
Understanding the limitations of pubsub systems

Atul Adya
atul.adya@databricks.com

Phil Bogle
phil.bogle@databricks.com

Colin Meek
colin.meek@databricks.com

Abstract

This paper argues that publish-subscribe (pubsub) systems bundle

both a messaging abstraction and a hard-state storage layer, and

that this hurts their robustness, performance, and correctness for

a variety of use cases. Pubsub fails to achieve its central goal of

decoupling publishers and subscribers, violates the end-to-end prin-

ciple, and exposes an ad hoc storage abstraction with a bespoke

API and limited power.

We explain how to correct these issues by unbundling pubsub

into: (1) a durable store, and (2) a watch system that noti�es con-

sumers about changes to the store. This approach respects the

end-to-end argument by o�ering consumers guarantees relative to

the store rather than the pubsub system. We show how this model

addresses the challenges introduced by pubsub systems for various

use cases and opens up new areas of research.

ACM Reference Format:

Atul Adya, Phil Bogle, and Colin Meek. 2025. Understanding the limitations

of pubsub systems. In Workshop in Hot Topics in Operating Systems (HOTOS

25), May 14–16, 2025, Ban�, AB, Canada. ACM, New York, NY, USA, 7 pages.

https://doi.org/10.1145/3713082.3730397

1 Introduction

Pubsub systems [5, 12, 13, 24] have become increasingly popular in

datacenter environments in recent years [19, 20, 25, 32, 38]. They

are positioned as a solution to many fundamental problems in

distributed systems, including availability, consistency, decoupling

of microservices, and resilience.

Most systems attempt to guarantee delivery to consumers via a

bundled, durable message log. To prevent unbounded log growth,

they support garbage collection of old messages. This undermines

the goal of decoupling and correctness, because messages can be

lost without notifying the application or allowing it to recover.

(Some older non-persistent pubsub systems provide only best-e�ort

delivery [19]. The arguments in this paper apply evenmore strongly

in that case, because message loss is more frequent and just as

undetectable.)

This paper argues that pubsub systems violate the end-to-end

argument: their delivery and ordering contracts add complexity

and cost but do not provide end-to-end correctness with respect to

authoritative data sources. Furthermore, their lack of support for

dynamically sharded consumers limits application scalability.

We show how to resolve those issues by unbundling pubsub

into an explicit storage abstraction exposed to producers and con-

sumers (via a narrow, read-only view), and a noti�cation abstraction,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

HOTOS 25, Ban�, AB, Canada

© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1475-7/25/05
https://doi.org/10.1145/3713082.3730397

Figure 1: Pubsub model

watch, used by consumers to learn about changes to the store. The

watch abstraction [21] has been popularized by Kubernetes [17]

and Spanner [16]. It does not require additional hard state and can

be implemented as a layer on top of a traditional store. It includes

resync signals that enable lagging consumers to be noti�ed and

automatically recover, and progress signals that allow subscribers

to expose snapshot consistent views of the source.

We show that the proposed model is general enough to handle all

pubsub use cases, often with improved e�ciency and/or improved

end-to-end correctness properties. This is because the explicitly

exposed store is at least as powerful as the implicit message log

store in traditional pubsub systems, and the watch mechanism is

strictly more powerful than traditional subscribe mechanisms.

The organization of the remainder of this paper is as follows:

Section 2 discusses pubsub use cases. Section 3 enumerates limita-

tions of pubsub. Section 4 proposes our alternative abstraction and

watch API and explains its advantages. Finally, Section 5 presents

areas for future research.

2 Pubsub model and use cases

In the pubsub abstraction (Figure 1), producers publish messages

to topics, and consumers subscribe to topics of interest. The pub-

sub system is responsible for distributing published messages to

subscribed consumers without consumers needing to know about

the source of the messages. Datacenter pubsub systems are capable

of handling tens of thousands of producers and consumers, and

millions of messages per second per topic.

Pubsub systems support two consumer models. Consumer groups

distribute messages among members, ensuring that each message

is routed to and acknowledged by a consumer within the group.

165

https://doi.org/10.1145/3713082.3730397
https://doi.org/10.1145/3713082.3730397

HOTOS 25, May 14–16, 2025, Ban�, AB, Canada Atul Adya, Phil Bogle, and Colin Meek

The system can select a consumer at random, based on the mes-

sage’s partition, or according to a key speci�ed in the message. Free

consumers (to use terminology from [26]) handle all messages in

a topic or topic partition. Neither approach allows a dynamically

sharded consumer to subscribe to arbitrary subranges of the key

space.

Pubsub systems are used in industry for a wide variety of use

cases, surveyed in [33] and [34] and summarized below. (Marketers

have also invented many others terms for logically equivalent uses,

e.g. "enterprise event bus" and "IoT data streaming".)

Event ingestion and fanout: Pubsub systems can be used as an

intermediary that receives ingested events (e.g. logs, sensor data, or

website activity) and that fans events out to all interested systems

and devices. We refer to the storage for the events as ingestion

storage.

