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Overview

 Resource demand heterogeneity exists within applications
* EXxploit resource-aware scheduling in finner granularity
 Hiresperf: profile resource usage of each function invocation
e at 10 us resolution, 7% ~ 15% overhead, or even lower

* Future directions to exploit such fine-grained resource demand knowledge



Resource Demand Heterogeneity:

Each application exhibits a distinct set of needs for
shared architectural resources, such as
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Knowing Resource Demands Matters

Colocating apps in a single instance is common place,
and apps may compete for the shared resources

Resource contentions
* slow programs down
e waste other resources

* hurt QoS & higher tail latency



Demand-Aware Placement & Scheduling

Existing methods:
* runtime profiling or benchmarking before deploy

 schedule when and where to run programs to
minimize contentions

e.g. collocating a mem-bandwidth-intensive app with
a more compute-heavy app

Yet prior works focus on monolithic applications.



Demand Heterogeneity Within an App?

However, there are also heterogeneous resource
needs within a single application
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Demand Heterogeneity Within an App?

However, there are also heterogeneous resource
needs within a single application

e.g. resource timelines of processing a Lucene++ search request
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Can we really disaggregate and schedule

such granular components
separately and dynamically?




Emerging Granular Computing

Emerging systems with a serverless yet stateful
nature, e.g. Quicksandinsbi2s;, and Grannynspi2s), unlock
more flexibility to schedule small components

Such systems support fast live migrations and
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Granular Resource Demand Heterogeneity

How to measure the

demands
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Hirespertf Future directions



How to Measure Demands within an App

Breaking an app apart and microbenchmark resource
consumptions of individual components?

Engineering efforts Lock & sync behaviors
n/ n

So we want runtime profiling without decomposing
the application, with the help of




Requirements for the Profiler

Distinguish invocations of the same function

Polling PMCs with microsecond-level intervals

OEN  Not perturb program behavior; JIT profiling
20us
funcO funcl funcO

different jobs



Requirements for the Profiler

Linux perf No timeline support

Proprietary &

Viune Interrupts? — high overheads



Promblems with Existing Profilers

Linux perf No timeline support

Proprietary &

Viune Interrupts? — high overheads

us-level resolution
Timeline support
Low overhead

Hirespertf




Hiresperf Design

Func-call Interrupt-free stack
Timeline scanning (from LDB)
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Hiresperf Design
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Hiresperf Design
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Hiresperf Overhead

Func-call
Timeline

VTune at 100us
19 ~ 38% overhead
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Hiresperf at 10us
0 ~ 8% from stack scans
7% from PMC polling



Even Lower Overhead

PMC-polling: ~1%

Interrupts: ~99% of the overhead

Can we get rid of interrupts? Yes!
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Interupt-free Hiresperf
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Interupt-free Hiresperf
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Interupt-free Hiresperf
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Future Directions

 Batched Processing
* QoS with High Utilization

* Function as a service



Future Direction 1: Batched Processing

Less latency constraints @ More scheduling opportunities.
e.d. run a mem-bw intensive operation with a compute-bound one
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Future Direction 1: Batched Processing

Less latency constraints =& More scheduling opportunities.
e.d. run a mem-bw intensive operation with a compute-bound one

If a single task exhibit different resource needs across
different stages, we can also migrate them to always use the
best fitting instance.

Prior works developed for DNN-training and Spark. We can
generalize this approach to generic programs with profiling.



Future Direction 2: QoS with High Utilizations

 Current reactive approach (e.g. Caladan[osbi2oj)

* ban cores for best-effort tasks when increased queuing delay observed
for latency critical tasks

 We want: Proactive Approach

* schedule best-effort tasks that does not interfere the latency critical ones
» utilize resources not consumed by latency critical apps



Future Direction 3: Function-as-a-Service

FaaS containers are natrually suitable for migrations.

® When a function is deployed the first time, low-overhead
profiling can learn its resource properties, and adjust later
placements.

® WWhen a instance’s resource usages shift over time,
containers can also migrate.



Summary

Targeting on applications with inherent heterogeneous
resource needs, we can leverage on
1) profiled knowledge of fine-grained resource demands

to improve both performance and utilizations.

Thank vou! Hiresperf is available at
y github.com/yizhuoliang/hiresperf

*Interrupt-free version will be released soon


http://github.com/yizhuoliang/hiresperf

