
Rethinking Tiered Storage:
Talk to File Systems, Not Device Drivers

Jiyuan Zhang
Jongyul Kim, Chloe Alverti, Peizhe Liu, Weiwei Jia, and Tianyin Xu

Funded 
by

Presenter Notes
Presentation Notes
Hi everyone, I am Jiyuan Zhang, a first year PhD student from UIUC. Today I will present our work, Rethinking Tiered Storage: Talk to File Systems, Not Device Drivers.

This is a collaborative work between University of Illinoi and University of Rhode Island.



Storage devices are diversifying

1

HDDSSD

Presenter Notes
Presentation Notes
So, in the last three decades, our storage solution is dominated by two types of devices, SSD and HDD. Both of them are block devices and shares similar semantics and file systems. Hence, our storage solution used to be homogeneous.



Storage devices are diversifying

2

FilmTapeHDDSSDPMCXL

Cache
Coherent

Memory
Semantic

Limited
Write Cycles

Prefer
Sequential

Slow
Seeking

Write
Once

Presenter Notes
Presentation Notes
However, things have changed today. As new storage devices are developed, now our storage solution is diversifying, and it is expected to be more diverse in the future.

For example, on one extreme, we are now observing the raise of CXL-SSD, and on the other extreme, companies like GitHub are using films to backup data such as our git repositories.

[C]

These new devices leads to different performance and cost tradeoffs,

And they also shows totally different device characteristics, like the cache coherency of CXL and the write once property of films



New devices lead to heterogeneous configurations

3

FilmTapeHDDSSDOptaneCXL TapeHDDSSDPMCXL SSD

Latest
Features

Performance
Advantage

Data
Reliability

Backward
Compatibility

We need to use the new devices AND the old ones.…

Presenter Notes
Presentation Notes
Since we always want the best of both worlds, the diversity in storage devices naturally motivates heterogeneous storage device configurations.

[C]

On one hand, we want to enjoy the latest features and performance advantage brought by the new devices.

[C]

On the other hand, we also want the battle-tested data reliability and backward compatibility of the traditional devices.



New devices lead to heterogeneous configurations

4

FilmTape TapeHDD

HDD

SSD

SSDSSD PMPM CXL

CXL

Presenter Notes
Presentation Notes
Hence, we are now observing the raise of heterogeneous storage solutions.

However, to meet different types of demands, different scenarios may require different storage configurations that are heterogeneous in nature to accommodate their storage needs.
�For example, for high-performance storage, we want to use CXL-SSD and Optane, but for archival ones, we use tapes and films.



New devices lead to heterogeneous configurations

5

Research Question:

How to build practical file system
for diverse storage configurations?

Presenter Notes
Presentation Notes
So, naturally, the key research question for heterogeneous storage is: How to build practical file systems for diverse storage configurations.




Existing solutions are falling behind

6

HDDPM SSD

Monolithic
Tiered File System[a]

PM
Driver

SSD
Driver

HDD
DriverNeed to

reinvent the wheel

Linux VFS Infra

a. We observe the imperfections in the state-of-the-art monolithic tiered file system Strata

Presenter Notes
Presentation Notes
The problem there is that for these existing solutions, they tend to build the solution as a tightly coupled single package, which is a monolithic tiered file system, such as the latest state-of-the-art Strata.

However, such an approach has several points fall short.

[C]

First, we argue that the current practice of developing tiered file systems [p] cannot catch up with the progress of device-specific file systems.

This is because the developers have to address multiple device types simultaneously, rather than specializing.

[C]

Also, it is very hard for a monolithic tiered file system to be extended for new devices.
�For example, to support tape as a new device, the file system needs to be rewritten to overhaul its tiering policy, to hook up the device driver, and also to address the characteristics of the new devices and its interaction with other devices.




Existing solutions are falling behind

7

HDDPM SSD

Monolithic
Tiered File System[a]

PM
Driver

SSD
Driver

HDD
DriverNeed to

reinvent the wheel

Tape

Hard to extend
supported devices

Linux VFS Infra

a. We observe the imperfections in the state-of-the-art monolithic tiered file system Strata

Presenter Notes
Presentation Notes
The problem there is that for these existing solutions, they tend to build the solution as a tightly coupled single package, which is a monolithic tiered file system, such as the latest state-of-the-art Strata.

