Understanding the limitations of pubsub systems

Atul Adya
atul.adya@databricks.com

Abstract

This paper argues that publish-subscribe (pubsub) systems bundle
both a messaging abstraction and a hard-state storage layer, and
that this hurts their robustness, performance, and correctness for
a variety of use cases. Pubsub fails to achieve its central goal of
decoupling publishers and subscribers, violates the end-to-end prin-
ciple, and exposes an ad hoc storage abstraction with a bespoke
API and limited power.

We explain how to correct these issues by unbundling pubsub
into: (1) a durable store, and (2) a watch system that notifies con-
sumers about changes to the store. This approach respects the
end-to-end argument by offering consumers guarantees relative to
the store rather than the pubsub system. We show how this model
addresses the challenges introduced by pubsub systems for various
use cases and opens up new areas of research.

ACM Reference Format:

Atul Adya, Phil Bogle, and Colin Meek. 2025. Understanding the limitations
of pubsub systems. In Workshop in Hot Topics in Operating Systems (HOTOS
25), May 14-16, 2025, Banff, AB, Canada. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3713082.3730397

1 Introduction

Pubsub systems [5, 12, 13, 24] have become increasingly popular in
datacenter environments in recent years [19, 20, 25, 32, 38]. They
are positioned as a solution to many fundamental problems in
distributed systems, including availability, consistency, decoupling
of microservices, and resilience.

Most systems attempt to guarantee delivery to consumers via a
bundled, durable message log. To prevent unbounded log growth,
they support garbage collection of old messages. This undermines
the goal of decoupling and correctness, because messages can be
lost without notifying the application or allowing it to recover.
(Some older non-persistent pubsub systems provide only best-effort
delivery [19]. The arguments in this paper apply even more strongly
in that case, because message loss is more frequent and just as
undetectable.)

This paper argues that pubsub systems violate the end-to-end
argument: their delivery and ordering contracts add complexity
and cost but do not provide end-to-end correctness with respect to
authoritative data sources. Furthermore, their lack of support for
dynamically sharded consumers limits application scalability.

We show how to resolve those issues by unbundling pubsub
into an explicit storage abstraction exposed to producers and con-
sumers (via a narrow, read-only view), and a notification abstraction,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

HOTOS 25, Banff, AB, Canada

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1475-7/25/05

https://doi.org/10.1145/3713082.3730397

Phil Bogle
phil.bogle@databricks.com

165

Colin Meek

colin.meek@databricks.com

[Consumer] [Consumer] [Consumer]

subscribe

publish

[Producer} [Producerj [Producer}

data data
source source

Figure 1: Pubsub model

watch, used by consumers to learn about changes to the store. The
watch abstraction [21] has been popularized by Kubernetes [17]
and Spanner [16]. It does not require additional hard state and can
be implemented as a layer on top of a traditional store. It includes
resync signals that enable lagging consumers to be notified and
automatically recover, and progress signals that allow subscribers
to expose snapshot consistent views of the source.

We show that the proposed model is general enough to handle all
pubsub use cases, often with improved efficiency and/or improved
end-to-end correctness properties. This is because the explicitly
exposed store is at least as powerful as the implicit message log
store in traditional pubsub systems, and the watch mechanism is
strictly more powerful than traditional subscribe mechanisms.

The organization of the remainder of this paper is as follows:
Section 2 discusses pubsub use cases. Section 3 enumerates limita-
tions of pubsub. Section 4 proposes our alternative abstraction and
watch API and explains its advantages. Finally, Section 5 presents
areas for future research.

2 Pubsub model and use cases

In the pubsub abstraction (Figure 1), producers publish messages
to topics, and consumers subscribe to topics of interest. The pub-
sub system is responsible for distributing published messages to
subscribed consumers without consumers needing to know about
the source of the messages. Datacenter pubsub systems are capable
of handling tens of thousands of producers and consumers, and
millions of messages per second per topic.

Pubsub systems support two consumer models. Consumer groups
distribute messages among members, ensuring that each message
is routed to and acknowledged by a consumer within the group.

https://doi.org/10.1145/3713082.3730397
https://doi.org/10.1145/3713082.3730397

HOTOS 25, May 14-16, 2025, Banff, AB, Canada

The system can select a consumer at random, based on the mes-
sage’s partition, or according to a key specified in the message. Free
consumers (to use terminology from [26]) handle all messages in
a topic or topic partition. Neither approach allows a dynamically
sharded consumer to subscribe to arbitrary subranges of the key
space.

Pubsub systems are used in industry for a wide variety of use
cases, surveyed in [33] and [34] and summarized below. (Marketers
have also invented many others terms for logically equivalent uses,
e.g. "enterprise event bus" and "IoT data streaming".)

Event ingestion and fanout: Pubsub systems can be used as an
intermediary that receives ingested events (e.g. logs, sensor data, or
website activity) and that fans events out to all interested systems
and devices. We refer to the storage for the events as ingestion
storage.

Replication across stores: Pubsub can be used to replicate data
from a source store to a target store. In this scenario, a change
data capture (CDC) system feeds change events from the source
to the pubsub system, which in turn delivers these events to the
target store. We refer to the source store for replication as producer
storage.

