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ABSTRACT

In recent years, an increasing number of hardware devices
started providing programming interfaces to developers such
as smart NICs. Processor vendors use microcode to extend
processors’ features such as Intel SGX and VT-x. This en-
ables processor architects to quickly evolve processor designs
and features. However, modern processors still lack general
programmability as microcode is inaccessible to system de-
velopers. Developers still cannot define custom processor
features. We argue that processors should expose this capa-
bility to developers, which enables new operating system
and application designs.

We propose Metal, a novel open architecture that enables
system developers to define custom instructions with mi-
crocode level overhead. We implement a prototype of Metal
on a 5-stage pipelined RISC processor with minimal addi-
tional hardware resources. We demonstrate Metal’s capabil-
ity by building a variety of architectural extensions such as
user defined privilege levels. We also discuss other potential
applications and future directions for Metal.
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1 INTRODUCTION

A trend in computing is to enhance programmability across
the system stack to provide developers with more features
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and flexibility. For example, the Linux kernel offers eBPF [4]
to modify system behavior without needing to write ker-
nel modules. Smart NICs and storage devices enable custom
computation inline with network and storage processing be-
fore reaching the OS. Programmable P4 switches [2] expand
programmability outside the host to process and manipulate
network traffic flows.

In recent years, the number of extensions to popular in-
struction set architectures (ISA) has skyrocketed. Most of
these extensions are implemented largely in microcode [13],
e.g., Intel SGX and VT-x.

Unfortunately, processors have seen little effort to en-
able programmability for developers. Processor vendors com-
monly use microcode to implement processor programmabil-
ity, which is complex even for processor architects. Higher
level intermediate instruction encodings, such as Intel Xu-
Code, enable processor architects to write microcode almost
as efficiently as native assembly. However, processor vendors
have yet to open up this programmability to developers.

The growing popularity of microcode as a way to deploy
processor features raises security concerns [13, 15]. Due
to the lack of transparency, microcode auditing is difficult,
which leads to security through obscurity. Recent works [32,
33] manage to reverse engineer x86 microcode and inject
vulnerabilities. Implementing complex software concepts,
such as virtualization, in low level microcode also increases
the probability of introducing security vulnerabilities.

We group microcode into two categories: horizontal and
vertical. Horizontal microcode is relatively simple and de-
codes into a few micro-ops that expose an optimized hard-
ware function. However, implementing complex architec-
tural features using horizontal microcode is difficult. To ad-
dress the complexity, processor vendors develop interme-
diate instruction encodings called vertical microcode, such
as Intel XuCode [1], IBM’s Millicode [24] and Alpha’s PAL-
code [19]. Vertical microcode is much closer to the proces-
sor’s native assembly and often thousands of micro-ops long.
This simplifies complex architectural feature development.

To promote the evolution of processor architectures and
new operating system designs, we propose that processor
vendors should provide an open architecture to system devel-
opers to define new instructions. This enables developers to
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build new architectural features and applications. Implement-
ing this open architecture should involve relatively simple
logic and a few basic hardware components.

This paper presents Metal, a processor hardware extension
that enables developers to rapidly evolve the processor’s ar-
chitecture through software instead of hardware. Metal offers
a vertical microcode like programming interface consisting
of the native instruction set plus a few Metal specific instruc-
tions. To achieve microcode level overhead, we dedicate a
RAM for storing Metal code which is collocated with the
processor’s instruction fetch unit.

Unlike other intermediate instruction encodings discussed
above, Metal enables not only processor architects but also
system developers to create new architectural extensions.
Processors expose the fundamental building blocks, which
Metal uses to create higher level extensions and abstractions.
OSes can share a common set of extensions across different
architectures to enhance compatibility and portability.

We provide a proof-of-concept Metal implementation on
a 5-stage pipelined RISC processor, adding 14% more logic
cells. Our processor exposes various architectural features to
Metal, such as direct physical memory access and instruction
interception. This enables us to implement high level archi-
tectural extensions, such as user defined privilege levels and
custom page tables. We also discuss other potential Metal
applications, such as virtualization and security enclaves.

2 DESIGN

Metal is an open architecture that exposes underlying mi-
croarchitectural features to system developers. Developers
can use Metal to add architectural extensions to processors
such as user defined privilege levels and custom page tables.
Metal introduces a new privileged operation mode Metal
mode and a microcode-like programming interface mcode,
which developers use to program custom extensions. Unlike
microcode, mcode consists of the host processor’s native
assembly plus several Metal specific instructions.