However, such an approach has several points fall short.

[C]

First, we argue that the current practice of developing tiered file systems [p] cannot catch up with the progress of device-specific file systems.

This is because the developers have to address multiple device types simultaneously, rather than specializing.

[C]

Also, it is very hard for a monolithic tiered file system to be extended for new devices.
�For example, to support tape as a new device, the file system needs to be rewritten to overhaul its tiering policy, to hook up the device driver, and also to address the characteristics of the new devices and its interaction with other devices.




HDDPM SSD

New
Design

PM
Driver

SSD
Driver

HDD
Driver

… and it introduces practical shortcomings

8

HDDPM SSD

Monolithic
Tiered File System

PM
Driver

SSD
Driver

HDD
Driver

Tape

Hard to extend
supported devices

Old
System

Lack of metadata
compatibilityNeed to

reinvent the wheel

Linux VFS Infra

Presenter Notes
Presentation Notes
Sadly, even if someone has paid the effort, the old way still introduces other practical shortcomings.

[C]

First, because we are building a new file system that are fundamentally different due to its multi-device nature, the new one would lack metadata compatibility with the user's old systems. So, the users have to perform a costly and risky metadata migration or even full volume migration to adopt the new design.




HDDPM SSD

Mux

PM
Driver

SSD
Driver

HDD
Driver

… and it introduces practical shortcomings

9

HDDPM SSD

Monolithic
Tiered File System

PM
Driver

SSD
Driver

HDD
Driver

Tape

Hard to extend
supported devices

Old
System

Lack of metadata
compatibilityNeed to

reinvent the wheel

Poor reusability
for other systems

Linux VFS InfraLinux VFS Infra

Presenter Notes
Presentation Notes
And also, the file system built would lack of usability for other systems, because it is designed to support the one configuration instead of being a generic solution.

Hence, people have to build their own file systems and the product will lock the user into their existing configuration and prevents further evolution.

[C]

In summary, with all these shortcomings, we need to rethink how we should build a tiered file system, and here are our new ways.

[NEXT]

In our paper, we propose Mux, which is a new way of designing tiered file system.




Mux: Talk to file systems, not device drivers

10

HDDPM SSD

Monolithic
Tiered File System

PM
Driver

SSD
Driver

HDD
Driver

HDDPM SSD

Mux

PM Drv. SSD Drv. HDD Drv.

PM
File Sys.

SSD
File Sys.

HDD
File Sys.

Linux VFS Infra

Linux VFS Infra

Presenter Notes
Presentation Notes
The key idea of Mux to introduce a dedicated component for tiering over single-device file systems, rather than directly work on device drivers.

With this design, Mux can enhance tiering solutions and solve the previous shortcomings.



11

HDDPM SSD

Mux

PM Drv. SSD Drv. HDD Drv.

PM
File Sys.

SSD
File Sys.

HDD
File Sys.

Tape Drv.

Tape
File Sys.

Tape

Mux decouples
tiering from device mgmt.

Flexibility

Linux VFS Infra

Our Contributions

Presenter Notes
Presentation Notes
Mux treats extensibility as a first-class principle.

It decouples tiering from device management by leveraging the well-defined file system abstraction, such as the Linux VFS interface and the POSIX semantic, so that the user can freely swap in or out file systems.

[C]

Mux can also incorporate latest file systems and devices directly due to its modular design, so that people do not need to reinvent the wheel [p] and can enjoy the latest advancement in file system development immediately.

[C]

And finally, because Mux works over existing file systems and adds tiering outside the blackbox, the metadata scheme of existing data is not changed. Also, when the data is migrated, it could be stored on another battle-tested file system. Thus, Mux reduces the risk of adopting tiered storage.



12

HDDPM SSD

Mux

PM Drv. SSD Drv. HDD Drv.

PM
File Sys.

SSD
File Sys.

HDD
File Sys.

Tape Drv.

Tape
File Sys.

Tape

Mux decouples
tiering from device mgmt.

Mux can directly use
latest file systems / devices

Flexibility

 Modularity

Linux VFS Infra

Our Contributions

Presenter Notes
Presentation Notes
Mux treats extensibility as a first-class principle.