Cache invalidation/freshness: Pubsub systems are also used to
maintain the freshness of distributed caches. In this case, producer
storage publishes updates, such as object IDs or updated payloads,
to the pubsub system, which propagates these updates to distributed
cache nodes. This ensures that caches remain consistent and up-to-
date.

Work queueing and balancing: Pubsub can be used to queue
and balance messages representing tasks across workers. Tasks
are published as messages and processed and acknowledged by a
worker in a consumer group.

3 Limitations of pubsub systems

Decoupling producers and consumers seems like a sound strategy,
aligned with the principle of loose coupling. However, in practice,
pubsub systems succeed at this goal only most of the time, creating
emergencies/outages when they fail. Many practitioners view these
problems as rare and consider it acceptable to address them with
manual operational processes when they arise.

3.1 Failures of loose coupling

Pubsub’s first limitation is a Kafka-esque interpretation of "decou-
pling". Pubsub systems allow consumers to accumulate large back-
logs and may garbage-collect unprocessed messages if the backlog
lasts too long. However, they neither inform consumers that this is
happening, nor provide a mechanism for laggy consumers to "catch
up" or recover lost state from a source of truth. Systems deliver
messages approximately in publishing order, so excessive backlogs
are indistinguishable from silent outages.

Pubsub systems assume that consumers will not accumulate
excessive backlogs. In general, this is not true. For example, in a
cache invalidation use case, an actual consumer was unavailable
for multiple days because its data center was under maintenance.

166

Atul Adya, Phil Bogle, and Colin Meek

This resulted in a huge backlog even after adding emergency re-
sources. Cache invalidation took hours rather than seconds, making
it effectively useless for users.

Pubsub systems also assume that a retention period of (e.g.)
several days will be sufficient for even the slowest of consumers to
consume each message. However, systems will eventually garbage-
collect messages even if some consumers have not processed them.
This data loss sacrifices correctness for applications that depend
on reliable delivery.

Although some pubsub systems offer the option to retain mes-
sages indefinitely, this is undesirable because pubsub systems offer
a limited API that does not allow the relevant state to be efficiently
queried by the application. Instead, as we discuss in Section 4, it
is better to keep persistent state in a dedicated store. Some pub-
sub systems [24] support topic compaction, where each message
is associated with a key. Compaction allows applications to con-
figure a recent window for which every version is kept and before
which only the last version is maintained. Unfortunately, without
notification, subscribers do not discover that unseen events have
been compacted. Compaction defers but does not eliminate message
loss. Such intermittent data loss can affect the correctness of the
application.

In general, system operators rely on a variety of ad hoc, manual
procedures to recover when alerted about data loss or excessive
backlogs in pubsub. These include deleting backlogs, relying on less
effective fallback mechanisms such as TTLs for cache invalidation,
and restoring from backups for replication. These mechanisms not
only incur manual toil but also sacrifice correctness, availability,
and/or latency. Manual heroics are risky [29], and should not be
required in "loosely coupled” systems.

Decoupling also breaks down with respect to application scalabil-
ity. Practitioners recognize that affinitized consumers are important
for scale and efficiency - for example, to enable effective caching.
However, existing pubsub consumer affinity mechanisms based on
the message key or pubsub partition do not support independent,
dynamic sharding of loosely-coupled application consumers.

3.2 Violations of the end-to-end principle

Pubsub systems provide guarantees at their layer — ordering, at-
least-once delivery, transactions — that do not result in meaningful
end-to-end guarantees. We will illustrate these limitations by con-
sidering popular use cases.

3.2.1 Replication across storage systems

In pubsub-based replication, a change data capture (CDC) system
publishes change events from producer storage, and consumers
apply them to a target store. Ideally, the target store should achieve
point-in-time consistency; i.e. it only externalizes states that actu-
ally existed in the source.

The producer store is the authority on event ordering and transac-
tion boundaries. When the pubsub system establishes a competing
order of events or supports its own transactions, this adds complex-
ity and cost. But at scale these guarantees at the pubsub layer are
not useful, because they do not help provide a consistent view of
the source from the target store or cache.

By serially publishing and applying transactions via a pubsub sys-
tem that preserves ordering, an application could maintain snapshot

Understanding the limitations of pubsub systems

consistency in the target store. Unfortunately, the serial approach
is not scalable; to avoid a scale bottleneck we need to concurrently
publish and apply change events. But we can’t simply apply change
events in an arbitrary order. Reordering inserts, updates, and deletes
could overwrite with stale state or resurrect recently deleted rows,
violating eventual consistency with the producer store. By intro-
ducing version checks and tombstones, we can eliminate some
replication errors, but still risk snapshot consistency violations. For
example, suppose that in producer storage we remove a member
from a group and then give that group access to a document. If we
reverse the order of those operations on the target store, snapshot
consistency is violated, because the target store transiently records
a state where the member has access to the document, a state that
never existed in producer storage.