In Metal mode, the processor executes mcode and accesses
internal architectural features. At boot time, Metal loads
a collection of mcode subroutines called mroutines, which
extend the architecture’s instruction set. Metal assigns each
mroutine with a unique entry number, which serves as entry
points into Metal mode.

Critically, Metal stores mroutines in a RAM collocated
with the processor’s instruction fetch unit to offer microcode
level overhead. The low overhead enables the development
of latency sensitive extensions that are otherwise only pos-
sible with microcode. The RAM partitions code and data
into separate segments, which hold mroutines and mroutine
private data. Accesses to the RAM do not alter processor
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Figure 1: The overview of our Metal enabled 5-stage
pipelined RISC processor. Metal adds a RAM that holds
mcode and a Metal register file for storing Metal’s in-
ternal state.

Instruction Description

menter Enter Metal mode
mexit Exit Metal mode
rmr Read Metal register
wmr Write Metal register
mld Load from MRAM
mst Store to MRAM

Table 1: New Metal instructions. Applications execut-
ing in normal mode invoke menter to enter Metal mode.
The rest are only available in Metal mode.

caches as the locality of the RAM already offers cache-like
access speed. This also prevents side channels on the RAM.

We develop a proof-of-concept implementation of Metal
on a 5-stage pipelined RISC processor. Figure 1 shows the
high level workflow and additional components. We add a
small RAM (MRAM) to store up to 64 mroutines and a Metal
register file (MReg.) containing 32 Metal exclusive registers
m0-m31 to store Metal’s internal state.

2.1 Metal Instruction Extension

Table 1 lists the new Metal instructions. Applications exe-
cuting in normal mode call menter with an mroutine entry
number to enter Metal mode. Once in Metal mode, the pro-
cessor stores the caller’s return address into Metal register
m31 and executes the corresponding mroutine.



menter is not a privileged instruction in the traditional
sense as Metal does not define privilege levels besides normal
mode vs. Metal mode. Developers can freely define custom
privilege levels that suit their use cases by checking callers’
privilege levels in mroutines.

Upon entering Metal mode, the processor gains full access
to architectural features and the rest of Metal instructions.
Applications use rmr and wmr to read and write Metal reg-
isters. mexit exits Metal mode and resumes the execution
from the stored address in Metal register m31.

Metal provides mld and mst instructions to load and store
from MRAM’s data segment. The data segment holds mrou-
tine private data used for bookkeeping, e.g., the pointer to
the page table structure for custom page tables.

Metal mroutine programming resembles embedded sys-
tem development. To avoid allocation failures, developers
must statically allocate resources including Metal registers
used across invocations or the MRAM data segment. Metal
mroutines are non-interruptible for simplicity and to allow
Metal to implement interrupt delivery mechanisms. Static
allocation and non-interruptibility improve performance,
security and reliability by eliminating potential resource
exhaustion and simplifying mroutine verification.

Metal only defines a few new instructions and leaves the
flexibility of exposing architectural features to the proces-
sor. Processors expose architectural features as either Metal
instructions, control registers or memory mapped IO.

2.2 Fast Metal Mode Transition

Metal mode transitions must be fast to make extending the
instruction set practical. Metal achieves low overhead in
two ways. Critically, we collocate MRAM that stores mrou-
tines with the processor’s instruction fetch unit to achieve
microcode level overhead.

We also optimize menter and mexit. When entering and
exiting Metal mode, the processor replaces menter with the
first instruction from the target mroutine during the decode
stage. We stall instruction fetching to also replace mexit with
the next instruction in the original stream. When returning
to the application, Metal achieves virtually zero overhead.

2.3 Exposing Architectural Features

A key feature of Metal is accessing low level architectural
features through mroutines. In our implementation, the pro-
cessor exposes the following architectural features to Metal
that enable the example applications in Section 3. The pro-
cessor exposes these features to Metal through instructions
and memory mapped registers only available in Metal mode.

Access to Physical Memory. Modern processors manage
memory through paging. The memory management unit
(MMU) translates virtual pages to physical pages via page
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Baseline = Metal %Change
Number of Wires 170,264 197,705 16.1%
Number of Cells 180,546 206,384 14.3%

Table 2: Hardware resources for adding Metal to our 5-
Stage pipelined processor. The table provides an upper
bound as modern processors are more complex.

tables. However, there is no mechanism to access unmapped
physical memory. Our implementation allows mroutines to
bypass paging and access physical memory in Metal mode.
This enables developers to implement custom page tables.