It decouples tiering from device management by leveraging the well-defined file system abstraction, such as the Linux VFS interface and the POSIX semantic, so that the user can freely swap in or out file systems.

[C]

Mux can also incorporate latest file systems and devices directly due to its modular design, so that people do not need to reinvent the wheel [p] and can enjoy the latest advancement in file system development immediately.

[C]

And finally, because Mux works over existing file systems and adds tiering outside the blackbox, the metadata scheme of existing data is not changed. Also, when the data is migrated, it could be stored on another battle-tested file system. Thus, Mux reduces the risk of adopting tiered storage.



13

HDDPM SSD

Mux

PM Drv. SSD Drv. HDD Drv.

PM
File Sys.

SSD
File Sys.

HDD
File Sys.

Tape Drv.

Tape
File Sys.

Tape

Mux decouples
tiering from device mgmt.

Mux can directly use
latest file systems / devices

Mux supports tiering
over existing storage in production

Flexibility

 Modularity

Compatibility

Linux VFS Infra

Our Contributions

Presenter Notes
Presentation Notes
Mux treats extensibility as a first-class principle.

It decouples tiering from device management by leveraging the well-defined file system abstraction, such as the Linux VFS interface and the POSIX semantic, so that the user can freely swap in or out file systems.

[C]

Mux can also incorporate latest file systems and devices directly due to its modular design, so that people do not need to reinvent the wheel [p] and can enjoy the latest advancement in file system development immediately.

[C]

And finally, because Mux works over existing file systems and adds tiering outside the blackbox, the metadata scheme of existing data is not changed. Also, when the data is migrated, it could be stored on another battle-tested file system. Thus, Mux reduces the risk of adopting tiered storage.



Dispatch user requests, not block I/Os

14

Mux

FS A FS B

VFS

User Request to a File

Block
Lookup Table

Handle Requests Handle Requests

Mux splits VFS reqs. by device

Presenter Notes
Presentation Notes
So, let's zoom in and see how Mux is designed.

[C]

For user requests to a file, the principle of Mux is to dispatch user requests, not block I/Os. Here, we use the orange bar to represent a user request that attempts to access a part of a file.

[C]

When handling user requests, Mux will look up a block lookup table to decide which part of the user request belongs to which file system.

[C]

And then it will split the VFS request by devices and dispatch the corresponding requests to the respective file systems, [p] so the single-device file system can handle tiered requests while still maintaining their encapsulation, leaving space for internal optimization such as caching, reordering, or batching.



Track metadata location, not its content

15

Mux

FS A FS B

VFS

Modif. TimeUser Request to Metadata

Metadata
Affinity Table

Disk Usage

Modif. Time
(Outdated)

Disk Usage
on FS A

Modif. Time
(Latest)

Disk Usage
on FS B

Modif. Time

Mux collects metadata from FSes

Disk Usage Disk Usage

Presenter Notes
Presentation Notes
For metadata, Mux similarly tracked metadata location rather than its content. Here, the user want to know the last modification time and disk usage of a given file.

[C]
�We observe that for each file system that Mux performs tiering on, one or some of them must contain the right version of metadata because Mux reflects all user operations to them.

For example, the file system handled the last change will have the right modification time, and the disk usage of a file is the sum of all file systems’.

[C]
�So, Mux will look up the metadata affinity table to learn where to obtain the right metadata and dispatch the metadata queries to the underlying file systems.
�Then, Mux will summarize the result and report to the user.



Migrate with versioning, not locking

16

Mux

FS A FS B

VFS

Lock Scope Lock Scope

File systems’ lock scope
only applies to themselves internally

Presenter Notes
Presentation Notes
A challenge of Mux is to handle migration across file systems, as the underlying file systems has no awareness of other file systems.

[C]

However, a key issue here is the file systems lock scope only apply to themselves.

[C]

A trivial attempt is to let Mux locks each member file systems before migration of data blocks.

[C]

However, such way is untenable, as users may also use POSIX calls like F-lock or FCNTL to lock a part or a whole file.

This creates chances for interference and even deadlock between user application and Mux. Hence, we need to think another way for migration.