Another strategy is to partition the pubsub topic such that any
given row will be statically assigned to a single topic partition,
and ensure that each partition is processed serially. This approach
avoids version checks and tombstones but snapshot anomalies are
still possible because transactions affecting multiple partitions are
not atomically applied and the global transaction order of the source
may be violated.

In practice, the challenges are daunting enough that some prac-
titioners opt to give up on either scalability or consistency via the
replication protocol. Some systems serialize all operations. Other
systems periodically restore full snapshots of the source to the
target. This ensures that any replication errors are eventually ad-
dressed, but over a much longer time frame.

3.2.2 Cache invalidation

When the target of the change feed is a cache rather than another
storage system, the same concerns about out-of-order delivery re-
main, but there is an additional complication. There is no centralized
target store, so if the new owner caches a stale value but the invali-
dation for that value is acknowledged by an old owner, that stale
value can be cached in the new owner indefinitely. Modern caches
employ dynamic key range assignment [3] for robustness, offering
better availability/balancing than static approaches. However, pub-
sub consumer group limitations make missed invalidations possible
during these dynamic handoffs.

Figure 2 shows a race between the invalidation of object x and
the reassignment of x from pod p,;4 to pod pnew by an auto-sharder.
Pnew may learn about the reassignment before the pubsub system,
and fetch the current value of x. When the pubsub system is sub-
sequently informed of an update to x, the pubsub system causes
Dold rather than ppe to update its cache. Therefore ppes, never
receives the updated value.

Some of the cases where change events are missed can be mit-
igated by using a leasing mechanism to ensure that at most one
cache server at a time is allowed to acknowledge a change event
from pubsub. But leases introduce an availability tradeoff because
there will be times when there is no owner for a range of keys. As
with replication, practitioners have fallback strategies to paper over
inconsistencies permitted by pubsub. Using TTLs on cache entries
ensures that stale entries eventually age out. Or in some systems,
each cache server subscribes to the entire feed using free consumers
(using the terminology from [26]), an approach that does not scale
as update rates increase.

167

HOTOS 25, May 14-16, 2025, Banff, AB, Canada

@ Reassign @ Reassign
(x - puew) m)w)
Cache
servers |~ % @
® Invalidate x| |©® Ack fromp @ Fetch x

@ Inform
update x

Pubsub
system

Reassign
x—p,)

new

Figure 2: Invalidation eventual consistency failure in the
presence of auto-sharding

3.2.3 Event ingestion and fanout

In this use case (see Section 2), receivers are expected to get all
events from the publisher promptly to enable downstream analy-
sis, such as fraud detection or sensor-based alerting. However, as
discussed in Section 3.1, head-of-line blocking can occur and large
backlogs can develop. Additionally, data may be lost due to garbage
collection, resulting in a loss of semantic guarantees.

3.2.4 Work queueing and balancing

This scenario shares the same challenges as the ingestion case but
introduces an additional inefficiency: lack of support for affinitized
load balancing across dynamically sharded workers. Affinitization
is important for efficient work processing because it enables con-
sumers to cache state across for ranges of keys they are assigned.
Dynamic sharding is important for availability because it ensures
that workers are not overloaded and that affinitized work is reas-
signed when workers become unavailable. Additionally, the event-
based approach makes it is more difficult to achieve correctness
compared with the state-based approach using watch, as explained
in Section 4.3.

3.3 Adhoc storage APIs

As previously noted, pubsub systems include a storage layer, and
have gradually introduced features such as schemas, versions, and
transactions. Each pubsub system has organically developed its
own set of ad hoc APIs to support these features, along with spe-
cialized extensions—such as the “replay and snapshot” functionality
in GCP [15] and the “dead-letter queues” in Azure [6].

Rather than using pubsub as an ad hoc storage system, we be-
lieve applications should have the flexibility to use a traditional
or special purpose storage system. Full-fledged storage systems
provide various models that better suit applications’ needs, offer-
ing greater power and standard APIs. For example, time-series
databases or newer logging abstractions [7, 28] are ideal for log-
like storage. Likewise, for structured storage, NoSQL databases
like Bigtable [10] or SQL systems such as Spanner [11], Cock-
roachDB [31], and TiDB [22] offer features that facilitate robust data
access, e.g. reads, scans, writes, indices, and foreign key constraints.

HOTOS 25, May 14-16, 2025, Banff, AB, Canada

4 Our solution: Explicit storage with Watch

We propose an alternative model that resolves the issues of pubsub,
unbundling notification and storage, explicitly exposing the stor-
age abstraction, and defining a watch API that enables end-to-end
correctness without sacrificing scalability. In this model, produc-
ers write changes to a designated storage system and consumers
receive mutation events from a view of the store using a watch API.