Page Keys and Address Space IDs. Page keys provide an
extra level of indirection for page permissions to accelerate
batch permission changes. Address space IDs allow TLBs
to cache multiple address spaces. Our processor exposes
TLB modification instructions, and it supports page keys
and address space IDs. This allows Metal to create arbitrary
execution contexts and change page permissions rapidly.

Interrupt and Exception Delivery. Our processor dele-
gates all exception and interrupt delivery to Metal. We assign
specific mroutines to handle interrupts and exceptions. This
allows Metal to define custom privilege levels and deliver
interrupts to any privilege level, e.g., user level interrupts.

Instruction Interception. Our implementation allows
intercepting any instruction with an mroutine. For instance,
developers can intercept loads and stores dynamically to
implement transactional memory or patch an insecure in-
struction at runtime.

2.4 Hardware Resources

To estimate the hardware resources required to build Metal.
We develop a proof-of-concept 5-stage pipelined RISC pro-
cessor in Verilog with and without Metal. We synthesize our
processor using the Yosys [8] open source synthesis tool and
the Synopsys [7] standard cell library.

Table 2 shows the hardware resources in terms of wires
and cells used by our processor with and without Metal. In
our implementation, Metal only consumes 14% more cells
and 16% more wires. This serves as an upper bound of the
required hardware resources as most modern processors
have more complex pipelines with multiple issue.

3 APPLICATIONS

To demonstrate the capabilities of Metal, we developed mul-
tiple architectural extensions. This helps us understand what
systems can benefit from Metal’s encapsulation of architec-
tural features and the ability to intercept instructions with
low overhead.



kenter:
addq $to, $zero, 1 # Set m0 (kernel mode)
wmr $mo, $t0

andgq $a0, $a0, 0x00ff

sllq $a0, $a@, 3

1dq $t0, $t0, SYSCALL_TABLE
addq $to, $to, $a0

rmr $ra, $m31

wmr $m31, $to0

mexit

# Limit to 256 syscalls
# Compute entry point

# Save return address to $ra
# Load entry point to $m31
# Return to kernel mode

kexit:
wmr $m@, $zero
wmr $m31, $ra
mexit

# Clear m0 (user mode)
# Move user IP into $m31
# Return to user mode

Figure 2: The assembly of system call entry (kenter)
and exit (kexit) mroutines.

3.1 User Defined Privilege Levels

Metal enables new OS privilege separation models beyond
the basic user mode vs. kernel mode distinction. Developers
can implement multiple privilege levels with defined transi-
tions using mroutines.

To demonstrate this, we first implement a traditional kernel-
user privilege model in Metal. We provide two mroutines,
kenter and kexit, which transition from userspace to the
kernel and back. We reserve the Metal register md to hold
the current privilege level. All mroutine calls that access or
modify privileged resources, e.g., the TLB, are protected by
a privilege check that triggers an exception if violated.

The assembly of both mroutines is shown in Listing 2.
kenter takes a system call entry number as the parameter in
GPR a0. It updates the current privilege level in m@, computes
the syscall entry point, and jumps to the kernel system call
entry point. We use temporary register t0, as defined in
the ABI to compute the entry point and save the userspace
return address in register ra. kexit loads the address stored
in ra and calls mexit to return to userspace.

In general, processor privilege switching involves setting
architectural state and returning control to the target en-
try point regardless of the number of privilege levels. All
privileged mroutines, such as interrupt handlers, in our tra-
ditional kernel-user model should check or set Metal register
m@ and raise an exception in case of privilege violation.

In-process Isolation. Alternatively, applications can use
multiple privilege levels internally to implement in-process
isolation to protect sensitive data. For example, isolating
sensitive cryptographic keys in OpenSSL from the rest of
the application. On modern processors, in-process isolation
usually requires a form of control flow integrity (CFI) [45]
to protect the transition code. However, recent works show
that CFI is inherently unsafe [20]. Metal enables developers
to safely encapsulate the transition code without CFL
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3.2 Custom Page Tables

OSes can implement custom memory management data
structures with Metal. The Linux kernel team has pressured
multiple processor vendors to implement radix tree based
page tables similar to x86. This comes at the cost of restrict-
ing multiple page size support into fewer buckets, leading
to poor performance [40]. With Metal, OSes can implement
custom memory management data structures in the page
fault exception handling mroutine.

Critically, the proximity of MRAM to the instruction fetch
unit enables fast exception dispatching with costs similar to
microcode implementations. This greatly closes the perfor-
mance gap between hardware and software managed TLBs
with the flexibility of user defined data structures.