Replication across stores: Pubsub can be used to replicate data

from a source store to a target store. In this scenario, a change

data capture (CDC) system feeds change events from the source

to the pubsub system, which in turn delivers these events to the

target store. We refer to the source store for replication as producer

storage.

Cache invalidation/freshness: Pubsub systems are also used to

maintain the freshness of distributed caches. In this case, producer

storage publishes updates, such as object IDs or updated payloads,

to the pubsub system, which propagates these updates to distributed

cache nodes. This ensures that caches remain consistent and up-to-

date.

Work queueing and balancing: Pubsub can be used to queue

and balance messages representing tasks across workers. Tasks

are published as messages and processed and acknowledged by a

worker in a consumer group.

3 Limitations of pubsub systems

Decoupling producers and consumers seems like a sound strategy,

aligned with the principle of loose coupling. However, in practice,

pubsub systems succeed at this goal only most of the time, creating

emergencies/outages when they fail. Many practitioners view these

problems as rare and consider it acceptable to address them with

manual operational processes when they arise.

3.1 Failures of loose coupling

Pubsub’s �rst limitation is a Kafka-esque interpretation of "decou-

pling". Pubsub systems allow consumers to accumulate large back-

logs and may garbage-collect unprocessed messages if the backlog

lasts too long. However, they neither inform consumers that this is

happening, nor provide a mechanism for laggy consumers to "catch

up" or recover lost state from a source of truth. Systems deliver

messages approximately in publishing order, so excessive backlogs

are indistinguishable from silent outages.

Pubsub systems assume that consumers will not accumulate

excessive backlogs. In general, this is not true. For example, in a

cache invalidation use case, an actual consumer was unavailable

for multiple days because its data center was under maintenance.

This resulted in a huge backlog even after adding emergency re-

sources. Cache invalidation took hours rather than seconds, making

it e�ectively useless for users.

Pubsub systems also assume that a retention period of (e.g.)

several days will be su�cient for even the slowest of consumers to

consume each message. However, systems will eventually garbage-

collect messages even if some consumers have not processed them.

This data loss sacri�ces correctness for applications that depend

on reliable delivery.

Although some pubsub systems o�er the option to retain mes-

sages inde�nitely, this is undesirable because pubsub systems o�er

a limited API that does not allow the relevant state to be e�ciently

queried by the application. Instead, as we discuss in Section 4, it

is better to keep persistent state in a dedicated store. Some pub-

sub systems [24] support topic compaction, where each message

is associated with a key. Compaction allows applications to con-

�gure a recent window for which every version is kept and before

which only the last version is maintained. Unfortunately, without

noti�cation, subscribers do not discover that unseen events have

been compacted. Compaction defers but does not eliminate message

loss. Such intermittent data loss can a�ect the correctness of the

application.

In general, system operators rely on a variety of ad hoc, manual

procedures to recover when alerted about data loss or excessive

backlogs in pubsub. These include deleting backlogs, relying on less

e�ective fallback mechanisms such as TTLs for cache invalidation,

and restoring from backups for replication. These mechanisms not

only incur manual toil but also sacri�ce correctness, availability,

and/or latency. Manual heroics are risky [29], and should not be

required in "loosely coupled" systems.

Decoupling also breaks downwith respect to application scalabil-

ity. Practitioners recognize that a�nitized consumers are important

for scale and e�ciency – for example, to enable e�ective caching.

However, existing pubsub consumer a�nity mechanisms based on

the message key or pubsub partition do not support independent,

dynamic sharding of loosely-coupled application consumers.

3.2 Violations of the end-to-end principle

Pubsub systems provide guarantees at their layer – ordering, at-

least-once delivery, transactions – that do not result in meaningful

end-to-end guarantees. We will illustrate these limitations by con-

sidering popular use cases.

3.2.1 Replication across storage systems

In pubsub-based replication, a change data capture (CDC) system

publishes change events from producer storage, and consumers

apply them to a target store. Ideally, the target store should achieve

point-in-time consistency; i.e. it only externalizes states that actu-

ally existed in the source.

The producer store is the authority on event ordering and transac-

tion boundaries. When the pubsub system establishes a competing

order of events or supports its own transactions, this adds complex-

ity and cost. But at scale these guarantees at the pubsub layer are

not useful, because they do not help provide a consistent view of

the source from the target store or cache.

By serially publishing and applying transactions via a pubsub sys-

tem that preserves ordering, an application couldmaintain snapshot

166

Understanding the limitations of pubsub systems HOTOS 25, May 14–16, 2025, Ban�, AB, Canada

consistency in the target store. Unfortunately, the serial approach

is not scalable; to avoid a scale bottleneck we need to concurrently

publish and apply change events. But we can’t simply apply change

events in an arbitrary order. Reordering inserts, updates, and deletes

could overwrite with stale state or resurrect recently deleted rows,

violating eventual consistency with the producer store. By intro-

ducing version checks and tombstones, we can eliminate some

replication errors, but still risk snapshot consistency violations. For

example, suppose that in producer storage we remove a member

from a group and then give that group access to a document. If we

reverse the order of those operations on the target store, snapshot

consistency is violated, because the target store transiently records

a state where the member has access to the document, a state that

never existed in producer storage.