4
External MySQL/TiDB with Storage with
watch Sna watch system
system e i
Built-in Spanner with Streaming/
watch change streams time-series databases

Producer
Storage

Ingestion
Storage

Figure 3: Separation of storage and notifications

Figure 3 illustrates design choices for unbundling storage and no-
tification. The storage system, represented on the X-axis, can either
be producer storage or ingestion storage (as defined in Section 2),
to address scenarios where the source is a persistent store and
where the source data are ephemeral respectively. The notification
mechanism, represented on the Y-axis, may either be implemented
directly by the storage system or provided as an external layer built
on top of it. Below are examples for some of these cases.

e Spanner can serve as producer storage and has a built-in watch
mechanism called Change Data Streams [16]. Other examples
include Kubernetes API server [17], which is backed by the watch-
able etcd store [18].

e MySQL and TiDB are also popular producer storage systems,
and we have implemented an external watch subsystem called
Snappy on top of them, treating them as key value stores. Snappy
is not yet published.

o Time-series databases [9, 23, 36], data stream management sys-
tems [1, 4, 8, 37] or other structured stores [10, 22, 31] can serve
as ingestion stores, and offer efficient access to time-series data.

A refined version of a pubsub system such as Kafka would fit
into the bottom right quadrant (ingestion storage with built-in
watch), with some changes to its API to make the implicit storage
layer more explicit. However, our model generalizes to other types
of ingestion storage in cases where those are better suited to the
application’s requirements.

Guarantees: In our proposed approach, consumers receive guaran-
tees with respect to the storage being watched whether permanent
or temporary, i.e., the producer or ingestion storage. For instance,
when watching a producer store in scenarios such as replication
and cache invalidation, target stores and caches provide end-to-
end guarantees relative to the producer store. This approach is
fundamentally different from traditional pubsub systems, which
interpose a problematic intermediate storage layer.

168

Atul Adya, Phil Bogle, and Colin Meek

4.1 Hiding producer store internals

Our approach might seem to expose the internal storage format
of producer storage. However, this is not the case. The producer
can present a filtered view that exposes a limited subset of derived
values to consumers. For example, consider a source managing
contact information. It can create a new table or view that contains
just those values and make that view accessible to consumers. This
mechanism is similar to the control found in pubsub-based architec-
tures. The only difference is where the consumed data are stored:
in the producer’s storage as opposed to the hidden storage of the
pubsub system.

4.2 Watch API

We now present a watch API that reliably notifies the consumer of
changes to the producer storage. The system supporting this API,
illustrated in Figure 4, distributes change events, organized by key
and by transaction version (e.g., "account A has balance $20 as of
version 40"). A simplifying assumption is that the source of truth
has monotonic transaction versions, e.g. TrueTime timestamps in
Spanner [11], TSO timestamps in TiDB [35], gtid in MySQL [30],
etc., that captures the agreed upon transaction order. See [37] for
more sophisticated schemes.

4.2.1 Consumer API

The consumer, which we refer to as a watcher, requests state for a
range of keys starting from a particular transaction version via a
watch call:

class Watchable {
Cancellable watch(
Key low, Key high, Version version,
WatchCallback callback);
3
class WatchCallback {
void onEvent(ChangeEvent event);
void onProgress(ProgressEvent event);
void onResync();
3
struct ChangeEvent {

Key key; Mutation mutation; Version version;
}
struct ProgressEvent {

Key low; Key high; Version version;
}

watch ()

onEvent ()
onProgress ()
onResync ()

Figure 4: Unbundled architecture: Storage with watch

Understanding the limitations of pubsub systems

Progress threshold
vi0T —
o asase
s Complete snapshot
o VST
§ N
> -
Compaction threshold

vO
Keys

Figure 5: Knowledge by key and version for a watcher

In addition to events capturing what has changed in the store
subsequent to the requested version (onEvent), the watch stream
includes:

e Progress events (onProgress), indicating that all change events
affecting some or all of the keys being watched have been sup-
plied up to some version.

e Resync events (onResync), indicating that the version known
to the watcher is no longer retained. This event prompts the
watcher to read a recent snapshot of the state from the store
then catch up by issuing a watch request starting at the snapshot
version. Note that it is acceptable to read a stale snapshot, so we
can optionally reduce load on the underlying storage by reading
from a replica instead.

Applications may directly implement the watch callback inter-
face, or may leverage linked caches similar to [2] that speak that
protocol.

4.2.2 Ingester API

The store may directly implement the watch contract, but range-
scoped progress events also allow the store to convey progress in a
partitioned log to a separate watch system via an Ingester interface.
Note that the watch system may use a storage system to maintain
larger than memory data structures, but unlike in a pubsub system,
we are not introducing any intermediate hard state. This is soft state
that can be recovered if deleted (at the expense of some increased
latency or staleness, but there is no data or consistency loss).
class Ingester {
void append(ChangeEvent event);

void progress(ProgressEvent event);

}

Once the store confirms that all updates below a specific version
have been applied to a key range, it sends a progress event to
the watch system. Progress events are scoped to key ranges rather
than being global or tied to static partitions. This design enables
scalability by allowing each system layer to define its own parti-
tion boundaries which can evolve independently, supporting loose
coupling between layers.

4.3 Applying watch to pubsub use cases

In this section, we describe how to apply this model to the ma-
jor pubsub use cases, and in the next section we detail why this
approach is superior.

