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How do you use FPGAs in a datacenter?

PCle-attached, hosted by CPU
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How do you use FPGAs in a datacenter?

PCle-attached, hosted by CPU
Accel] @

Pros:
Full OS service support

Flexible CPU “fallback”

Cons:
X  Higher and unpredictable latency

X “Wasting” CPU capacity

Pros:

Direct-attached

Short, predictable path to accelerator

Cons:

Improved efficiency

X No familiar OS abstractions

X Less flexible hardware infrastructure
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Apiary Goals

Design a system to provide OS features without software or CPU assistance
e High-level interfaces: common set of OS-like services for productivity and portability

e Modularity: applications and services can compose with each other and be easily
added or removed

e Isolation: prevent unintended or malicious interactions between elements

Focus on hardware interactions within the FPGA, because of direct-attached
® Prior work assumes CPU-mediation and focuses on CPU-FPGA interactions



Apiary System Model

e Microkernel: all processing elements should be able to compose with each other
via message passing over a generic interconnect

e Elements are both application accelerators and services
o Application accelerators: video encoder, compression, ML, etc.
o Services: TCP stack, memory allocation, storage, etc.

e Application accelerators may have multiple users or may misbehave



Questions to Ponder
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Getting Up and Running

e Imagine we’re accelerating video encoding in a video processing pipeline

Raw Video Clip
d] .
Ethernet
Encoded File




Getting Up and Running

e |/O interfaces are board-specific

Raw Video Clip
d] .
Ethernet
Encoded File




Getting Up and Running

e |/O interfaces are board-specific

Raw Video Clip

=

Encoded File

Encoder

T TTT)

14



Getting Up and Running

e |/Oislow-level

Traffic received as

Ethernet frames Access to raw

physical memory
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Getting Up and Running

e Thisisthe current state of the art for direct-attached

Raw Video Clip
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Encoded File

Create a standard
“shell” to wrap
around user logic
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Inter“process” communication

e Network on chip (NoC): Router-based
hardware interconnect within a system on
chip (SoC) that routes messages between
processing elements

e Canuse avariety of topologies, routing

algorithms
o Common for hardware efficiency: 2D mesh,
lossless, static routing

e Beneficial for scalability, modularity
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Adding Communication
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How do we prevent unintentional accelerator
communication?

e Imagine introducing a third-party accelerator
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How do we handle more requests?
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How do we handle more requests?

How do the
accelerators split
the memory?
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How do we control memory access?
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How do we control memory access?
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W hat if there are more streams than
accelerators?
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W hat happens on failures?

e Hardware is typically assumed to be correct all the time, but that’s not always

the case
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Apiary Architecture Overview
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Apiary Architecture Overview

NoC infrastructure to provide IPC channels
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Apiary Architecture Overview

Tile logic is similar to a process or thread
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Apiary Architecture Overview

Some tiles provide system services
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Apiary Architecture Overview

Other tiles provide application functionality
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Apiary Architecture Overview

Apiary monitor acts as kernel
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Conclusion

FPGAs have been deployed in the datacenter, but are difficult to develop on due to
lack of infrastructure and growing complexity

We invite people to join us in thinking about these issues in order to unlock the

potential of FPGAs. My personal favorites:

o  What less “conventional” OS abstractions could be relevant here?
o  How do you virtualize elements?
o What does failure in one element mean for other elements?

If you’re interested in hardware system services: Apiary’s network stack is already
built and open-source (https://github.com/beehive-fpga/beehive)

o Limetal., “Beehive: A Modular Flexible Network Stack for Direct Attached Accelerators.” MICRO ‘24
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