Another strategy is to partition the pubsub topic such that any

given row will be statically assigned to a single topic partition,

and ensure that each partition is processed serially. This approach

avoids version checks and tombstones but snapshot anomalies are

still possible because transactions a�ecting multiple partitions are

not atomically applied and the global transaction order of the source

may be violated.

In practice, the challenges are daunting enough that some prac-

titioners opt to give up on either scalability or consistency via the

replication protocol. Some systems serialize all operations. Other

systems periodically restore full snapshots of the source to the

target. This ensures that any replication errors are eventually ad-

dressed, but over a much longer time frame.

3.2.2 Cache invalidation

When the target of the change feed is a cache rather than another

storage system, the same concerns about out-of-order delivery re-

main, but there is an additional complication. There is no centralized

target store, so if the new owner caches a stale value but the invali-

dation for that value is acknowledged by an old owner, that stale

value can be cached in the new owner inde�nitely. Modern caches

employ dynamic key range assignment [3] for robustness, o�ering

better availability/balancing than static approaches. However, pub-

sub consumer group limitations make missed invalidations possible

during these dynamic hando�s.

Figure 2 shows a race between the invalidation of object G and

the reassignment of G from pod ?>;3 to pod ?=4F by an auto-sharder.

?=4F may learn about the reassignment before the pubsub system,

and fetch the current value of G . When the pubsub system is sub-

sequently informed of an update to G , the pubsub system causes

?>;3 rather than ?=4F to update its cache. Therefore ?=4F never

receives the updated value.

Some of the cases where change events are missed can be mit-

igated by using a leasing mechanism to ensure that at most one

cache server at a time is allowed to acknowledge a change event

from pubsub. But leases introduce an availability tradeo� because

there will be times when there is no owner for a range of keys. As

with replication, practitioners have fallback strategies to paper over

inconsistencies permitted by pubsub. Using TTLs on cache entries

ensures that stale entries eventually age out. Or in some systems,

each cache server subscribes to the entire feed using free consumers

(using the terminology from [26]), an approach that does not scale

as update rates increase.

Figure 2: Invalidation eventual consistency failure in the

presence of auto-sharding

3.2.3 Event ingestion and fanout

In this use case (see Section 2), receivers are expected to get all

events from the publisher promptly to enable downstream analy-

sis, such as fraud detection or sensor-based alerting. However, as

discussed in Section 3.1, head-of-line blocking can occur and large

backlogs can develop. Additionally, data may be lost due to garbage

collection, resulting in a loss of semantic guarantees.

3.2.4 Work queueing and balancing

This scenario shares the same challenges as the ingestion case but

introduces an additional ine�ciency: lack of support for a�nitized

load balancing across dynamically sharded workers. A�nitization

is important for e�cient work processing because it enables con-

sumers to cache state across for ranges of keys they are assigned.

Dynamic sharding is important for availability because it ensures

that workers are not overloaded and that a�nitized work is reas-

signed when workers become unavailable. Additionally, the event-

based approach makes it is more di�cult to achieve correctness

compared with the state-based approach using watch, as explained

in Section 4.3.

3.3 Ad hoc storage APIs

As previously noted, pubsub systems include a storage layer, and

have gradually introduced features such as schemas, versions, and

transactions. Each pubsub system has organically developed its

own set of ad hoc APIs to support these features, along with spe-

cialized extensions—such as the “replay and snapshot” functionality

in GCP [15] and the “dead-letter queues” in Azure [6].

Rather than using pubsub as an ad hoc storage system, we be-

lieve applications should have the �exibility to use a traditional

or special purpose storage system. Full-�edged storage systems

provide various models that better suit applications’ needs, o�er-

ing greater power and standard APIs. For example, time-series

databases or newer logging abstractions [7, 28] are ideal for log-

like storage. Likewise, for structured storage, NoSQL databases

like Bigtable [10] or SQL systems such as Spanner [11], Cock-

roachDB [31], and TiDB [22] o�er features that facilitate robust data

access, e.g. reads, scans, writes, indices, and foreign key constraints.

167

HOTOS 25, May 14–16, 2025, Ban�, AB, Canada Atul Adya, Phil Bogle, and Colin Meek

4 Our solution: Explicit storage with Watch

We propose an alternative model that resolves the issues of pubsub,

unbundling noti�cation and storage, explicitly exposing the stor-

age abstraction, and de�ning a watch API that enables end-to-end

correctness without sacri�cing scalability. In this model, produc-

ers write changes to a designated storage system and consumers

receive mutation events from a view of the store using a watch API.

Spanner with

change streams
Streaming/

time-series databases

MySQL/TiDB with

Snappy

Storage with

watch system

Built-in

watch

External

watch

system

Producer

Storage

Ingestion

Storage

Figure 3: Separation of storage and noti�cations

Figure 3 illustrates design choices for unbundling storage and no-

ti�cation. The storage system, represented on the X-axis, can either

be producer storage or ingestion storage (as de�ned in Section 2),

to address scenarios where the source is a persistent store and

where the source data are ephemeral respectively. The noti�cation

mechanism, represented on the Y-axis, may either be implemented

directly by the storage system or provided as an external layer built

on top of it. Below are examples for some of these cases.