169

HOTOS 25, May 14-16, 2025, Banff, AB, Canada

Caching and replication: Improving on the pubsub model, the
watch model allows caches or storage replicas with modest capabil-
ities to serve snapshot-consistent queries, even when dynamically
sharded. They can use progress events to track key ranges and
version windows for which they have complete knowledge and can
serve consistent snapshot results. In a distributed cache or store,
multiple affinitized servers may have overlapping and redundant
knowledge regions for improved availability and performance.
Figure 5 illustrates the knowledge regions maintained by a watcher.

Each blue rectangle represents a knowledge region — a key range
and version window that define the versioned state the watcher
knows for that range. This allows the watcher to serve snapshot-
consistent queries within a single range, or stitch together a consis-
tent snapshot across multiple ranges, as long as appropriate versions
exist in each range (e.g., the green box in the figure). Although the
figure depicts a single watcher, one can imagine combining knowl-
edge regions across multiple watchers to serve snapshot-consistent
queries at a broader scale. Each knowledge region is immutable:
once a value is written at a given version, it does not change. This
immutability enables dynamic replication and repartitioning of data
without compromising consistency.

Event ingestion and fanout: To support ingestion in our model,
the publisher exposes an ingestion store, e.g. a time-series database
optimized for ingestion of events. As with a pubsub topic, the
ingestion store isolates the main application database from load
and security risks. Producers insert events into the ingestion store.
Consumers watch all or a portion of the key range of the database
to learn about new events. They may also query the ingestion store
to obtain state if needed. As we will discuss in Section 4.4, this
approach addresses the backlog and efficiency issues caused by the
pubsub model.

Work queueing and balancing: Our approach enables affinitized,
dynamically sharded workers, and reframes the problem as one of
advancing entities to some desired state. Applications use an auto-
sharding system [3, 27] to dynamically assign and replicate ranges
of keys to workers based on load and health. Each worker initially
queries the database for assigned entities requiring attention, and
then uses watch to identify other such entities. The application can
then prioritize entities, fully mitigating head-of-line blocking prob-
lems. By observing the current state rather than tracking a sequence
of potentially unreliable, disordered events, applications become
significantly more robust in distributed environments, especially
for complex workflows.

Consider for example the problem of provisioning virtual ma-
chines for online data processing workloads in a cloud environment.
This coordinator service’s goal is to ensure that every workload
is running on some set of virtual machines. The pubsub model
encourages applications to enqueue tasks corresponding to each
step of the workflow when a workload is added, e.g. to acquire VMs,
bootstrap images, configure networks, start processing. However, in
practice, the coordinator must constantly reconcile the current set
of configured workloads with the set of available compute resources.
The event-based approach introduces complexity because the state
of the world (including available compute resources) changes con-
stantly and in general does not match the state when the work event
was enqueued. By watching both the desired configuration (which

HOTOS 25, May 14-16, 2025, Banff, AB, Canada

workloads should be running) and the actual configuration (the
states of the available VMs and allocations of work), the coordinator
can correctly advance the actual state to the desired configuration.

4.4 Advantages over standard pubsub
We now recap the advantages of this unbundled architecture.

Better treatment of backlogs: Unlike pubsub, watch does not
require unbounded backlogs for correctness. The watch system
can send a resync signal to a consumer whenever its backlog is
excessive. A lagging consumer can use the exposed store view to
efficiently fetch a snapshot of state from the source database and
resume watching from that later version.

Unbundling of storage and watch: Applications use whichever
store offers the best combination of guarantees, features, and per-
formance for their use case, rather than being locked into particular
features of the storage system bundled into the pubsub systems. An
external watch system can provide watch on top of any store that
supports the ingestion interface. Applications can choose between
different watch systems optimized for different scale points, e.g.
degree of fan out.

End-to-end correctness: Key-range watches allow partitioned
consumers to receive only the events they need. Key-range progress
events allow all layers to serve consistent snapshots even in the
presence of dynamic sharding.

Efficiency: The watch design avoids the need for an additional
hard state message log and relies instead on the existing hard state
provider store or an ingestion store. Unlike consumer groups, range-
based watches allow related work to be affinitized to dynamically
sharded servers. Affinitization enables efficient work on the same
or nearby keys, e.g., for caching or when updates have to be applied
to a replicated store.

Standard, powerful storage and notification APIs: In our
model, applications benefit from the standard watch API andfull-
featured storage APIs rather than relying on ad hoc pubsub APIs
designed to partially compensate for the inherent shortcomings of
the pubsub model.

5 Areas of future research

The storage-plus-watch model opens up several research opportu-
nities to build scalable components and end-to-end correct applica-
tions:

Standalone watch system: A scalable, standalone watch system
that implements the Ingester and Watchable contracts enables us
to add watch capabilities to storage systems that lack native support.
We are building a system called Snappy for a specific distributed
storage system. However, we believe further research is needed
to generalize this design to a wide variety of storage systems and
scale requirements.

Auto-sharded caches supporting snapshot consistency: Snap-
shot consistent caches provide good semantics while lowering la-
tency and improving scalability. The watch contract permits caches
to expose snapshot consistent views, even in the face of dynamic
repartitioning driven by an auto-sharder[3, 27]. Efficiently stitching
together consistent views of source data from knowledge regions,

170

Atul Adya, Phil Bogle, and Colin Meek

potentially spread across multiple cache servers, will require careful
protocol and data structure design.

