
Storage Class Memory is Dead, 
All Hail Managed-Retention Memory: 

Rethinking Memory for the AI Era
Sergey Legtchenko, Ioan Stefanovici, Richard Black, Ant Rowstron, 

Junyi Liu, Paolo Costa, Burcu Canakci, Dushyanth Narayanan, Xingbo Wu

Microsoft Research

HotOS’25



AI Inference – The Dominant Cloud Workload

Generative AI has changed the game & inference demand is huge
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A great challenge and opportunity for the systems community to 
rethink systems architecture



The Problem Today: The Curse of HBM

High Bandwidth Memory is the only option today to achieve 
good bandwidth to AI data

But, a litany of problems…
• Complex manufacturing and 

packaging
• Unreliable
• Expensive: significant portion 

of GPU cost and power
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source: https://www.anandtech.com/show/9969/jedec-publishes-hbm2-specification



What is HBM in LLM Inference Actually Used For?

LLM inference: the prominent workload
Two large data structures: model weights + KV cache
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Can we leverage the specific properties of AI inference 
to design a better memory? 

Model weights (~ 50% today)
Write: once
Read: each forward pass

KV-cache (~ 50% today):
Write: append-only
Read: in whole each forward pass

Observation: very large, predictable, sequential Reads dominate
• HBM is “overprovisioned” on write performance
• Random access of HBM not necessary



A New Class of Memory for AI Inference
• “New” memory technologies: STT-MRAM, ReRAM, PCM, FeRAM,…

• Viewed through “Storage Class Memory” lens – long-term data retention was a goal

• For AI Inference:
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Important Metrics

Capacity / $

Read bandwidth

Energy

Managed-Retention Memory: a new class of memory for AI inference

Less Important Metrics

Write performance

Random access

Long-term Retention

Key insight: possible to trade-off write performance & retention time for 
important metrics

• Storage Class Memory non-volatility (10+ yr retention) is not required
• Hours-long retention time is sufficient and enables power advantage



MRM: A New Opportunity for SCM Technologies
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Existing memory technologies can inherently be optimised for MRM
example trade-off:                   retention ↑     endurance ↓
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MRM Research Opportunities

• Innovation across the HW/SW stack needed
• How do we take leverage the workload?

• lack of random access, lack of refreshes
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MRM Systems Opportunities

• MRM abstraction: how to 
expose MRM to systems?

• Dynamically configurable 
retention
• Should software configure 

retention period per write?

• Retention-aware data 
placement & scheduling
• Software-driven movement
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MRM: Rethinking Memory for the AI Era 

1) Massive opportunity and need to disrupt HBM for AI inference

2)  Managed-Retention Memory: a new class of memory that 
trades off retention and write performance for energy, read 
performance, and cost

3) Ripe for innovation across cells, arrays, controllers, system 
abstractions, and much more!
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