• Spanner can serve as producer storage and has a built-in watch

mechanism called Change Data Streams [16]. Other examples

include Kubernetes API server [17], which is backed by the watch-

able etcd store [18].

• MySQL and TiDB are also popular producer storage systems,

and we have implemented an external watch subsystem called

Snappy on top of them, treating them as key value stores. Snappy

is not yet published.

• Time-series databases [9, 23, 36], data stream management sys-

tems [1, 4, 8, 37] or other structured stores [10, 22, 31] can serve

as ingestion stores, and o�er e�cient access to time-series data.

A re�ned version of a pubsub system such as Kafka would �t

into the bottom right quadrant (ingestion storage with built-in

watch), with some changes to its API to make the implicit storage

layer more explicit. However, our model generalizes to other types

of ingestion storage in cases where those are better suited to the

application’s requirements.

Guarantees: In our proposed approach, consumers receive guaran-

tees with respect to the storage being watched whether permanent

or temporary, i.e., the producer or ingestion storage. For instance,

when watching a producer store in scenarios such as replication

and cache invalidation, target stores and caches provide end-to-

end guarantees relative to the producer store. This approach is

fundamentally di�erent from traditional pubsub systems, which

interpose a problematic intermediate storage layer.

4.1 Hiding producer store internals

Our approach might seem to expose the internal storage format

of producer storage. However, this is not the case. The producer

can present a �ltered view that exposes a limited subset of derived

values to consumers. For example, consider a source managing

contact information. It can create a new table or view that contains

just those values and make that view accessible to consumers. This

mechanism is similar to the control found in pubsub-based architec-

tures. The only di�erence is where the consumed data are stored:

in the producer’s storage as opposed to the hidden storage of the

pubsub system.

4.2 Watch API

We now present a watch API that reliably noti�es the consumer of

changes to the producer storage. The system supporting this API,

illustrated in Figure 4, distributes change events, organized by key

and by transaction version (e.g., "account � has balance $20 as of

version 40"). A simplifying assumption is that the source of truth

has monotonic transaction versions, e.g. TrueTime timestamps in

Spanner [11], TSO timestamps in TiDB [35], gtid in MySQL [30],

etc., that captures the agreed upon transaction order. See [37] for

more sophisticated schemes.

4.2.1 Consumer API

The consumer, which we refer to as a watcher, requests state for a

range of keys starting from a particular transaction version via a

watch call:

class Watchable {

Cancellable watch(

Key low , Key high , Version version ,

WatchCallback callback);

}

class WatchCallback {

void onEvent(ChangeEvent event);

void onProgress(ProgressEvent event);

void onResync ();

}

struct ChangeEvent {

Key key; Mutation mutation; Version version;

}

struct ProgressEvent {

Key low; Key high; Version version;

}

watch()

onEvent()
onProgress()
onResync()

append()

progress()
re
ad
()

Store

Watch
system Cache

Figure 4: Unbundled architecture: Storage with watch

168

Understanding the limitations of pubsub systems HOTOS 25, May 14–16, 2025, Ban�, AB, Canada

Figure 5: Knowledge by key and version for a watcher

In addition to events capturing what has changed in the store

subsequent to the requested version (onEvent), the watch stream

includes:

• Progress events (onProgress), indicating that all change events

a�ecting some or all of the keys being watched have been sup-

plied up to some version.

• Resync events (onResync), indicating that the version known

to the watcher is no longer retained. This event prompts the

watcher to read a recent snapshot of the state from the store

then catch up by issuing a watch request starting at the snapshot

version. Note that it is acceptable to read a stale snapshot, so we

can optionally reduce load on the underlying storage by reading

from a replica instead.

Applications may directly implement the watch callback inter-

face, or may leverage linked caches similar to [2] that speak that

protocol.

4.2.2 Ingester API

The store may directly implement the watch contract, but range-

scoped progress events also allow the store to convey progress in a

partitioned log to a separate watch system via an Ingester interface.

Note that the watch system may use a storage system to maintain

larger than memory data structures, but unlike in a pubsub system,

we are not introducing any intermediate hard state. This is soft state

that can be recovered if deleted (at the expense of some increased

latency or staleness, but there is no data or consistency loss).

class Ingester {

void append(ChangeEvent event);

void progress(ProgressEvent event);

}

Once the store con�rms that all updates below a speci�c version

have been applied to a key range, it sends a progress event to

the watch system. Progress events are scoped to key ranges rather

than being global or tied to static partitions. This design enables

scalability by allowing each system layer to de�ne its own parti-

tion boundaries which can evolve independently, supporting loose

coupling between layers.

4.3 Applying watch to pubsub use cases

In this section, we describe how to apply this model to the ma-

jor pubsub use cases, and in the next section we detail why this

approach is superior.

Caching and replication: Improving on the pubsub model, the

watch model allows caches or storage replicas with modest capabil-

ities to serve snapshot-consistent queries, even when dynamically

sharded. They can use progress events to track key ranges and

version windows for which they have complete knowledge and can

serve consistent snapshot results. In a distributed cache or store,

multiple a�nitized servers may have overlapping and redundant

knowledge regions for improved availability and performance.

