
1

Apiary: An OS for the Modern FPGA

Katie Lim1,2, Matthew Giordano1, Irene Zhang2, 
Baris Kasikci1, Tom Anderson1

1University of Washington, 2Microsoft Research



Outline 
Motivation

Apiary Goals

Use-case Study

Apiary Architecture

Conclusion

2



PCIe

Accel.

Server
CPU

NIC

How do you use FPGAs in a datacenter?

3

PCIe-attached, hosted by CPU 
(e.g. AWS F1/F2 EC2)

Datacenter 
Network

PCIe



PCIe

Accel.

Server 
CPU

NIC

How do you use FPGAs in a datacenter?

4

PCIe-attached, hosted by CPU 
(e.g. AWS F1/F2 EC2)

Datacenter 
Network

Request

Request

PCIe

Request

Request



PCI
e

?

Accel.
PCIe

Accel.

Server 
CPU

NIC

How do you use FPGAs in a datacenter?

5

PCIe-attached, hosted by CPU 
(e.g. AWS F1/F2 EC2)

Datacenter 
Network

PCIe

Microsoft Catapult V2

Direct-attached 



P
C
Ie

?

Accel.

How do you use FPGAs in a datacenter?
Direct-attached 

6

PCIe-attached, hosted by CPU 

NIC

Server 
CPU

Accel.

Pros:
✅ Full OS service support

✅ Flexible CPU “fallback”

Cons: 
❌ Higher and unpredictable latency

❌ “Wasting” CPU capacity

Pros:
✅ Short, predictable path to accelerator

✅ Improved efficiency

Cons: 
❌ No familiar OS abstractions

❌ Less flexible hardware infrastructure



Outline 
Motivation

Apiary Goals

Use-case Study

Apiary Architecture

Conclusion

7



Apiary Goals
Design a system to provide OS features without software or CPU assistance

● High-level interfaces: common set of OS-like services for productivity and portability

● Modularity: applications and services can compose with each other and be easily 
added or removed

● Isolation: prevent unintended or malicious interactions between elements

Focus on hardware interactions within the FPGA, because of direct-attached 
● Prior work assumes CPU-mediation and focuses on CPU-FPGA interactions

8



Apiary System Model

9

●
●

●

● Microkernel: all processing elements should be able to compose with each other 
via message passing over a generic interconnect

● Elements are both application accelerators and services
○ Application accelerators: video encoder, compression, ML, etc.
○ Services: TCP stack, memory allocation, storage, etc.

● Application accelerators may have multiple users or may misbehave



Questions to Ponder

10

What is our isolation 
model for…
● …memory

● …I/O

● …failures

How do we create 
abstractions for… 
● …concurrency

● …diverse application 
accelerators

● …I/O

How do elements 
communicate…
● …generically

● …scalably

● …safely



Outline 
Motivation

Apiary Goals

Use-case Study

Apiary Architecture

Conclusion

11



Getting Up and Running
● Imagine weʼre accelerating video encoding in a video processing pipeline

12

Video 
Encoder

Raw Video Clip

Encoded File
Ethernet DRAM



Getting Up and Running
● I/O interfaces are board-specific

13

Video 
Encoder

Raw Video Clip

Encoded File

??
Ethernet DRAM



Getting Up and Running
● I/O interfaces are board-specific

14

Video 
Encoder

Raw Video Clip

Encoded File

???
Ethernet DRAM



Getting Up and Running
● I/O is low-level

15

Video 
Encoder

Raw Video Clip

Encoded File

??

Ethernet 

Traffic received as 
Ethernet frames

Phys.
address

Access to raw 
physical memory

Ethernet DRAM



Getting Up and Running
● This is the current state of the art for direct-attached

16

Raw Video Clip

Encoded File

Video 
Encoder

Network 
Stack

Create a standard 
“shell” to wrap 

around user logic

Implement 
higher-level 

services

Ethernet DRAM



Inter“process” communication
● Network on chip (NoC): Router-based 

hardware interconnect within a system on 
chip (SoC) that routes messages between 
processing elements

● Can use a variety of topologies, routing 
algorithms
○ Common for hardware efficiency: 2D mesh, 

lossless, static routing

● Beneficial for scalability, modularity

17

Processing element

Router

Diagram of a 2D-Mesh NoC



Adding Communication

18

Raw Video Clip
Video 

Encoder

Net 
Stack

NoC

Encoded File
Ethernet DRAM

Video 
Encoder



How do we prevent unintentional accelerator 
communication? 
● Imagine introducing a third-party accelerator

19

Raw Video Clip
Video 

Encoder

Net 
Stack

NoC

Video 
Encoder

Encoded File
Ethernet DRAM

Compress

How do we control 
inter-accelerator 
communication?



