
HotOS’ 25

Granular Resource Demand
Heterogeneity
Yizhuo (Coulson) Liang, Ramesh Govindan, Seo Jin Park

Overview

• Resource demand heterogeneity exists within applications

• Exploit resource-aware scheduling in finner granularity

• Hiresperf: profile resource usage of each function invocation

• at 10 µs resolution, 7% ~ 15% overhead, or even lower

• Future directions to exploit such fine-grained resource demand knowledge

Resource Demand Heterogeneity:

Each application exhibits a distinct set of needs for
shared architectural resources, such as

DRAM Bandwidth Storage Bandwidth L3 Caches

Network bandwidth …Pipeline

3

4

Knowing Resource Demands Matters

Colocating apps in a single instance is common place,
and apps may compete for the shared resources

Resource contentions
• slow programs down

• waste other resources

• hurt QoS & higher tail latency

• runtime profiling or benchmarking before deploy

• schedule when and where to run programs to
minimize contentions

5

Demand-Aware Placement & Scheduling
Existing methods:

e.g. collocating a mem-bandwidth-intensive app with
a more compute-heavy app

Yet prior works focus on monolithic applications.

6

Demand Heterogeneity Within an App?
However, there are also heterogeneous resource
needs within a single application

7

Demand Heterogeneity Within an App?
However, there are also heterogeneous resource
needs within a single application
e.g. resource timelines of processing a Lucene++ search request

8

Demand Heterogeneity Within an App?

createWeight() score()

However, there are also heterogeneous resource
needs within a single application
e.g. resource timelines of processing a Lucene++ search request

DRAM_BW: 117 Byte/us

INST_Rate: 4395 /us

DRAM_BW: 218 Byte/us

INST_Rate: 2909 /us

Want better CPU 
(frequency & pipeline)

More mem channels, 
Colocate with other 

apps consuming less DRAM BW

9

Demand Heterogeneity Within an App?

createWeight() score()

However, there are also heterogeneous resource
needs within a single application
e.g. resource timelines of processing a Lucene++ search request

DRAM_BW: 117 Byte/us

INST_Rate: 4395 /us

DRAM_BW: 218 Byte/us

INST_Rate: 2909 /us

Want better CPU 
(frequency & pipeline)

More mem channels, 
Colocate with other 

apps consuming less DRAM BW

Can we really disaggregate and schedule 
such granular components 

separately and dynamically?

10

Emerging Granular Computing

Emerging systems with a serverless yet stateful
nature, e.g. Quicksand[NSDI25], and Granny[NSDI25], unlock
more flexibility to schedule small components 
 
Such systems support fast live migrations and
managed local/remote data access

Node1

11

Emerging Granular Computing

Emerging systems with a serverless yet stateful
nature, e.g. Quicksand[NSDI25], and Granny[NSDI25], unlock
more flexibility to schedule small components

App0
App1

App2

Monolithic Apps
Node0

Quicksand

12

Granular Resource Demand Heterogeneity

How to measure the
demands

How to exploit the
heterogeneity

13

Granular Resource Demand Heterogeneity

Hiresperf Future directions

How to measure the
demands

How to exploit the
heterogeneity

14

How to Measure Demands within an App

Breaking an app apart and microbenchmark resource
consumptions of individual components? 

Engineering efforts Lock & sync behaviors
😢 😢

So we want runtime profiling without decomposing
the application, with the help of performance counters
(PMCs)

Frequency. Not perturb program behavior; JIT profiling

Frequency. Distinguish invocations of the same function

15

Requirements for the Profiler

Timeline

Overhead

20µs

different jobs

Frequency Polling PMCs with microsecond-level intervalsResolution

16

Proprietary &
Interrupts? → high overheads

Linux perf No timeline support

VTune

Requirements for the Profiler

😢

😢

Proprietary &
Interrupts? → high overheads

Linux perf No timeline support

VTune

17

😢

😢
us-level resolution ✅ 
Timeline support ✅ 

Low overhead ✅

Hiresperf

Promblems with Existing Profilers

18

Func-call
Timeline

Interrupt-free stack 
scanning (from LDB)

Hiresperf Design

19

Func-call
Timeline

Interrupt-free stack 
scanning (from LDB)

Hiresperf Design

Instrumented

20

Func-call
Timeline

Interrupt-free stack 
scanning (from LDB)

Hiresperf Design

Instrumented

21

Func-call
Timeline

Interrupt-free stack 
scanning (from LDB)

Hiresperf Design

Instrumented

22

Func-call
Timeline

Interrupt-free stack 
scanning (from LDB)

Hiresperf Design

23

Func-call
Timeline

Resource
Timeline

Interrupt-free stack 
scanning (from LDB)

Kernel module sending IPIs to
poll PMCs

Hiresperf Design

24

Func-call
Timeline

Interrupt-free stack 
scanning (from LDB)

Hiresperf Design

Resource
Timeline

Kernel module sending IPIs to
poll PMCs

25

Func-call
Timeline

Resource
Timeline

Hiresperf Overhead

VTune at 100us 
19 ~ 38% overhead

Hiresperf at 10us 
0 ~ 8% from stack scans 

7% from PMC polling

26

Even Lower Overhead

Can we get rid of interrupts? Yes!

27

Interupt-free Hiresperf

1) Polling in 
prologue/epilogue

28

Interupt-free Hiresperf

2) Writes to stack

1) Polling in 
prologue/epilogue

29

Interupt-free Hiresperf

2) Writes to stack

3) Pick-up values1) Polling in 
prologue/epilogue

Future Directions

• Batched Processing

• QoS with High Utilization

• Function as a service

Future Direction 1: Batched Processing

31

Less latency constraints → More scheduling opportunities. 
e.g. run a mem-bw intensive operation with a compute-bound one

Non Demand-Aware
Scheduling

Interleave
Heterogeneous
Demands

Future Direction 1: Batched Processing

32

If a single task exhibit different resource needs across
different stages, we can also migrate them to always use the
best fitting instance.

Less latency constraints → More scheduling opportunities. 
e.g. run a mem-bw intensive operation with a compute-bound one

Prior works developed for DNN-training and Spark. We can
generalize this approach to generic programs with profiling.

Future Direction 2: QoS with High Utilizations

33

• Current reactive approach (e.g. Caladan[OSDI20])
• ban cores for best-effort tasks when increased queuing delay observed

for latency critical tasks

• We want: Proactive Approach
• schedule best-effort tasks that does not interfere the latency critical ones

• utilize resources not consumed by latency critical apps

Future Direction 3: Function-as-a-Service

34

FaaS containers are natrually suitable for migrations.

• When a function is deployed the first time, low-overhead
profiling can learn its resource properties, and adjust later
placements.

• When a instance’s resource usages shift over time,
containers can also migrate.

Summary
Targeting on applications with inherent heterogeneous
resource needs, we can leverage on 
1) profiled knowledge of fine-grained resource demands 
2) granular computing platforms’ scheduling flexibility 
to improve both performance and utilizations.

Thank you! Hiresperf is available at 
github.com/yizhuoliang/hiresperf 
 
*Interrupt-free version will be released soon

http://github.com/yizhuoliang/hiresperf