Replication across different stores: While pubsub is commonly
used to replicate state between heterogeneous stores, it often suffers
from poor scalability, weak semantics, or both. Snapshot seman-
tics have been achieved for replication in homogeneous database
deployments for read-only replicas using internal protocols, as in
Spanner [14]. The watch-based approach described in Section 4.3 of-
fers a promising direction for replicating across diverse, real-world
storage systems while continuing to provide strong semantics and
low latency at scale. However, much work remains to achieve this
in practice.

6 Summary

We have demonstrated that pubsub suffers from many issues be-
cause of its hidden storage layer, and that it is possible to cleanly
extract and separate that layer using a watch abstraction. Unlike
pubsub, explicit storage plus watch allows consumers to program-
matically recover from excessive backlogs. It achieves better per-
formance and correctness by respecting the end-to-end argument.
Finally, it uses standard rather than ad hoc storage APIs. Realiz-
ing the full potential of the model for pubsub use cases opens up
exciting new research directions.

References

[1] D. Abadi, D. Carney, U. Cetintemel, M. Cherniack, C. Convey, C. Erwin, E. Galvez,
M. Hatoun, A. Maskey, A. Rasin, A. Singer, M. Stonebraker, N. Tatbul, Y. Xing,
R. Yan, and S. Zdonik. 2003. Aurora: a data stream management system. In
Proceedings of the 2003 ACM SIGMOD International Conference on Management of
Data (San Diego, California) (SIGMOD °03). Association for Computing Machinery,
New York, NY, USA, 666. doi:10.1145/872757.872855

Atul Adya, Robert Grandl, Daniel Myers, and Henry Qin. 2019. Fast key-value
stores: An idea whose time has come and gone. In Proceedings of the Workshop
on Hot Topics in Operating Systems. 113-119.

Atul Adya, Daniel Myers, Jon Howell, Jeremy Elson, Colin Meek, Vishesh Khe-
mani, Stefan Fulger, Pan Gu, Lakshminath Bhuvanagiri, Jason Hunter, Roberto
Peon, Larry Kai, Alexander Shraer, Arif Merchant, and Kfir Lev-Ari. 2016. Slicer:
Auto-Sharding for Datacenter Applications. In 12th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI 16). USENIX Association, Sa-
vannah, GA, 739-753. https://www.usenix.org/conference/osdil6/technical-
sessions/presentation/adya

Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava Chernyak, Rafael J.
Fernandez-Moctezuma, Reuven Lax, Sam McVeety, Daniel Mills, Frances Perry,
Eric Schmidt, and Sam Whittle. 2015. The Dataflow Model: A Practical Approach
to Balancing Correctness, Latency, and Cost in Massive-Scale, Unbounded, Out-of-
Order Data Processing. Proceedings of the VLDB Endowment 8 (2015), 1792-1803.
Apache Software Foundation. 2023. Apache Pulsar. https://pulsar.apache.org/.
Accessed: 2025-01-14.

Microsoft Azure. 2025. Overview of Service Bus dead-letter queues.
https://learn.microsoft.com/en-us/azure/service-bus-messaging/service-
bus-dead-letter-queues. Accessed 2025-01-15.

Mabhesh Balakrishnan, Jason Flinn, Chen Shen, Mihir Dharamshi, Ahmed Jafri,
Xiao Shi, Santosh Ghosh, Hazem Hassan, Aaryaman Sagar, Rhed Shi, Jingming
Liu, Filip Gruszczynski, Xianan Zhang, Huy Hoang, Ahmed Yossef, Francois
Richard, and Yee Jiun Song. 2020. Virtual consensus in delos. In Proceedings of
the 14th USENIX Conference on Operating Systems Design and Implementation
(OSDI’20). USENIX Association, USA, Article 35, 16 pages.

Badrish Chandramouli, Jonathan Goldstein, Mike Barnett, Robert DeLine, Danyel
Fisher, John C. Platt, James F. Terwilliger, and John Wernsing. 2014. Trill: a
high-performance incremental query processor for diverse analytics. Proc. VLDB
Endow. 8, 4 (Dec. 2014), 401-412. doi:10.14778/2735496.2735503

Tarak Chandrasekaran, Neeraj Kumar, and Sujay Sanghi. 2011. OpenTSDB: A
Distributed, Scalable Time Series Database. In Proceedings of the 8th International
Workshop on Distributed Data Management. ACM, 83-90. doi:10.1145/2093334.
2093338

Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C Hsieh, Deborah A Wal-
lach, Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E Gruber. 2006.
Bigtable: A distributed storage system for structured data. In Proceedings of the

—_
&,

—_
A

=

o

—_
&

3

—
)

https://doi.org/10.1145/872757.872855
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/adya
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/adya
https://pulsar.apache.org/
https://learn.microsoft.com/en-us/azure/service-bus-messaging/service-bus-dead-letter-queues
https://learn.microsoft.com/en-us/azure/service-bus-messaging/service-bus-dead-letter-queues
https://doi.org/10.14778/2735496.2735503
https://doi.org/10.1145/2093334.2093338
https://doi.org/10.1145/2093334.2093338

Understanding the limitations of pubsub systems

[11]

[12]

[13

[14]

(15

[16

(17

[18]
[19

[20]

[21

[22]

[23

[24]
[25

[26]

[27

[28

[29]

[30

[31]

[32

[33]

[34

[35]

[36

7th USENIX Symposium on Operating Systems Design and Implementation (OSDI).
USENIX Association, 205-218.