How do we handle more requests?

20

Raw Video Clips

Encoded Files

Video 
Encoder

Net
Stack

Video 
Encoder

NoC

How are requests 
assigned to 

accelerators?

Video 
Encoder

Video 
Encoder

Ethernet DRAM
Compress



How do we handle more requests?

21

Raw Video Clips

Encoded Files

Video 
Encoder

Net
Stack

Video 
Encoder

NoC

Video 
Encoder

Video 
Encoder

Ethernet DRAM
Compress

How do the 
accelerators split 

the memory?



How do we control memory access?

22

Raw Video Clips

Encoded Files

Video 
Encoder

Net
Stack

Video 
Encoder

NoC

Video 
Encoder

Video 
Encoder

Ethernet DRAM
Compress

How does this accelerator 
share memory?



How do we control memory access?

23

Raw Video Clips

Encoded Files

Video 
Encoder

Net
Stack

Video 
Encoder

NoC

Video 
Encoder

Video 
Encoder

Ethernet DRAM
Compress

What memory protection should 
we put between accelerators and 

the rest of the systems?



What if there are more streams than 
accelerators?

24

Raw Video Clips

Encoded Files

Video 
Encoder

Net
Stack

NoC

Ethernet DRAM
Compress

Video 
Encoder

How are requests 
assigned to 

accelerators?

Load
Balance 



What if there are more streams than 
accelerators?

25

Raw Video Clips

Encoded Files

Video 
Encoder

Net
Stack

NoC

Ethernet DRAM
Compress

Video 
Encoder

Load
Balance 



What if there are more streams than 
accelerators?

26

Raw Video Clips

Encoded Files

Video 
Encoder

Net
Stack

NoC

Ethernet DRAM
Compress

Video 
Encoder

Load
Balance 



● Hardware is typically assumed to be correct all the time, but thatʼs not always 
the case 

What happens on failures?

27

Raw Video Clips

Encoded Files

Video 
Encoder

Net
Stack

NoC

Ethernet DRAM
Compress

Video 
Encoder

Load
Balance 

☹

What happens if an 
accelerator fails?



Outline 
Motivation

Apiary Goals

Use-case Study

Apiary Architecture

Conclusion

28



Apiary Architecture Overview

29

Compress

Memory
Mgmt.

Video 
Encode

Video 
Encode

Load 
Balance

Network

NoC Router

Apiary 
Monitor1 1

11

12 2

2

2

1 App 1

2 App 2



Apiary Architecture Overview

30

Compress

Memory
Mgmt.

Video 
Encode

Video 
Encode

Load 
Balance

Network

NoC Router

Apiary 
Monitor1 1

11

12 2

2

2

1 App 1

2 App 2

NoC infrastructure to provide IPC channels



Apiary Architecture Overview

31

Compress

Memory
Mgmt.

Video 
Encode

Video 
Encode

Load 
Balance

Network

NoC Router

Apiary 
Monitor1 1

11

12 2

2

2

1 App 1

2 App 2

Tile logic is similar to a process or thread



Apiary Architecture Overview

32

Compress

Memory
Mgmt.

Video 
Encode

Video 
Encode

Load 
Balance

Network

NoC Router

Apiary 
Monitor1 1

11

12 2

2

2

1 App 1

2 App 2

Some tiles provide system services



Apiary Architecture Overview

33

Compress

Memory
Mgmt.

Video 
Encode

Video 
Encode

Load 
Balance

Network

NoC Router

Apiary 
Monitor1 1

11

12 2

2

2

1 App 1

2 App 2

Other tiles provide application functionality



Apiary Architecture Overview

34

Compress

Memory
Mgmt.

Video 
Encode

Video 
Encode

Load 
Balance

Network

NoC Router

Apiary 
Monitor1 1

11

12 2

2

2

1 App 1

2 App 2

Apiary monitor acts as kernel



Conclusion
● FPGAs have been deployed in the datacenter, but are difficult to develop on due to 

lack of infrastructure and growing complexity

● We invite people to join us in thinking about these issues in order to unlock the 
potential of FPGAs. My personal favorites:
○ What less “conventional” OS abstractions could be relevant here?
○ How do you virtualize elements?
○ What does failure in one element mean for other elements?

● If youʼre interested in hardware system services: Apiaryʼs network stack is already 
built and open-source (https://github.com/beehive-fpga/beehive)

○ Lim et al., “Beehive: A Modular Flexible Network Stack for Direct Attached Accelerators.” MICRO ʻ24

35

https://github.com/beehive-fpga/beehive

