:
Full OS service support

Flexible CPU “fallback”

Cons:
X Higher and unpredictable latency

X “Wasting” CPU capacity

Pros:

Direct-attached

Short, predictable path to accelerator

Cons:

Improved efficiency

X No familiar OS abstractions

X Less flexible hardware infrastructure

Outline

Motivation

Apiary Goals
Use-case Study
Apiary Architecture

Conclusion

Apiary Goals

Design a system to provide OS features without software or CPU assistance
e High-level interfaces: common set of OS-like services for productivity and portability

e Modularity: applications and services can compose with each other and be easily
added or removed

e Isolation: prevent unintended or malicious interactions between elements

Focus on hardware interactions within the FPGA, because of direct-attached
® Prior work assumes CPU-mediation and focuses on CPU-FPGA interactions

Apiary System Model

e Microkernel: all processing elements should be able to compose with each other
via message passing over a generic interconnect

e Elements are both application accelerators and services
o Application accelerators: video encoder, compression, ML, etc.
o Services: TCP stack, memory allocation, storage, etc.

e Application accelerators may have multiple users or may misbehave

Questions to Ponder

Outline

Motivation

Apiary Goals
Use-case Study
Apiary Architecture

Conclusion

11

Getting Up and Running

e Imagine we’re accelerating video encoding in a video processing pipeline

Raw Video Clip
d] .
Ethernet
Encoded File

Getting Up and Running

e |/O interfaces are board-specific

Raw Video Clip
d] .
Ethernet
Encoded File

Getting Up and Running

e |/O interfaces are board-specific

Raw Video Clip

=

Encoded File

Encoder

T TTT)

14

Getting Up and Running

e |/Oislow-level

Traffic received as

Ethernet frames Access to raw

physical memory

Raw Video Clip I
H 5 Phys.

Video add[ess] -

Encoder ALPULI

Encoded File

15

Getting Up and Running

e Thisisthe current state of the art for direct-attached

Raw Video Clip

=

Encoded File

Create a standard
“shell” to wrap
around user logic

Network Video
I ~ Stack d I_IIII

| Encoder LLLAULL

Implement
higher-level
services

16

Inter“process” communication

e Network on chip (NoC): Router-based
hardware interconnect within a system on
chip (SoC) that routes messages between
processing elements

e Canuse avariety of topologies, routing

algorithms
o Common for hardware efficiency: 2D mesh,
lossless, static routing

e Beneficial for scalability, modularity

(J Processing element
(] Router

=
C
@

Diagram of a 2D-Mesh NoC

i I
i

17

Adding Communication

Raw Video Clip
Video
H Encoder
Video I 1111
Encoder LLLPULL)

Encoded File

How do we prevent unintentional accelerator
communication?

e Imagine introducing a third-party accelerator

Raw Video Clip
Video
H EncoderE
Stack NS -t
Encoded File Ec:ompres,s

How do we control

inter-accelerator
communication?

19

How do we handle more requests?

Raw Video Clips

o I

Encoded Files

O\
=)

Compress

How do we handle more requests?

How do the
accelerators split
the memory?

Raw Video Clips

Encoded Files

O\
=)

Compress

21

How do we control memory access?

Raw Video Clips

Encoded Files

O\
=)

Compress

How does this accelerator
share memory? 22

How do we control memory access?

Raw Video Clips

Encoded Files

O\
=)

Compress

23

W hat if there are more streams than
accelerators?

Raw Video Clips

=P o Enor

Load
Balance

Encoded Files Compress

24

W hat if there are more streams than
accelerators?

Raw Video Clips

Encoded Files

Bl

K

Net oc |- 111

Stack LLLAULL)
EHFEE@

Batance

Compress

25

W hat if there are more streams than
accelerators?

Raw Video Clips

Encoded Files

Bl

E

Net oc |- 111

EHH&' d

Compress
Batance

Stack LLLPULLY

26

W hat happens on failures?

e Hardware is typically assumed to be correct all the time, but that’s not always

the case

Raw Video Clips

Encoded Files

N\
@)D

Load
Balance

Compress

27

Outline

Motivation

Apiary Goals
Use-case Study
Apiary Architecture

Conclusion

28

Apiary Architecture Overview

NoC Router
(D) (1 J(2) () @ Monitor
Video Memory

Network Encode Mgmt. @ App 1

N NG y/ \ J N\ J
(2)App2

a N\ p N\ /B N\ " N\

Load Video Compress

Balance Encode P

_ /L NG J _ J

Apiary Architecture Overview

NoC infrastructure to provide IPC channels

NoC Router
N N Apiary

@ @ Monitor
et | (DApp1

I @Appz
~

o'

J
l

I I
Lo B Compress
Balance P
J J _ J

Apiary Architecture Overview

Tile logic is similar to a process or thread

NoC Router

[N

Apiary
Monitor

@Appl
@Appz

Video
Encode

J
Video Compress
Encode P

_

Load
Balance

31

Apiary Architecture Overview

Some tiles provide system services

NoC Router
0,0l0"0 Monitor
Video
M Encode @ App .
_ \ Y/ \ J
(2)App2
= N\ (B I
Load Video Compress
Balance Encode P

- AN J _ J

Apiary Architecture Overview

Other tiles provide application functionality

Video
Encode

B I
Network
N J
a5)
Load
Balance
_ J

-~

~

Video
Encode

_

J

() ()

Memory
Mgmt.

NoC Router

Apiary
Monitor

@Appl
@Appz

33

Apiary Architecture Overview

Apiary monitor acts as kernel

R I
Network
N /
‘S)
Load
Balance
_ J

. N
Video
Encode
\ V)
~
Video
Encode
\ /

~
() ()
Memory
Mgmt.

)

~)
- 4
~)
Compress
- J

~

NoC Router

Apiary
Monitor

@Appl

@Appz

34

Conclusion

FPGAs have been deployed in the datacenter, but are difficult to develop on due to
lack of infrastructure and growing complexity

We invite people to join us in thinking about these issues in order to unlock the

potential of FPGAs. My personal favorites:

o What less “conventional” OS abstractions could be relevant here?
o How do you virtualize elements?
o What does failure in one element mean for other elements?

If you’re interested in hardware system services: Apiary’s network stack is already
built and open-source (https://github.com/beehive-fpga/beehive)

o Limetal., “Beehive: A Modular Flexible Network Stack for Direct Attached Accelerators.” MICRO ‘24

35

https://github.com/beehive-fpga/beehive

