USC University of
Southern California

Granular Resource Demand
Heterogenelity

Yizhuo (Coulson) Liang

HotOS’ 25

Overview

 Resource demand heterogeneity exists within applications
* EXxploit resource-aware scheduling in finner granularity
 Hiresperf: profile resource usage of each function invocation
e at 10 us resolution, 7% ~ 15% overhead, or even lower

* Future directions to exploit such fine-grained resource demand knowledge

Resource Demand Heterogeneity:

Each application exhibits a distinct set of needs for
shared architectural resources, such as

DRAM Bandwidth
pT————

L3 Caches

Knowing Resource Demands Matters

Colocating apps in a single instance is common place,
and apps may compete for the shared resources

Resource contentions
* slow programs down
e waste other resources

* hurt QoS & higher tail latency

Demand-Aware Placement & Scheduling

Existing methods:
* runtime profiling or benchmarking before deploy

 schedule when and where to run programs to
minimize contentions

e.g. collocating a mem-bandwidth-intensive app with
a more compute-heavy app

Yet prior works focus on monolithic applications.

Demand Heterogeneity Within an App?

However, there are also heterogeneous resource
needs within a single application

Demand Heterogeneity Within an App?

However, there are also heterogeneous resource
needs within a single application
e.g. resource timelines of processing a Lucene++ search request

L

0 50 100 150 200
Time (us)

Demand Heterogeneity Within an App?

However, there are also heterogeneous resource
needs within a single application

e.g. resource timelines of processing a Lucene++ search request

createWeight() § -
M << 200- e — L e
| = B - .
DRAM_BW: 117 Byte/us; 100- Mﬁﬁi DRAM_BW: 218 Byte/us
O_
INST Rate: 4395 /us | | | | INST Rate: 2909 /us
v — 6000 -
) More mem channels,
Want better .CPl.J ; §4ooo- - Colocate with other
(frequency & pipeline): = L — .

. apps consuming less DRAM BW

2000

0 50 100 150 200
Time (us)

Can we really disaggregate and schedule

such granular components
separately and dynamically?

Emerging Granular Computing

Emerging systems with a serverless yet stateful
nature, e.g. Quicksandinsbi2s;, and Grannynspi2s), unlock
more flexibility to schedule small components

Such systems support fast live migrations and

Emerging Granular Computing

Emerging systems with a serverless yet stateful
nature, e.g. Quicksandinsbi2s;, and Grannynspi2s), unlock
more flexibility to schedule small components

1 1 80

BE 80

App0 - @08 88

=3 S5:c Cesa
NodeO Nodef

Monolithic Apps Quicksand

Granular Resource Demand Heterogeneity

How to measure the

demands

Granular Resource Demand Heterogeneity

How to measure the

demands

Hirespertf Future directions

How to Measure Demands within an App

Breaking an app apart and microbenchmark resource
consumptions of individual components?

Engineering efforts Lock & sync behaviors
n/ n

So we want runtime profiling without decomposing
the application, with the help of

Requirements for the Profiler

Distinguish invocations of the same function

Polling PMCs with microsecond-level intervals

OEN Not perturb program behavior; JIT profiling
20us
funcO funcl funcO

different jobs

Requirements for the Profiler

Linux perf No timeline support

Proprietary &

Viune Interrupts? — high overheads

Promblems with Existing Profilers

Linux perf No timeline support

Proprietary &

Viune Interrupts? — high overheads

us-level resolution
Timeline support
Low overhead

Hirespertf

Hiresperf Design

Func-call Interrupt-free stack
Timeline scanning (from LDB)

funcO funcl funcO

Time

Return Addr

Generation #

LDB Canary

Saved RBP

Local Vars ...

18

Hiresperf Design

Func-call Interrupt-free stack
Timeline scanning (from LDB)

funcO funcl funcO

Time

Return Addr

Generation #

9 LDB Canary

Saved RBP

Instrumented

Local Vars ...