Migrate with versioning, not locking

17

Mux

FS A FS B

VFS

Lock Scope Lock Scope
Locked by Mux Locked by UserWait B Wait A

Mux cannot utilize file system locks
due to potential deadlock with user locks

Presenter Notes
Presentation Notes
A challenge of Mux is to handle migration across file systems, as the underlying file systems has no awareness of other file systems.

[C]

However, a key issue here is the file systems lock scope only apply to themselves.

[C]

A trivial attempt is to let Mux locks each member file systems before migration of data blocks.

[C]

However, such way is untenable, as users may also use POSIX calls like F-lock or FCNTL to lock a part or a whole file.

This creates chances for interference and even deadlock between user application and Mux. Hence, we need to think another way for migration.



Migrate with versioning, not locking

18

Mux

FS A FS B

VFS

Mux uses optimistic concurrency control
for both correctness and performance

Version Counter Version Counter
1 5

Presenter Notes
Presentation Notes
Mux uses a versioning design called optimistic concurrency control instead of implementing another locking for both correctness and performance.

[C]

This scheme maintains an increment-only version counter for each migratable block within a file.

[C]

During migration, the counter is bumped twice, once when starting the migration and once when finishing the migration.



Migrate with versioning, not locking

19

Mux

FS A FS B

VFS

Mux uses optimistic concurrency control
for both correctness and performance

Version Counter Version Counter
12 56

Presenter Notes
Presentation Notes
Mux uses a versioning design called optimistic concurrency control instead of implementing another locking for both correctness and performance.

[C]

This scheme maintains an increment-only version counter for each migratable block within a file.

[C]

During migration, the counter is bumped twice, once when starting the migration and once when finishing the migration.



Migrate with versioning, not locking

20

Mux

FS A FS B

VFS

Mux uses optimistic concurrency control
for both correctness and performance

Version Counter Version Counter
123 567

Presenter Notes
Presentation Notes
Mux uses a versioning design called optimistic concurrency control instead of implementing another locking for both correctness and performance.

[C]

This scheme maintains an increment-only version counter for each migratable block within a file.

[C]

During migration, the counter is bumped twice, once when starting the migration and once when finishing the migration.



Migrate with versioning, not locking

21

Mux

FS A FS B

VFS

Mux uses optimistic concurrency control
for both correctness and performance

Version Counter Version Counter
1 5

User Request

1

Presenter Notes
Presentation Notes
When Mux handles a user request, it snapshots the version number and later compare it with the current value.

[C]

If the request run parallelly with a migration request, the change in version number can be detected and the user requests can be retried after the migration is done.



Migrate with versioning, not locking

22

Mux

FS A FS B

VFS

Mux uses optimistic concurrency control
for both correctness and performance

Version Counter Version Counter
123 567

User Request

1 3

Presenter Notes
Presentation Notes
When Mux handles a user request, it snapshots the version number and later compare it with the current value.

[C]

If the request run parallelly with a migration request, the change in version number can be detected and the user requests can be retried after the migration is done.



Migrate with versioning, not locking

23

Mux

FS A FS B

VFS

Mux uses optimistic concurrency control
for both correctness and performance

Version Counter Version Counter
12 56

User Request

1 3

User Request

6 6

Presenter Notes
Presentation Notes
Also, even if the request finishes during a migration, as the version number has different parity during and after a migration, the conflict can still be detected.



Cache on DAX devices, not only DRAM

24

Mux

FS A FS B

Use Page Cache

VFS

DRAM Memory

Presenter Notes
Presentation Notes
Mux also supports caching on DAX device like some existing tiered file systems.

[C]
�Usually, single-device file system only pulls cache pages from DRAM. However, this may be insufficient due to inter-file system contention over DRAM resources.

[C]
�To address this, Mux exploits the capability of DAX-enabled file systems by building DAX memory pools on these file systems such as NOVA.

[C]

Mux then proxies page cache allocation requests and pulls pages from both the DAX and DRAM memory pools and provide them to file systems that want cache pages.

In this way, Mux mitigates cache contention and maximizes resource utilization.



Cache on DAX devices, not only DRAM

25

Mux

FS A FS B

DAX Enabled Use Page Cache

DAX Mem Pool

VFS

DRAM Memory

Mux can support page cache
with both DRAM and DAX pages

Presenter Notes
Presentation Notes
Mux also supports caching on DAX device like some existing tiered file systems.

