
The Case for Energy Clarity
Fan Chung, Henry Kuo, George Candea

1

Energy Usage is Growing Dramatically

2

Energy Consumption is not Transparent

3

We need energy clarity!

Energy Clarity

4

■ Ability to reason about energy for all possible inputs:

□ ...

□ What consumes energy and how much

□ How the consumption changes with the inputs

Energy Clarity Must Come Before Code
■ Energy clarity shouldn’t come as an

afterthought.
■ Goal: Express, plan, and program

energy use before the implementation
□ “A call to LZ4_compress_default() function

should take no more than 35 microjoules,
because it's called a lot”

□ “If on the given hardware
LZ4_compress_default() consumes more
than that energy, then call
LZ4_compress_fast() instead”

But how can we achieve energy clarity?
5

Energy Interfaces!

6

■ Functional interfaces are introduced in the 1960s to
concisely describe a module’s functionality

■ Imagine if we left functional clarity to be an afterthought…

Having Energy Interfaces Like Having Functional Interfaces

7

8

 struct list_head *head, **tail = &head;
 for (=;) {
 if (cmp(priv, a, b) == 0) {
 *tail = a;
 tail = &a=>next;
 a = a=>next;
 if (!a)
 *tail = b, break;
 } else {
 *tail = b;
 tail = &b=>next;
 b = b=>next;
 if (!b)
 *tail = a, break;
 }
 }
 return head;

/*
 * Returns a list organized in an intermediate
 * format suited to chaining of merge() calls:
 * null-terminated, no reserved or sentinel
 * head node, "prev" links not maintained.
 */
static struct list_head *merge(void *priv,

list_cmp_func_t cmp, struct list_head *a,
struct list_head *b)

Energy interfaces are key to energy clarity!

■ Functional interfaces are key to
functional clarity in building systems

Having Energy Interfaces Like Having Functional Interfaces

def E_ml_service_handle (request):
 max_response_len = 1024
 if request_hit: # ECV: request found in cache
 return E_cache_lookup(request.image, max_response_len)
 else:
 return E_cnn_forward(request.image)

Energy Interfaces of an ML Web Service

ECVs = random vars
to describe
factors not in the
input

9

takes the input of the original function

Energy Interfaces of an ML Web Service

def E_cache_lookup (key, response_len):
 # ECV: local_cache_hit - cache hit in current node
 return 5 if local_cache_hit else 100 * response_len # (Microjoules)

10

def E_cnn_forward (image):
 n_embedding = 256
 n_zeros = image.count(0)
 return (8 * E_conv2d(image.size() - n_zeros) +
 8 * E_relu(n_embedding) +
 16 * E_mlp(n_embedding))

Programs as Energy Interfaces

Make energy programmable!
11

■ Energy interfaces are programs that describe how much

energy a module will use for any possible input.
□ Appeals to programmers’ intuition

□ Executable by programs or tools

□ Precisely describes energy behavior

□ Can express any possible energy behavior

 Energy Interfaces Exported by Resource mgrs

12

13

 Energy Interfaces Exported by Resource mgrs

14

E_cnn_forward

E_cnn_forwardE_cache_lookup

E_cnn_forward

E_cache_lookup

 Energy Interfaces Exported by Resource mgrs

Energy Interface → Code

15

def E_cache_lookup (key, response_len):
 # ECV: local_cache_hit - cache hit in current node
 return 5 if local_cache_hit else 100 * response_len # (Microjoules)

const char* cache_lookup (const char* key) {
 int i = hash(key);
 if (cache[i].key && strcmp(cache[i].key, key) == 0)
 return cache[i].value;

 const char* val = cache_remote_fetch(key);
 cache[i] = (CacheEntry){ key, val };
 return val;
}

Code → Energy Interface

16

+ const char* compressed_data = cache_remote_fetch_compressed(key);
+ const char* val = decompress_payload(compressed_data);
+ cache[i] = (CacheEntry){ key, value };

+ return 5 if local_cache_hit else (70 + 10) * response_len # (Microjoules)

Changes: Fetching compressed
data and decompressing it locally- const char* val = cache_remote_fetch(key);

- cache[i] = (CacheEntry){ key, val };

def E_cache_lookup(key, response_len):
 # ECV: local_cache_hit - cache hit in current node
- return 5 if local_cache_hit else 100 * response_len # (Microjoules)

 return val;
 }

def E_GPT_2_inference (wl):

 # ECVs: static_power, energy_per_instr, vram_energy_per_access,

l2_energy_per_access, l1_energy_per_access

 static_energy = static_power * exec_time[wl.batch_sz, wl.precision]

 instruction_energy = energy_per_instr * num_instr[wl.batch_sz, wl.precision]

 vram_energy = vram_energy_per_access * sector_rw[wl.batch_sz, wl.precision]

 l2_energy = l2_energy_per_access * l2_rw[wl.batch_sz, wl.precision]

 l1_energy = l1_energy_per_access * l1_rw[wl.batch_sz, wl.precision]

 return static_energy + vram_energy + l2_energy + l1_energy +
instruction_energy

17

Experiment: GPT-2 Energy Interface

Preliminary Result

GPU Average error Max error

RTX4090 0.70% 0.93%

RTX3070 6.06% 8.11%

18

■ Energy clarity, as the ability to reason about energy

■ Energy interfaces are the key to achieve energy clarity

□ They are programs that describe how much energy a module

will use for any possible input.

■ Resource managers combine and expose the energy interfaces

of resources

19

Recap

Open Questions

■ Modularity
□ How to divide energy behavior into modules just like functional interfaces?

■ Composability
□ How to compose the higher-level energy interfaces from lower-level interfaces?

■ Automation
□ Is it possible to automatically obtain the energy interface from a program?

20

21

■ Hardware should export more information about the hardware

energy state to software

□ “Energy Counters” equivalent to “Performance Counters”

□ Support for energy measurement with higher frequency, and

component-specific granularity.

Call to Action

How Do Energy Interfaces Differ From Other Methods?

22

Energy Profiling Black-box
Energy Modeling Energy Interface

Can we know how does energy
change with inputs?

For any module, can we know
how much energy it consumes?

Can it predict energy
consumption?

Can developers use it to write
energy-efficient code?

Feasible to adopt in practice?

Cost-efficiency?

🟩 🟩 🟩 🟩

🟩 🟩 🟩 🟩 🟩 🟩

🟩 🟩 🟩 🟩 🟩 🟩

🟩 🟩 🟩 🟩 🟩

🟩 🟩 🟩 🟩 🟩

🟩 🟩 🟩 🟩

(🌱 Promising)🟩 🟩 🟩

🟩 🟩

❌

Thank You for Listening!

23

Thank You for Listening!

25