James C Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost,
Jeffrey John Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser,
Peter Hochschild, et al. 2013. Spanner: Google’s globally distributed database.
ACM Transactions on Computer Systems (TOCS) 31, 3 (2013), 1-22.

Azure Documentation. 2025. Service Bus Messaging. https://learn.microsoft.
com/en-us/azure/service-bus-messaging/. Accessed: 2025-01-15.

Google Cloud Documentation. 2025. Pub/Sub documentation. https://cloud.
google.com/pubsub/docs. Accessed: 2025-01-15.

Google Cloud Documentation. 2025. Rapidly expand the reach of
Spanner databases with read-only replicas and zero-downtime moves.
https://cloud.google.com/blog/products/databases/introducing-spanner-
configurable-read-only-replicas. Accessed: 2025-01-15.

Google Cloud Documentation. 2025. Replay a message in Pub/Sub by seeking to
a snapshot or timestamp. https://cloud.google.com/pubsub/docs/replay-message.
Accessed: 2025-01-15.

Google Cloud Documentation. 2025. Spanner: Change streams overview. https:
//cloud.google.com/spanner/docs/change-streams Accessed: 2025-01-15.
Kubernetes Documentation. 2025. kube-apiserver. https://kubernetes.io/docs/
reference/command-line-tools-reference/kube-apiserver/ Accessed: 2025-01-15.
eted. 2025. eted.io. https://eted.io/. Accessed: 2025-01-14.

Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-Marie Ker-
marrec. 2003. The Many Faces of Publish/Subscribe. ACM Computing Surveys
(CSUR) 35, 2 (2003), 114-131. doi:10.1145/857076.857078

Gauri M Gaikwad, Amit Sahai, and Shikha K Sinha. 2016. A Survey of Publish/-
Subscribe Systems and Their Key Challenges. IEEE Communications Surveys &
Tutorials 18, 1 (2016), 55-75. doi:10.1109/COMST.2015.2494095

Google APIs. 2024. Google Watch APL https://github.com/googleapis/googleapis/
blob/master/google/watcher/v1/watch.proto. Accessed: 2025-01-14.

Dongxu Huang, Qi Liu, Qiu Cui, Zhuhe Fang, Xiaoyu Ma, Fei Xu, Li Shen, Liu
Tang, Yuxing Zhou, Menglong Huang, et al. 2020. TiDB: a Raft-based HTAP
database. Proceedings of the VLDB Endowment 13, 12 (2020), 3072-3084.
InfluxData. 2023. InfluxDB: An Open-Source Time Series Database. https://www.
influxdata.com/products/influxdb/. Accessed: 2025-01-14.

Kafka. 2025. https://kafka.apache.org/documentation/.

Martin Kleppmann. 2017. Designing Data-Intensive Applications: The
Big Ideas Behind Reliable, Scalable, and Maintainable Systems. O’Reilly
Media. https://www.oreilly.com/library/view/designing-data-intensive-
applications/9781491903063/

E. Koutanov. 2020. Effective Kafka: A Hands-on Guide to Building Robust and
Scalable Event-driven Applications with Code Examples in Java. Emil Koutanov.
https://books.google.com/books?id=Rv3i0AEACAA]J

Sangmin Lee, Zhenhua Guo, Omer Sunercan, Jun Ying, Thawan Kooburat,
Suryadeep Biswal, Jun Chen, Kun Huang, Yatpang Cheung, Yiding Zhou, et al.
2021. Shard manager: A generic shard management framework for geo-
distributed applications. In Proceedings of the ACM SIGOPS 28th Symposium
on Operating Systems Principles. 553-569.

Xuhao Luo, Shreesha G. Bhat, Jiyu Hu, Ramnatthan Alagappan, and Aishwarya
Ganesan. 2024. LazyLog: A New Shared Log Abstraction for Low-Latency Appli-
cations. In Proceedings of the ACM SIGOPS 30th Symposium on Operating Systems
Principles (Austin, TX, USA) (SOSP °24). Association for Computing Machinery,
New York, NY, USA, 296-312. doi:10.1145/3694715.3695983

Alexander Malmberg. 2025. https://sre.google/resources/practices-and-
processes/no-heroes/. Accessed: 2025-01-15.

MySQL Reference Manual. 2025. Replication with Global Transaction Identifiers.
https://dev.mysql.com/doc/refman/8.4/en/replication-gtids.html Accessed: 2025-
01-15.