We implement a radix tree based page table using direct
physical memory access and exception handling provided
by the processor. In a few lines of assembly, we walk an x86-
style radix tree on page fault. We populate the processor’s
TLB mappings from the page table. If the page is not present
or the access violates the page protection, we deliver the
exception to the OS.

3.3 Transactional Memory

We also implemented a proof-of-concept transactional mem-
ory extension based on software transactional memory (STM)
techniques. We created several new mroutines: tstart starts
a transaction, tabort aborts the transaction, and tcommit
commits the transaction. We intercept all memory access in-
structions within a transaction and invoke tread and twrite
instead, which perform and record the memory accesses.
Upon tcommit, all accessed memory addresses within the
transaction are inspected for conflict.

The benefit of using Metal is that neither compilers nor
developers need to replace loads and stores with calls into an
STM library. Instead, Metal turns on and off interception of
loads and stores at runtime when it needs to track memory
accesses for transactional memory. Our implementation is
under 100 instructions and closely resembles TL2 [18].

3.4 User Level Interrupt

User level interrupt is a new processor feature that allows un-
privileged userspace processes to handle hardware interrupts
and perform userspace IO. Intel plans to support user level
interrupt in their next generation processors [5]. User level
interrupt is especially useful for high performance kernel
bypass libraries such as DPDK [3] and SPDK [6].
Currently, both DPDK and SPDK interact with NICs or
storage devices by polling in user mode, which consumes
all cores used by the application. With user level interrupt,
such applications only need to be notified via interrupts



when data is available from underlying devices, reducing
CPU occupancy and power consumption.

Metal supports user level interrupt by handling the proces-
sor’s interrupt delivery. When an interrupt occurs, Metal in-
vokes specific mroutines to optionally redirect the interrupt
to processes running at lower privilege levels. The mroutines
ensure that the target process to receive the interrupt is cur-
rently running on the core and interrupt the process without
changing the privilege level. Developers control whether a
specific privilege level is allowed to process interrupts.

3.5 Other Applications

Metal is a great platform to develop architectural extensions
by combining and encapsulating architectural features. We
present a few potential architectural extensions including
capabilities, security enclaves, virtualization and control flow
protection, which are often implemented in microcode. We
also discuss nesting Metal to accommodate multitenancy.
Hardware Capabilities. Capability based security is not
a new idea. The IBM System/38 [25] and Intel iAPX 432
processors [35] implement capabilities in hardware using
microcode. The CHERI processor [46] implements a capabil-
ity based security model with a coprocessor. Similar to prior
systems, Metal can support capabilities by writing mroutines
to create and manipulate domains and capabilities.
Security Enclaves. Security enclaves offer code and data
integrity. Intel SGX [14], AMD Secure Encrypted Virtual-
ization (SEV) [29], and ARM TrustZone [11] all implement
enclaves using both hardware and microcode. Sanctum [15]
and Sanctorum [34] offer software security enclaves with lit-
tle hardware support. PrivateCore, a security startup, builds
hypervisor-based memory encryption that offers similar
functionality to AMD SEV without hardware support [42].
Metal’s flexibility in defining privilege levels enables de-
velopers to implement enclave extensions. Developers create
a trusted execution layer that runs at a higher privilege level
than the host OS. After Metal loads and verifies an enclave,
the enclave runs in the trusted execution layer which the
host OS cannot access.
Virtualization. Virtualization consolidates multiple work-
loads into a single machine. Virtualization was first intro-
duced in the IBM VM/370 [16] and implemented in numerous

other architectures including VAX [23], Alpha [30], POWER [26],

Intel VT-x [27], AMD SVM [10], ARM [12], SPARC [44], and
MIPS [39]. Most architectures implement virtualization in
microcode. For example, the IBM zSeries virtualization ex-
tensions are implemented mostly in Millicode [24], and the
Alpha hypervisor is built exclusively using PALcode [30].
Developers can use Metal to implement virtualization.
For example, Metal allows hypervisors to implement nested
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page tables. Multiple privilege rings also provide better host-
guest isolation. Privileged instructions can be intercepted
and trapped by Metal for proper handling.

Control Flow Protection. Metal can offer similar appli-
cation control flow protection as existing techniques such as
shadow stacks [41] and control flow integrity [9]. Metal elim-
inates the compiler dependency for protecting key materials
from existing CFI systems such as cryptographic control flow
integrity [38]. Instead, applications can store cryptographic
keys inside Metal registers or MRAM.

Nested Metal. Modern data centers often host multiple
applications in separate VMs on a single machine. Metal
should allow VMMs, OSes and applications to define their
own mroutines for performance and security. For example,
defining VM abstractions for a VMM and in-process isolation
for a TLS enabled webserver.