19

Hiresperf Design

Func-call Interrupt-free stack
Timeline scanning (from LDB)

funcO funcl funcO

Time

Return Addr

Generation #

>
Instrumented
>

LDB Canary

Saved RBP

Local Vars ...

20

Hiresperf Design

Func-call
Timeline scanning (from LDB)

Interrupt-free stack

funcO funcl funcO
Time
Return Addr
9 Generation # I
Instrumented Scans
9 LDB Canary

Saved RBP

Local Vars ...

21

Hiresperf Design

Func-call Interrupt-free stack
Timeline scanning (from LDB)

funcO funcl funcO

Time

22

Hiresperf Design

Func-call Interrupt-free stack
Timeline scanning (from LDB)

funcO funcl funcO

Time

23

Hiresperf Design

Func-call Interrupt-free stack
Timeline scanning (from LDB)

funcO funcl funcO

Time

L T T A N

Sample Sample Sample Sample Sample Sample Sample Sample

24

Hiresperf Overhead

Func-call
Timeline

VTune at 100us
19 ~ 38% overhead

funcO funcl funcO
—

Time

L T T T R

Sample Sample Sample Sample Sample Sample Sample Sample

Hiresperf at 10us
0 ~ 8% from stack scans
7% from PMC polling

Even Lower Overhead

PMC-polling: ~1%

Interrupts: ~99% of the overhead

Can we get rid of interrupts? Yes!

26

Interupt-free Hiresperf

Sample Sample

Y Y

funcO

Time

1) Polling in
prologue/epilogue

27

Interupt-free Hiresperf

Return Addr

Frame Initial PMC |
Sample Sample |

* * Writes Callee Final PMC
funcO r—— Generation #
S
Time
LDB Canary
Saved RBP
]] L |V
1) Polling in
prologue/epilogue

2) Writes to stack

28

Interupt-free Hiresperf

Return Addr

Frame Initial PMC |
Sample Sample |

‘r ‘r Writes
funcO —J

—

Time

1) Polling in
prologue/epilogue

Callee Final PMC

Generation #

LDB Canary

Saved RBP

Local Vars ...

2) Writes to stack

Scans

3) Pick-up values

29

Future Directions

 Batched Processing
* QoS with High Utilization

* Function as a service

Future Direction 1: Batched Processing

Less latency constraints @ More scheduling opportunities.
e.d. run a mem-bw intensive operation with a compute-bound one

N
o

IN
@)

o
=

0
S

Tasks (sorted by start time)

N
o

IN
o

o
e

0
=

Tasks (sorted by start time)

0

200 400 600 800
Time (ms)

o

-
=

200 400 600 800
Time (ms)

o

1000

1200

Non Demand-Aware
Scheduling

Interleave
Heterogeneous
Demands

31

Future Direction 1: Batched Processing

Less latency constraints =& More scheduling opportunities.
e.d. run a mem-bw intensive operation with a compute-bound one

If a single task exhibit different resource needs across
different stages, we can also migrate them to always use the
best fitting instance.

Prior works developed for DNN-training and Spark. We can
generalize this approach to generic programs with profiling.

Future Direction 2: QoS with High Utilizations

 Current reactive approach (e.g. Caladan[osbi2oj)

* ban cores for best-effort tasks when increased queuing delay observed
for latency critical tasks

 We want: Proactive Approach

* schedule best-effort tasks that does not interfere the latency critical ones
» utilize resources not consumed by latency critical apps

Future Direction 3: Function-as-a-Service

FaaS containers are natrually suitable for migrations.

® When a function is deployed the first time, low-overhead
profiling can learn its resource properties, and adjust later
placements.

® WWhen a instance’s resource usages shift over time,
containers can also migrate.

Summary

Targeting on applications with inherent heterogeneous
resource needs, we can leverage on
1) profiled knowledge of fine-grained resource demands

to improve both performance and utilizations.

Thank vou! Hiresperf is available at
y github.com/yizhuoliang/hiresperf

*Interrupt-free version will be released soon

http://github.com/yizhuoliang/hiresperf