Rebecca Taft, Irfan Sharif, Andrei Matei, Nathan VanBenschoten, Jordan Lewis,
Tobias Grieger, Kai Niemi, Andy Woods, Anne Birzin, Raphael Poss, Paul Bardea,
Amruta Ranade, Ben Darnell, Bram Gruneir, Justin Jaffray, Lucy Zhang, and Peter
Mattis. 2020. CockroachDB: The Resilient Geo-Distributed SQL Database. In
Proceedings of the 2020 ACM SIGMOD International Conference on Management of
Data (Portland, OR, USA) (SIGMOD °20). Association for Computing Machinery,
New York, NY, USA, 1493-1509. doi:10.1145/3318464.3386134

Andrew S. Tanenbaum and Maarten van Steen. 2007. Distributed Systems:
Principles and Paradigms. Prentice Hall. https://www.pearson.com/us/higher-
education/program/Tanenbaum-Distributed-Systems-Principles-and-
Paradigms/PGM332264.html

Amazon Team. 2025. What is Pub/Sub Messaging? https://aws.amazon.com/what-
is/pub-sub-messaging/. [Accessed 04-14-2025].

Google Team. 2025. What is Pub/Sub? https://cloud.google.com/pubsub/docs/
overview. [Accessed 04-14-2025].

TiDB Team. 2025. Time Synchronization in Distributed Systems: TiDB’s Times-
tamp Oracle. https://www.pingcap.com/blog/how-an-open-source-distributed-
newsql-database-delivers-time-services/ Accessed: 2025-01-14.

Timescale. 2023. TimescaleDB: An Open-Source Time-Series Database. https:
/[www.timescale.com/. Accessed: 2025-01-14.

171

HOTOS 25, May 14-16, 2025, Banff, AB, Canada

[37] P.A.Tucker, D. Maier, T. Sheard, and L. Fegaras. 2003. Exploiting punctuation
semantics in continuous data streams. IEEE Transactions on Knowledge and Data
Engineering 15, 3 (2003), 555-568. d0i:10.1109/TKDE.2003.1198390

[38] Antonio Varzi. 2006. Messaging Systems: An Overview. Comput. Surveys 38, 4
(2006), 1-25. doi:10.1145/1180404.1180405

https://learn.microsoft.com/en-us/azure/service-bus-messaging/
https://learn.microsoft.com/en-us/azure/service-bus-messaging/
https://cloud.google.com/pubsub/docs
https://cloud.google.com/pubsub/docs
https://cloud.google.com/blog/products/databases/introducing-spanner-configurable-read-only-replicas
https://cloud.google.com/blog/products/databases/introducing-spanner-configurable-read-only-replicas
https://cloud.google.com/pubsub/docs/replay-message
https://cloud.google.com/spanner/docs/change-streams
https://cloud.google.com/spanner/docs/change-streams
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-apiserver/
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-apiserver/
https://etcd.io/
https://doi.org/10.1145/857076.857078
https://doi.org/10.1109/COMST.2015.2494095
https://github.com/googleapis/googleapis/blob/master/google/watcher/v1/watch.proto
https://github.com/googleapis/googleapis/blob/master/google/watcher/v1/watch.proto
https://www.influxdata.com/products/influxdb/
https://www.influxdata.com/products/influxdb/
https://kafka.apache.org/documentation/
https://www.oreilly.com/library/view/designing-data-intensive-applications/9781491903063/
https://www.oreilly.com/library/view/designing-data-intensive-applications/9781491903063/
https://books.google.com/books?id=Rv3i0AEACAAJ
https://doi.org/10.1145/3694715.3695983
https://sre.google/resources/practices-and-processes/no-heroes/
https://sre.google/resources/practices-and-processes/no-heroes/
https://dev.mysql.com/doc/refman/8.4/en/replication-gtids.html
https://doi.org/10.1145/3318464.3386134
https://www.pearson.com/us/higher-education/program/Tanenbaum-Distributed-Systems-Principles-and-Paradigms/PGM332264.html
https://www.pearson.com/us/higher-education/program/Tanenbaum-Distributed-Systems-Principles-and-Paradigms/PGM332264.html
https://www.pearson.com/us/higher-education/program/Tanenbaum-Distributed-Systems-Principles-and-Paradigms/PGM332264.html
https://aws.amazon.com/what-is/pub-sub-messaging/
https://aws.amazon.com/what-is/pub-sub-messaging/
https://cloud.google.com/pubsub/docs/overview
https://cloud.google.com/pubsub/docs/overview
https://www.pingcap.com/blog/how-an-open-source-distributed-newsql-database-delivers-time-services/
https://www.pingcap.com/blog/how-an-open-source-distributed-newsql-database-delivers-time-services/
https://www.timescale.com/
https://www.timescale.com/
https://doi.org/10.1109/TKDE.2003.1198390
https://doi.org/10.1145/1180404.1180405

	Abstract
	1 Introduction
	2 Pubsub model and use cases
	3 Limitations of pubsub systems
	3.1 Failures of loose coupling
	3.2 Violations of the end-to-end principle
	3.3 Ad hoc storage APIs

	4 Our solution: Explicit storage with Watch
	4.1 Hiding producer store internals
	4.2 Watch API
	4.3 Applying watch to pubsub use cases
	4.4 Advantages over standard pubsub

	5 Areas of future research
	6 Summary
	References