The challenge is composing mroutines from different lay-
ers without undermining the integrity of other layers. For
example, a higher guest OS layer can define custom memory
management, but should not affect the lower VMM layer’s
memory management. Furthermore, the layered design also
requires that mroutines are reentrant as instruction intercept
can occur during mroutine execution. Reentrancy increases
the difficulty of mroutine development and verification.

We are actively exploring nested Metal that supports mul-
tiple layers of mroutines where mroutines belonging to a
layer can be swapped during a context switch. Interrupts
propagate from lower to higher layers so that VMMs and OS
kernels can decide which VM or application the interrupt be-
longs to. Instruction interception proceeds in reverse, with
higher layers intercepting the instruction first so that ap-
plications can customize individual intercept behavior. The
intercept propagates downward through layers that intercept
the same instruction, which only occurs when the higher
layer’s intercept handling mroutine reuses the instruction.

4 DISCUSSION

Vendor Incentives. Metal provides an open architecture
to processor architects and system developers to rapidly
develop and evolve processor features. Existing processor
vendors do not document microcode to protect intellectual
property (IP). Metal proposes using vertical microcode in the
native instruction set to separate IP concerns and provide a
new layer for innovation.

We propose that processor vendors should provide devel-
opers with fundamental architectural features and delegate
higher level abstractions and encapsulation to developers
via Metal. Metal offers three major advantages to vendors.

First, vendors can implement architectural features in mi-
crocode to protect intellectual property while offering the



flexibility of Metal. Metal does not expose internal details of
the processor’s microarchitecture.

Second, processor vendors differentiate themselves by de-
veloping new performance enhancing architectural features.
For example, software implementations of memory encryp-
tion, such as PrivateCore’s, suffer from high CPU overhead.
Processor vendors then introduce hardware memory encryp-
tion, such as Intel SGX, to significantly accelerate the process.

Third, delegating abstraction and encapsulation to Metal
accelerates the adoption and evolution of new technologies.
Metal enables system developers to encapsulate an archi-
tectural feature, e.g., memory encryption, into higher level
extensions such as security enclaves and encrypted virtual
machines based on end user needs.

Intel is replacing SGX with Trust Domain Extensions
(TDX) [28] that resembles AMD SEV. Had Intel and AMD
instead offered memory encryption as an architectural fea-
ture, system developers could have iterated on high level
abstractions like SGX and TDX more rapidly.

Security. Currently, Metal disables interrupts in mrou-
tines as interrupts complicate development and verification.
Developers must consider the consequences of interrupts
occurring at any instruction and mroutine reentrancy. For
example, VMWare spent years making the world switch be-
tween the VMM and the ESX kernel safe to non-maskable
interrupts (NMI), because the code had to handle interrupts
while reconfiguring all processor state. Additionally, Intel
and AMD recently announced solutions to problems with
interrupt and exception handling dating back decades [36].

Recent processors suffer from timing and speculation side
channel attacks such as Spectre [31] and Meltdown [37].
Metal does not cache MReg. or MRAM and shifts the respon-
sibility to developers for main memory accesses. For sensitive
mroutines, developers should insert speculation barriers and
cache control instructions to eliminate side channels.

5 RELATED WORK

Processor architects commonly use microcode to simplify
instruction decoding and support complex instructions con-
sisting of hundreds to thousands of micro-ops.

Processor architects often find microcode limiting how
quickly they can introduce and develop features. At least
three intermediate instruction sets have been developed in-
cluding Millicode [24] on the IBM zSeries, PAL code [19] on
the Alpha and XuCode [1] on Intel’s recent x86 processors.

IBM uses Millicode [24] to implement complex instruc-
tions and achieve backward compatibility. For example, the
zSeries processors have two types of transactional mem-
ory. First, a hardware transactional memory that supports
small transactions of just a few cache lines. Second, a hy-
brid software transactional memory written in Millicode that
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supports large transactions. Virtualization instructions and
other complex ISA features are also written in Millicode.

Intel develops XuCode [1] as an intermediate microcode
to aid their developers in implementing Intel SGX [14] fea-
tures. XuCode is tightly coupled with SGX, running in the
SGX reserved memory region. Rather than writing complex
microcode, SGX developers implement features in a higher
level instruction set.

