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Pros:
✅ Full OS service support

✅ Flexible CPU “fallback”

Cons: 
❌ Higher and unpredictable latency

❌ “Wasting” CPU capacity

Pros:
✅ Short, predictable path to accelerator

✅ Improved efficiency

Cons: 
❌ No familiar OS abstractions

❌ Less flexible hardware infrastructure
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Apiary Goals
Design a system to provide OS features without software or CPU assistance

● High-level interfaces: common set of OS-like services for productivity and portability

● Modularity: applications and services can compose with each other and be easily 
added or removed

● Isolation: prevent unintended or malicious interactions between elements

Focus on hardware interactions within the FPGA, because of direct-attached 
● Prior work assumes CPU-mediation and focuses on CPU-FPGA interactions
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Apiary System Model
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● Microkernel: all processing elements should be able to compose with each other 
via message passing over a generic interconnect

● Elements are both application accelerators and services
○ Application accelerators: video encoder, compression, ML, etc.
○ Services: TCP stack, memory allocation, storage, etc.

● Application accelerators may have multiple users or may misbehave



Questions to Ponder
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What is our isolation 
model for…
● …memory

● …I/O

● …failures

How do we create 
abstractions for… 
● …concurrency

● …diverse application 
accelerators

● …I/O

How do elements 
communicate…
● …generically

● …scalably

● …safely
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Getting Up and Running
● Imagine weʼre accelerating video encoding in a video processing pipeline
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Getting Up and Running
● I/O is low-level
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Getting Up and Running
● This is the current state of the art for direct-attached
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Inter“process” communication
● Network on chip (NoC): Router-based 

hardware interconnect within a system on 
chip (SoC) that routes messages between 
processing elements

● Can use a variety of topologies, routing 
algorithms
○ Common for hardware efficiency: 2D mesh, 

lossless, static routing

● Beneficial for scalability, modularity
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Adding Communication
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How do we prevent unintentional accelerator 
communication? 
● Imagine introducing a third-party accelerator
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How do we handle more requests?
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How do we control memory access?
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How do we control memory access?
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What if there are more streams than 
accelerators?
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What if there are more streams than 
accelerators?
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● Hardware is typically assumed to be correct all the time, but thatʼs not always 
the case 

What happens on failures?
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Apiary Architecture Overview
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Apiary Architecture Overview
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Conclusion
● FPGAs have been deployed in the datacenter, but are difficult to develop on due to 

lack of infrastructure and growing complexity

● We invite people to join us in thinking about these issues in order to unlock the 
potential of FPGAs. My personal favorites:
○ What less “conventional” OS abstractions could be relevant here?
○ How do you virtualize elements?
○ What does failure in one element mean for other elements?

● If youʼre interested in hardware system services: Apiaryʼs network stack is already 
built and open-source (https://github.com/beehive-fpga/beehive)

○ Lim et al., “Beehive: A Modular Flexible Network Stack for Direct Attached Accelerators.” MICRO ʻ24
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