Figure 5 illustrates the knowledge regionsmaintained by awatcher.

Each blue rectangle represents a knowledge region — a key range

and version window that de�ne the versioned state the watcher

knows for that range. This allows the watcher to serve snapshot-

consistent queries within a single range, or stitch together a consis-

tent snapshot acrossmultiple ranges, as long as appropriate versions

exist in each range (e.g., the green box in the �gure). Although the

�gure depicts a single watcher, one can imagine combining knowl-

edge regions across multiple watchers to serve snapshot-consistent

queries at a broader scale. Each knowledge region is immutable:

once a value is written at a given version, it does not change. This

immutability enables dynamic replication and repartitioning of data

without compromising consistency.

Event ingestion and fanout: To support ingestion in our model,

the publisher exposes an ingestion store, e.g. a time-series database

optimized for ingestion of events. As with a pubsub topic, the

ingestion store isolates the main application database from load

and security risks. Producers insert events into the ingestion store.

Consumers watch all or a portion of the key range of the database

to learn about new events. They may also query the ingestion store

to obtain state if needed. As we will discuss in Section 4.4, this

approach addresses the backlog and e�ciency issues caused by the

pubsub model.

Work queueing and balancing: Our approach enables a�nitized,

dynamically sharded workers, and reframes the problem as one of

advancing entities to some desired state. Applications use an auto-

sharding system [3, 27] to dynamically assign and replicate ranges

of keys to workers based on load and health. Each worker initially

queries the database for assigned entities requiring attention, and

then uses watch to identify other such entities. The application can

then prioritize entities, fully mitigating head-of-line blocking prob-

lems. By observing the current state rather than tracking a sequence

of potentially unreliable, disordered events, applications become

signi�cantly more robust in distributed environments, especially

for complex work�ows.

Consider for example the problem of provisioning virtual ma-

chines for online data processing workloads in a cloud environment.

This coordinator service’s goal is to ensure that every workload

is running on some set of virtual machines. The pubsub model

encourages applications to enqueue tasks corresponding to each

step of the work�ow when a workload is added, e.g. to acquire VMs,

bootstrap images, con�gure networks, start processing. However, in

practice, the coordinator must constantly reconcile the current set

of con�gured workloads with the set of available compute resources.

The event-based approach introduces complexity because the state

of the world (including available compute resources) changes con-

stantly and in general does not match the state when the work event

was enqueued. By watching both the desired con�guration (which

169

HOTOS 25, May 14–16, 2025, Ban�, AB, Canada Atul Adya, Phil Bogle, and Colin Meek

workloads should be running) and the actual con�guration (the

states of the available VMs and allocations of work), the coordinator

can correctly advance the actual state to the desired con�guration.

4.4 Advantages over standard pubsub

We now recap the advantages of this unbundled architecture.

Better treatment of backlogs: Unlike pubsub, watch does not

require unbounded backlogs for correctness. The watch system

can send a resync signal to a consumer whenever its backlog is

excessive. A lagging consumer can use the exposed store view to

e�ciently fetch a snapshot of state from the source database and

resume watching from that later version.

Unbundling of storage and watch: Applications use whichever

store o�ers the best combination of guarantees, features, and per-

formance for their use case, rather than being locked into particular

features of the storage system bundled into the pubsub systems. An

external watch system can provide watch on top of any store that

supports the ingestion interface. Applications can choose between

di�erent watch systems optimized for di�erent scale points, e.g.

degree of fan out.

End-to-end correctness: Key-range watches allow partitioned

consumers to receive only the events they need. Key-range progress

events allow all layers to serve consistent snapshots even in the

presence of dynamic sharding.

E�ciency: The watch design avoids the need for an additional

hard state message log and relies instead on the existing hard state

provider store or an ingestion store. Unlike consumer groups, range-

based watches allow related work to be a�nitized to dynamically

sharded servers. A�nitization enables e�cient work on the same

or nearby keys, e.g., for caching or when updates have to be applied

to a replicated store.

Standard, powerful storage and noti�cation APIs: In our

model, applications bene�t from the standard watch API andfull-

featured storage APIs rather than relying on ad hoc pubsub APIs

designed to partially compensate for the inherent shortcomings of

the pubsub model.

5 Areas of future research

The storage-plus-watch model opens up several research opportu-

nities to build scalable components and end-to-end correct applica-

tions:

Standalone watch system: A scalable, standalone watch system

that implements the Ingester and Watchable contracts enables us

to add watch capabilities to storage systems that lack native support.

We are building a system called Snappy for a speci�c distributed

storage system. However, we believe further research is needed

to generalize this design to a wide variety of storage systems and

scale requirements.

Auto-sharded caches supporting snapshot consistency: Snap-

shot consistent caches provide good semantics while lowering la-

tency and improving scalability. The watch contract permits caches

to expose snapshot consistent views, even in the face of dynamic

repartitioning driven by an auto-sharder[3, 27]. E�ciently stitching

together consistent views of source data from knowledge regions,

potentially spread across multiple cache servers, will require careful

protocol and data structure design.