Finally, Alpha PALcode [19] is unusual because it is writ-
ten in native assembly, but still serves the same purpose
as other intermediate microcodes. PALcode bridges the ar-
chitectural features with the OS and firmware through an
API. DEC supplies two PALcode implementations to support
running Unix vs. VMS and Windows NT. Alpha implements
its privilege model through PALcode, which allows the pro-
cessor to support two rings on Unix and four rings on VMS.
In many ways, PALcode is the inspiration for Metal. One
major difference is that PALcode resides in main memory.
A no-op PALcode call takes approximately 18 cycles on the
Alpha [43], making it impractical to encapsulate or emulate
low latency instructions, unlike Metal.

Historically, many architectures have provided access to
their microcode. Despite the difficulties of microcode pro-
gramming, this open architecture enables research and de-
velopment including optimizing Prolog on the VAX [21] and
improving game performance on the Xerox Alto [17].

Recently, researchers have reverse engineered newer pro-
cessors. One group of researchers reverse engineered the
AMD K8 and K10 microcode [33], and even created benign
and malicious microcode updates [32]. Several researchers
extracted the entire Intel microcode ROM and the keys used
to encrypt microcode updates [22].

6 CONCLUSION

We propose that processor vendors implement an open archi-
tecture for developing architectural extensions. Vertical mi-
crocode, such as Intel’s XuCode, IBM’s Millicode and Alpha’s
PALcode, proves the viability of developing architectural ex-
tensions in intermediate instruction encodings. Metal gains
inspiration from vertical microcode and offers a microcode-
like programming interface for system developers and re-
searchers to develop new architectural extensions. With com-
piler support, it can be practical to write hardware features
in high level languages such as C.

ACKNOWLEDGMENTS

We thank Emil Tsalapatis for the valuable discussion towards
the development of Metal. We thank Fatemeh Hassani for
her master’s thesis work on prototyping Metal in Verilog.
We also thank the committee for their valuable feedback.



REFERENCES

[1] XuCode: An Innovative Technology for Implementing Complex

[10
[11
[12

(13

(14

(15

(16

[17

(18

[20

[21

[22

=

[ G G S '

=

]
]

=

= =

—

—

Instruction Flows.  https://www.intel.com/content/www/us/en/
developer/articles/technical/software-security-guidance/secure-
coding/xucode-implementing-complex-instruction-flows.html, May
2021.

P4 Open Networking Foundation. https://opennetworking.org/p4/,
Apr 2022.

Data Plane Development Kit. https://www.dpdk.org/, Feb 2023.

eBPF - Introduction, tutorials and community resources. https://ebpf.
io/, Feb 2023.

Intel Instruction Set Extensions Technology. https://www.intel.com/
content/www/us/en/support/articles/000005779/processors.htm, Feb
2023.

Storage Performance Development Kit. https://spdk.io/, Jan 2023.
Synopsys Standard Cell Libraries. https://www.synopsys.com/dw/
ipdir.php?ds=dwc_standard_cell, Feb 2023.

Yosys Open SYnthesis Suite. https://yosyshq.net/yosys/about.html,
Feb 2023.

Martin Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay Ligatti. Control-
Flow Integrity. In Proceedings of the 12th ACM Conference on Computer
and Communications Security, CCS ’05, page 340-353, New York, NY,
USA, 2005. Association for Computing Machinery.

Advanced Micro Devices, Inc. Secure Virtual Machine Architecture
Reference Manual. (33047), December 2005.

Thaynara Alves and Don Felton. Trustzone: Integrated Hardware and
Software Security. Information Quarterly, 3:18-24, January 2004.
Arm Limited. Arm Architecture Reference Manual for A-profile archi-
tecture. (042523), April 2023.

Andrew Baumann. Hardware Is the New Software. In Proceedings of
the 16th Workshop on Hot Topics in Operating Systems, pages 132-137.
ACM, 2017.

Victor Costan and Srinivas Devadas. Intel SGX explained. Cryptology
ePrint Archive, 2016.

Victor Costan, Ilia Lebedev, and Srinivas Devadas. Sanctum: Minimal
Hardware Extensions for Strong Software Isolation. In 25th USENIX
Security Symposium (USENIX Security 16), pages 857-874, Austin, TX,
August 2016. USENIX Association.

R.J. Creasy. The Origin of the VM/370 Time-Sharing System. IBM .
Res. Dev., 25(5):483-490, sep 1981.

Josh Dersch. The Xerox Alto Part 2: Microcode. https:
//engblg livingcomputers.org/index.php/2017/06/23/the-xerox-
alto-part-2-microcode/, June 2017.