[C]
�Usually, single-device file system only pulls cache pages from DRAM. However, this may be insufficient due to inter-file system contention over DRAM resources.

[C]
�To address this, Mux exploits the capability of DAX-enabled file systems by building DAX memory pools on these file systems such as NOVA.

[C]

Mux then proxies page cache allocation requests and pulls pages from both the DAX and DRAM memory pools and provide them to file systems that want cache pages.

In this way, Mux mitigates cache contention and maximizes resource utilization.



• Extensibility = 5 LoC / added device

• Env = Ubuntu 20.04 on Linux 5.15

• Tool = microbench from Strata

• PM = Intel Optane PM 200

• SSD = Intel Optane SSD DC P4800X

• HDD = Seagate Exos X18

Evaluating a prototype of Mux

26

HDDPM SSD

Mux

PM Drv. SSD Drv. HDD Drv.

Linux VFS Infra

Presenter Notes
Presentation Notes
We now evaluate the prototype of Mux. The prototype is built by two gradates students within a month, as the design of Mux enables us to reuse most parts of existing file systems. Hence, we only need to focus on implementing the control plane that handles the tiering logic.

[C]

To evaluate the extensibility, we asked a new master student to add supports to different devices to the prototype.

Our prototype only requires to add five lines of code per new device, which describes the file system’s mount option and property. Such descriptions can be isolated into configuration files later.

[C]

We evaluate Mux on real machine that runs stock Ubuntu twenty-oh-four. We use the microbenchmark from Strata for our tests, which is also the state-of-the-art that we will compare to.

[C]

We run the tests on a tiered storage composed of Optane, SSD, and HDD.

[C]

For the tests, our prototype uses NOVA, XFS, and EXT-four to drive the three devices respectively.



Mux brings more tiering possibilities

27

Mux supports all
migration directions

Mux enables 2.59x faster
migration via FS optimizations

375 208

N/S N/S

N/S N/S

970 216

1185 211

244 221

PM

SSD

HDD

PM SSD HDD

PM

SSD

HDD

PM SSD

Unit: MB/s
N/S: Not Supported

So
u

rc
e

So
u

rc
e

Target Target

Strata Mux

HDD

Presenter Notes
Presentation Notes
Mux brings more tiering possibilities

[C]

Here we show the performance metrics of Strata, which is the research artifact file system of the latest state-of-the-art in this area.

[C]

In the matrix, each row describes a source device, and each column is for a different target device. To read the matrix, one can use the migration source and target device to locate a cell.

[C]
�For example, the migration performance from persistent memory to SSD is three hundred and seventy-five megabyte per second.

[C]
�And similarly, here is the matrix for our prototype Mux.

[C]
�The first thing to observe here is that Mux supports all migration directions while Strata does not.
�This is because for Strata, creating a new migration directions requires manually matching the thread model, block size, et cetera for the pair of devices.
�However, as Mux utilizes file system abstractions, all migration directions can be automatically supported.

[C]
�On the other hand, Mux enables two-point-five-nine times faster migration by leveraging file system optimizations.
�Note that it is Mux’s contribution to utilize the optimization of matured file system. No previous work is capable of doing so.



Mux makes high-performance achievable

28

Mux shows 1.46x higher
throughput for device I/O

Mux adds a worst-case read
latency overhead of 6.6% to 87.3%

compared to non-tiered FSes

Mux adds a worst-case write
throughput overhead of 1.6% to 3.5%

compared to non-tiered FSes

PM SSD HDD
0

200

400

600
Strata
Mux

Th
ro

u
g

h
p

u
t 

(M
B

/s
)

Presenter Notes
Presentation Notes
Mux also makes high-performance tiered file system achievable. Here we compare the I/O throughput to different devices for Strata and Mux.

[C]

On X-axis, we show different devices destinations of I/O requests.

[C]

On Y-axis, we show the throughput number to the device.

[C]

Here is the result for Strata.

[C]

And here is the result for our prototype.

[C]

So, Mux shows one-point-four-six times higher throughput for device I/O because of its ability to reuse existing optimizations.