Replication across di�erent stores: While pubsub is commonly

used to replicate state between heterogeneous stores, it often su�ers

from poor scalability, weak semantics, or both. Snapshot seman-

tics have been achieved for replication in homogeneous database

deployments for read-only replicas using internal protocols, as in

Spanner [14]. The watch-based approach described in Section 4.3 of-

fers a promising direction for replicating across diverse, real-world

storage systems while continuing to provide strong semantics and

low latency at scale. However, much work remains to achieve this

in practice.

6 Summary

We have demonstrated that pubsub su�ers from many issues be-

cause of its hidden storage layer, and that it is possible to cleanly

extract and separate that layer using a watch abstraction. Unlike

pubsub, explicit storage plus watch allows consumers to program-

matically recover from excessive backlogs. It achieves better per-

formance and correctness by respecting the end-to-end argument.

Finally, it uses standard rather than ad hoc storage APIs. Realiz-

ing the full potential of the model for pubsub use cases opens up

exciting new research directions.

References
[1] D. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Convey, C. Erwin, E. Galvez,

M. Hatoun, A. Maskey, A. Rasin, A. Singer, M. Stonebraker, N. Tatbul, Y. Xing,
R. Yan, and S. Zdonik. 2003. Aurora: a data stream management system. In
Proceedings of the 2003 ACM SIGMOD International Conference on Management of
Data (SanDiego, California) (SIGMOD ’03). Association for ComputingMachinery,
New York, NY, USA, 666. doi:10.1145/872757.872855

[2] Atul Adya, Robert Grandl, Daniel Myers, and Henry Qin. 2019. Fast key-value
stores: An idea whose time has come and gone. In Proceedings of the Workshop
on Hot Topics in Operating Systems. 113–119.

[3] Atul Adya, Daniel Myers, Jon Howell, Jeremy Elson, Colin Meek, Vishesh Khe-
mani, Stefan Fulger, Pan Gu, Lakshminath Bhuvanagiri, Jason Hunter, Roberto
Peon, Larry Kai, Alexander Shraer, Arif Merchant, and K�r Lev-Ari. 2016. Slicer:
Auto-Sharding for Datacenter Applications. In 12th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI 16). USENIX Association, Sa-
vannah, GA, 739–753. https://www.usenix.org/conference/osdi16/technical-
sessions/presentation/adya

[4] Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava Chernyak, Rafael J.
Fernández-Moctezuma, Reuven Lax, Sam McVeety, Daniel Mills, Frances Perry,
Eric Schmidt, and Sam Whittle. 2015. The Data�ow Model: A Practical Approach
to Balancing Correctness, Latency, and Cost inMassive-Scale, Unbounded, Out-of-
Order Data Processing. Proceedings of the VLDB Endowment 8 (2015), 1792–1803.

[5] Apache Software Foundation. 2023. Apache Pulsar. https://pulsar.apache.org/.
Accessed: 2025-01-14.

[6] Microsoft Azure. 2025. Overview of Service Bus dead-letter queues.
https://learn.microsoft.com/en-us/azure/service-bus-messaging/service-
bus-dead-letter-queues. Accessed 2025-01-15.

[7] Mahesh Balakrishnan, Jason Flinn, Chen Shen, Mihir Dharamshi, Ahmed Jafri,
Xiao Shi, Santosh Ghosh, Hazem Hassan, Aaryaman Sagar, Rhed Shi, Jingming
Liu, Filip Gruszczynski, Xianan Zhang, Huy Hoang, Ahmed Yossef, Francois
Richard, and Yee Jiun Song. 2020. Virtual consensus in delos. In Proceedings of
the 14th USENIX Conference on Operating Systems Design and Implementation
(OSDI’20). USENIX Association, USA, Article 35, 16 pages.

[8] Badrish Chandramouli, Jonathan Goldstein, Mike Barnett, Robert DeLine, Danyel
Fisher, John C. Platt, James F. Terwilliger, and John Wernsing. 2014. Trill: a
high-performance incremental query processor for diverse analytics. Proc. VLDB
Endow. 8, 4 (Dec. 2014), 401–412. doi:10.14778/2735496.2735503

[9] Tarak Chandrasekaran, Neeraj Kumar, and Sujay Sanghi. 2011. OpenTSDB: A
Distributed, Scalable Time Series Database. In Proceedings of the 8th International
Workshop on Distributed Data Management. ACM, 83–90. doi:10.1145/2093334.
2093338

[10] Fay Chang, Je�rey Dean, Sanjay Ghemawat, Wilson C Hsieh, Deborah A Wal-
lach, Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E Gruber. 2006.
Bigtable: A distributed storage system for structured data. In Proceedings of the

170

https://doi.org/10.1145/872757.872855
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/adya
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/adya
https://pulsar.apache.org/
https://learn.microsoft.com/en-us/azure/service-bus-messaging/service-bus-dead-letter-queues
https://learn.microsoft.com/en-us/azure/service-bus-messaging/service-bus-dead-letter-queues
https://doi.org/10.14778/2735496.2735503
https://doi.org/10.1145/2093334.2093338
https://doi.org/10.1145/2093334.2093338

Understanding the limitations of pubsub systems HOTOS 25, May 14–16, 2025, Ban�, AB, Canada

7th USENIX Symposium on Operating Systems Design and Implementation (OSDI).
USENIX Association, 205–218.