Dave Dice, Ori Shalev, and Nir Shavit. Transactional Locking II. In Pro-
ceedings of the 20th International Conference on Distributed Computing,
DISC’06, page 194-208, Berlin, Heidelberg, 2006. Springer-Verlag.
Digital Equipment Corporation. PALcode for Alpha Microprocessors:
System Design Guide. May 1996.

Isaac Evans, Fan Long, Ulziibayar Otgonbaatar, Howard Shrobe, Martin
Rinard, Hamed Okhravi, and Stelios Sidiroglou-Douskos. Control
Jujutsu: On the Weaknesses of Fine-Grained Control Flow Integrity.
In Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, CCS 15, page 901-913, New York, NY, USA,
2015. Association for Computing Machinery.

J. Gee, S. W. Melvin, and Y. N. Patt. The Implementation of Prolog via
VAX 8600 Microcode. In Proceedings of the 19th Annual Workshop on
Microprogramming, MICRO 19, page 68-74, New York, NY, USA, 1986.
Association for Computing Machinery.

Dan Goodin. In a first, researchers extract secret key used to encrypt
Intel CPU code. https://arstechnica.com/gadgets/2020/10/in-a-first-
researchers-extract-secret-key-used-to-encrypt-intel-cpu-code/, Oct

21

[23]

[24]

[25]

[26]

[27]

[28]
[29]

[30]

[31]

[32]

[33]

[34]

[35]
[36]

[37]

[38]

[39]

2020.

Judith S. Hall and Paul T. Robinson. Virtualizing the VAX Architec-
ture. In Proceedings of the 18th Annual International Symposium on
Computer Architecture, ISCA *91, page 380-389, New York, NY, USA,
1991. Association for Computing Machinery.

Lisa Heller and M. Farrell. Millicode in an IBM zSeries processor. IBM
Journal of Research and Development, 48:425 — 434, 06 2004.

Merle E. Houdek, Frank G. Soltis, and Roy L. Hoffman. IBM System/38
Support for Capability-Based Addressing. In Proceedings of the 8th
Annual Symposium on Computer Architecture, ISCA *81, page 341-348,
Washington, DC, USA, 1981. IEEE Computer Society Press.

IBM Systems and Technology Group. PowerISA Version 3.0 B. March
2017.

Intel Corporation. Intel 64 and IA-32 Architectures Software Devel-
oper’s Manual. Volume 2 (2A, 2B, 2C, & 2D): Instruction Set Reference,
A-Z(325383-079US), March 2023.

Intel Corporation. Intel Trust Domain Extensions. (343961), February
2023.

David Kaplan, Jeremy Powell, and Tom Woller. AMD Memory Encryp-
tion. White paper, 2016.

Paul A. Karger. Performance and Security Lessons Learned from Vir-
tualizing the Alpha Processor. In Proceedings of the 34th Annual Inter-
national Symposium on Computer Architecture, ISCA *07, page 392-401,
New York, NY, USA, 2007. Association for Computing Machinery.
Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss,
Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas
Prescher, Michael Schwarz, and Yuval Yarom. Spectre Attacks: Ex-
ploiting Speculative Execution. Commun. ACM, 63(7):93-101, jun
2020.

Benjamin Kollenda, Philipp Koppe, Marc Fyrbiak, Christian Kison,
Christof Paar, and Thorsten Holz. An Exploratory Analysis of Mi-
crocode as a Building Block for System Defenses. In Proceedings of the
2018 ACM SIGSAC Conference on Computer and Communications Secu-
rity, CCS ’18, page 1649-1666, New York, NY, USA, 2018. Association
for Computing Machinery.

Philipp Koppe, Benjamin Kollenda, Marc Fyrbiak, Christian Kison,
Robert Gawlik, Christof Paar, and Thorsten Holz. Reverse Engineering
x86 Processor Microcode. In 26th USENIX Security Symposium (USENIX
Security 17), pages 1163-1180, Vancouver, BC, August 2017. USENIX
Association.

Ilia Lebedev, Kyle Hogan, Jules Drean, David Kohlbrenner, Dayeol
Lee, Krste Asanovi¢, Dawn Song, and Srinivas Devadas. Sanctorum:
A lightweight security monitor for secure enclaves. In 2019 Design,
Automation & Test in Europe Conference & Exhibition (DATE), pages
1142-1147, 2019.

Henry M Levy. Capability-based Computer Systems. Digital Press,
1984.

Linus Torvalds. x86 - why unite when you can fragment? https://www.
realworldtech.com/forum/?threadid=200812&curpostid=200822.
Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner
Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel
Genkin, Yuval Yarom, and Mike Hamburg. Meltdown: Reading Kernel
Memory from User Space. In 27th USENIX Security Symposium (USENLX
Security 18), pages 973-990, Baltimore, MD, August 2018. USENIX
Association.