[C]

We also measured the overhead of Mux compared to the underlying non-tiered file systems.
�Mux adds a worst-case read latency overhead of six to eighty-seven percent. This is because Mux maintains extra tiered metadata and functions like an extra file system over existing ones.

[C]

However, Mux only adds one-point-six to three-point-five percent of write throughput overhead. This is because Mux only orchestrates user requests, and it will not cause write amplification.



• Metadata could be better handled to reduce overhead, e.g., read 
latency.

• Crash consistency can be enhanced beyond the lowest of all member 
file systems.

• Feature imparity among file systems could be preserved for better 
compatibility.

Future work: Mux can be further improved

29

Presenter Notes
Presentation Notes
Mux can be further improved from the current research prototype.

First, metadata could be better handled to reduce the overhead of Mux, especially in terms of read latency.

[C]
�And also, the crash consistency is currently set as the lowest of all member file systems. However, in the future, we can explore how to improve this consistency.

[C]
�We also noticed that modern file systems tend to provide features that are beyond what POSIX requires. So, it would be an interesting topic to research how to preserve the feature imparity among file systems for better usability.




• Scheduling of file I/O could now be done at VFS level with Mux, rather 
than block level.

• Configuration of file systems for a given workload or a given set of 
storage devices can now be studied with Mux.

• Distributed Mux can be designed to perform tiering among an array of 
machines over network.

Future work: Mux enables new storage research

30

Presenter Notes
Presentation Notes
On the other hand, Mux can also enable new storage research.

For example, scheduling for file I/O could be now done at VFS level easily with Mux, rather than modifying the block scheduler of Linux.
�This could potentially provide researchers with more contextual information to leverage on and also to simplify their design.

[C]
�The configuration of different file systems for a given workload or a given set of storage device can now be studied.
�Mux provides an abstraction over different types of devices, so they can be swapped easily, and this type of configuration studies could be carried out easier.

[C]
�And finally, Mux can be designed to perform tiering among an array of machines over network, so distributed Mux is also a potential direction.



Conclusion

31

• Rethinking Tiered Storage: Talk to File 
Systems, Not Device Drivers

• Mux is a new tiered file system that 
accesses devices through file systems, 
rather than device drivers.

• Extensibility as a first-class principle to
decouple tiering from device mgmt.

• 1.46x higher throughput for device I/O;
2.59x faster data migration over Strata.

HDDPM SSD

Mux

PM Drv. SSD Drv. HDD Drv.

PM
File Sys.

SSD
File Sys.

HDD
File Sys.

Linux VFS Infra

Presenter Notes
Presentation Notes
In conclusion, our work Rethinking Tiered Storage: Talk to File Systems, Not Device Drivers outlines a new path towards tiered storage.

[C]

In this work, we proposed a new way to design tiered file system called Mux. It accesses devices through file systems rather than their device drivers.

[C]

Mux treats accessibility as a first-class principle to decoupling tiering from device management.

[C]

It achieves better performance through its unique ability to leverage matured file system optimizations, and it also provides a change to let users to freely choose their file systems in heterogeneous storage scenarios.

Thank you for listening. I’m happy to take questions now.


	Rethinking Tiered Storage:�Talk to File Systems, Not Device Drivers
	Storage devices are diversifying
	Storage devices are diversifying
	New devices lead to heterogeneous configurations
	New devices lead to heterogeneous configurations
	New devices lead to heterogeneous configurations
	Existing solutions are falling behind
	Existing solutions are falling behind
	… and it introduces practical shortcomings
	… and it introduces practical shortcomings
	Mux: Talk to file systems, not device drivers
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Dispatch user requests, not block I/Os
	Track metadata location, not its content
	Migrate with versioning, not locking
	Migrate with versioning, not locking
	Migrate with versioning, not locking
	Migrate with versioning, not locking
	Migrate with versioning, not locking
	Migrate with versioning, not locking
	Migrate with versioning, not locking
	Migrate with versioning, not locking
	Cache on DAX devices, not only DRAM
	Cache on DAX devices, not only DRAM
	Evaluating a prototype of Mux
	Mux brings more tiering possibilities
	Mux makes high-performance achievable
	Future work: Mux can be further improved
	Future work: Mux enables new storage research
	Conclusion