[11] James C Corbett, Je�rey Dean, Michael Epstein, Andrew Fikes, Christopher Frost,
Je�rey John Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser,
Peter Hochschild, et al. 2013. Spanner: Google’s globally distributed database.
ACM Transactions on Computer Systems (TOCS) 31, 3 (2013), 1–22.

[12] Azure Documentation. 2025. Service Bus Messaging. https://learn.microsoft.
com/en-us/azure/service-bus-messaging/. Accessed: 2025-01-15.

[13] Google Cloud Documentation. 2025. Pub/Sub documentation. https://cloud.
google.com/pubsub/docs. Accessed: 2025-01-15.

[14] Google Cloud Documentation. 2025. Rapidly expand the reach of
Spanner databases with read-only replicas and zero-downtime moves.
https://cloud.google.com/blog/products/databases/introducing-spanner-
con�gurable-read-only-replicas. Accessed: 2025-01-15.

[15] Google Cloud Documentation. 2025. Replay a message in Pub/Sub by seeking to
a snapshot or timestamp. https://cloud.google.com/pubsub/docs/replay-message.
Accessed: 2025-01-15.

[16] Google Cloud Documentation. 2025. Spanner: Change streams overview. https:
//cloud.google.com/spanner/docs/change-streams Accessed: 2025-01-15.

[17] Kubernetes Documentation. 2025. kube-apiserver. https://kubernetes.io/docs/
reference/command-line-tools-reference/kube-apiserver/ Accessed: 2025-01-15.

[18] etcd. 2025. etcd.io. https://etcd.io/. Accessed: 2025-01-14.
[19] Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-Marie Ker-

marrec. 2003. The Many Faces of Publish/Subscribe. ACM Computing Surveys
(CSUR) 35, 2 (2003), 114–131. doi:10.1145/857076.857078

[20] Gauri M Gaikwad, Amit Sahai, and Shikha K Sinha. 2016. A Survey of Publish/-
Subscribe Systems and Their Key Challenges. IEEE Communications Surveys &
Tutorials 18, 1 (2016), 55–75. doi:10.1109/COMST.2015.2494095

[21] Google APIs. 2024. GoogleWatch API. https://github.com/googleapis/googleapis/
blob/master/google/watcher/v1/watch.proto. Accessed: 2025-01-14.

[22] Dongxu Huang, Qi Liu, Qiu Cui, Zhuhe Fang, Xiaoyu Ma, Fei Xu, Li Shen, Liu
Tang, Yuxing Zhou, Menglong Huang, et al. 2020. TiDB: a Raft-based HTAP
database. Proceedings of the VLDB Endowment 13, 12 (2020), 3072–3084.

[23] In�uxData. 2023. In�uxDB: An Open-Source Time Series Database. https://www.
in�uxdata.com/products/in�uxdb/. Accessed: 2025-01-14.

[24] Kafka. 2025. https://kafka.apache.org/documentation/.
[25] Martin Kleppmann. 2017. Designing Data-Intensive Applications: The

Big Ideas Behind Reliable, Scalable, and Maintainable Systems. O’Reilly
Media. https://www.oreilly.com/library/view/designing-data-intensive-
applications/9781491903063/

[26] E. Koutanov. 2020. E�ective Kafka: A Hands-on Guide to Building Robust and
Scalable Event-driven Applications with Code Examples in Java. Emil Koutanov.
https://books.google.com/books?id=Rv3i0AEACAAJ

[27] Sangmin Lee, Zhenhua Guo, Omer Sunercan, Jun Ying, Thawan Kooburat,
Suryadeep Biswal, Jun Chen, Kun Huang, Yatpang Cheung, Yiding Zhou, et al.
2021. Shard manager: A generic shard management framework for geo-
distributed applications. In Proceedings of the ACM SIGOPS 28th Symposium
on Operating Systems Principles. 553–569.

[28] Xuhao Luo, Shreesha G. Bhat, Jiyu Hu, Ramnatthan Alagappan, and Aishwarya
Ganesan. 2024. LazyLog: A New Shared Log Abstraction for Low-Latency Appli-
cations. In Proceedings of the ACM SIGOPS 30th Symposium on Operating Systems
Principles (Austin, TX, USA) (SOSP ’24). Association for Computing Machinery,
New York, NY, USA, 296–312. doi:10.1145/3694715.3695983

[29] Alexander Malmberg. 2025. https://sre.google/resources/practices-and-
processes/no-heroes/. Accessed: 2025-01-15.

[30] MySQL Reference Manual. 2025. Replication with Global Transaction Identi�ers.
https://dev.mysql.com/doc/refman/8.4/en/replication-gtids.html Accessed: 2025-
01-15.