Ali Jose Mashtizadeh, Andrea Bittau, Dan Boneh, and David Maz-
iéres. CCFIL: Cryptographically Enforced Control Flow Integrity. In
Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, CCS 15, page 941-951, New York, NY, USA,
2015. Association for Computing Machinery.

MIPS Tech, LLC. MIPS64 Architecture for Programmers. Volume IV-I:
Virtualization Module of the MIPS64 Architecture, December 2013.


https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/secure-coding/xucode-implementing-complex-instruction-flows.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/secure-coding/xucode-implementing-complex-instruction-flows.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/secure-coding/xucode-implementing-complex-instruction-flows.html
https://opennetworking.org/p4/
https://www.dpdk.org/
https://ebpf.io/
https://ebpf.io/
https://www.intel.com/content/www/us/en/support/articles/000005779/processors.htm
https://www.intel.com/content/www/us/en/support/articles/000005779/processors.htm
https://spdk.io/
https://www.synopsys.com/dw/ipdir.php?ds=dwc_standard_cell
https://www.synopsys.com/dw/ipdir.php?ds=dwc_standard_cell
https://yosyshq.net/yosys/about.html
https://engblg.livingcomputers.org/index.php/2017/06/23/the-xerox-alto-part-2-microcode/
https://engblg.livingcomputers.org/index.php/2017/06/23/the-xerox-alto-part-2-microcode/
https://engblg.livingcomputers.org/index.php/2017/06/23/the-xerox-alto-part-2-microcode/
https://arstechnica.com/gadgets/2020/10/in-a-first-researchers-extract-secret-key-used-to-encrypt-intel-cpu-code/
https://arstechnica.com/gadgets/2020/10/in-a-first-researchers-extract-secret-key-used-to-encrypt-intel-cpu-code/
https://www.realworldtech.com/forum/?threadid=200812&curpostid=200822
https://www.realworldtech.com/forum/?threadid=200812&curpostid=200822

(40]

—
S
=

=

Juan Navarro, Sitaram Iyer, Peter Druschel, and Alan Cox. Practical,
Transparent Operating System Support for Superpages. In Proceedings
of the 5th Symposium on Operating Systems Design and Implementation
(Copyright Restrictions Prevent ACM from Being Able to Make the PDFs
for This Conference Available for Downloading), OSDI *02, page 89-104,
USA, 2002. USENIX Association.

Hilmi Ozdoganoglu, T. N. Vijaykumar, Carla E. Brodley, Benjamin A.
Kuperman, and Ankit Jalote. SmashGuard: A Hardware Solution to
Prevent Security Attacks on the Function Return Address. IEEE Trans.
Comput., 55(10):1271-1285, oct 2006.

PrivateCore. PrivateCore: Home. https://privatecore.com/.
Sebastian Schonberg. The L4 Microkernel on Alpha, Design and Im-
plementation. Technical report, University of Dresden, September
1996.

22

[44]

[45]

Sun Microsystems, Inc and Fujitsu Limited. SPARC jPS2: Common
Specification. September 2003.

Anjo Vahldiek-Oberwagner, Eslam Elnikety, Nuno O. Duarte, Michael
Sammler, Peter Druschel, and Deepak Garg. ERIM: Secure, Efficient in-
Process Isolation with Protection Keys (MPK). In Proceedings of the 28th
USENIX Conference on Security Symposium, SEC’19, page 1221-1238,
USA, 2019. USENIX Association.

[46] Jonathan Woodruff, Robert N.M. Watson, David Chisnall, Simon W.

Moore, Jonathan Anderson, Brooks Davis, Ben Laurie, Peter G. Neu-
mann, Robert Norton, and Michael Roe. The CHERI Capability Model:
Revisiting RISC in an Age of Risk. In Proceeding of the 41st Annual
International Symposium on Computer Architecuture, ISCA 14, page
457-468. IEEE Press, 2014.


https://privatecore.com/

	Abstract
	1 Introduction
	2 Design
	2.1 Metal Instruction Extension
	2.2 Fast Metal Mode Transition
	2.3 Exposing Architectural Features
	2.4 Hardware Resources

	3 Applications
	3.1 User Defined Privilege Levels
	3.2 Custom Page Tables
	3.3 Transactional Memory
	3.4 User Level Interrupt
	3.5 Other Applications

	4 Discussion
	5 Related Work
	6 Conclusion
	References