[31] Rebecca Taft, Irfan Sharif, Andrei Matei, Nathan VanBenschoten, Jordan Lewis,
Tobias Grieger, Kai Niemi, Andy Woods, Anne Birzin, Raphael Poss, Paul Bardea,
Amruta Ranade, Ben Darnell, Bram Gruneir, Justin Ja�ray, Lucy Zhang, and Peter
Mattis. 2020. CockroachDB: The Resilient Geo-Distributed SQL Database. In
Proceedings of the 2020 ACM SIGMOD International Conference on Management of
Data (Portland, OR, USA) (SIGMOD ’20). Association for Computing Machinery,
New York, NY, USA, 1493–1509. doi:10.1145/3318464.3386134

[32] Andrew S. Tanenbaum and Maarten van Steen. 2007. Distributed Systems:
Principles and Paradigms. Prentice Hall. https://www.pearson.com/us/higher-
education/program/Tanenbaum-Distributed-Systems-Principles-and-
Paradigms/PGM332264.html

[33] Amazon Team. 2025. What is Pub/SubMessaging? https://aws.amazon.com/what-
is/pub-sub-messaging/. [Accessed 04-14-2025].

[34] Google Team. 2025. What is Pub/Sub? https://cloud.google.com/pubsub/docs/
overview. [Accessed 04-14-2025].

[35] TiDB Team. 2025. Time Synchronization in Distributed Systems: TiDB’s Times-
tamp Oracle. https://www.pingcap.com/blog/how-an-open-source-distributed-
newsql-database-delivers-time-services/ Accessed: 2025-01-14.

[36] Timescale. 2023. TimescaleDB: An Open-Source Time-Series Database. https:
//www.timescale.com/. Accessed: 2025-01-14.

[37] P.A. Tucker, D. Maier, T. Sheard, and L. Fegaras. 2003. Exploiting punctuation
semantics in continuous data streams. IEEE Transactions on Knowledge and Data
Engineering 15, 3 (2003), 555–568. doi:10.1109/TKDE.2003.1198390

[38] Antonio Varzi. 2006. Messaging Systems: An Overview. Comput. Surveys 38, 4
(2006), 1–25. doi:10.1145/1180404.1180405

171

https://learn.microsoft.com/en-us/azure/service-bus-messaging/
https://learn.microsoft.com/en-us/azure/service-bus-messaging/
https://cloud.google.com/pubsub/docs
https://cloud.google.com/pubsub/docs
https://cloud.google.com/blog/products/databases/introducing-spanner-configurable-read-only-replicas
https://cloud.google.com/blog/products/databases/introducing-spanner-configurable-read-only-replicas
https://cloud.google.com/pubsub/docs/replay-message
https://cloud.google.com/spanner/docs/change-streams
https://cloud.google.com/spanner/docs/change-streams
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-apiserver/
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-apiserver/
https://etcd.io/
https://doi.org/10.1145/857076.857078
https://doi.org/10.1109/COMST.2015.2494095
https://github.com/googleapis/googleapis/blob/master/google/watcher/v1/watch.proto
https://github.com/googleapis/googleapis/blob/master/google/watcher/v1/watch.proto
https://www.influxdata.com/products/influxdb/
https://www.influxdata.com/products/influxdb/
https://kafka.apache.org/documentation/
https://www.oreilly.com/library/view/designing-data-intensive-applications/9781491903063/
https://www.oreilly.com/library/view/designing-data-intensive-applications/9781491903063/
https://books.google.com/books?id=Rv3i0AEACAAJ
https://doi.org/10.1145/3694715.3695983
https://sre.google/resources/practices-and-processes/no-heroes/
https://sre.google/resources/practices-and-processes/no-heroes/
https://dev.mysql.com/doc/refman/8.4/en/replication-gtids.html
https://doi.org/10.1145/3318464.3386134
https://www.pearson.com/us/higher-education/program/Tanenbaum-Distributed-Systems-Principles-and-Paradigms/PGM332264.html
https://www.pearson.com/us/higher-education/program/Tanenbaum-Distributed-Systems-Principles-and-Paradigms/PGM332264.html
https://www.pearson.com/us/higher-education/program/Tanenbaum-Distributed-Systems-Principles-and-Paradigms/PGM332264.html
https://aws.amazon.com/what-is/pub-sub-messaging/
https://aws.amazon.com/what-is/pub-sub-messaging/
https://cloud.google.com/pubsub/docs/overview
https://cloud.google.com/pubsub/docs/overview
https://www.pingcap.com/blog/how-an-open-source-distributed-newsql-database-delivers-time-services/
https://www.pingcap.com/blog/how-an-open-source-distributed-newsql-database-delivers-time-services/
https://www.timescale.com/
https://www.timescale.com/
https://doi.org/10.1109/TKDE.2003.1198390
https://doi.org/10.1145/1180404.1180405

	Abstract
	1 Introduction
	2 Pubsub model and use cases
	3 Limitations of pubsub systems
	3.1 Failures of loose coupling
	3.2 Violations of the end-to-end principle
	3.3 Ad hoc storage APIs

	4 Our solution: Explicit storage with Watch
	4.1 Hiding producer store internals
	4.2 Watch API
	4.3 Applying watch to pubsub use cases
	4.4 Advantages over standard pubsub

	5 Areas of future research
	6 Summary
	References

