Unleashing True Utility Computing with Quicksand

Zhenyuan Ruan
MIT

Shihang Li
Brown University

Kaiyan Fan
MIT

Marcos K. Aguilera
VMware Research

Adam Belay
MIT

Seo Jin Park
Google

Malte Schwarzkopf
Brown University

Abstract

Today’s clouds are inefficient: their utilization of resources like CPUs, GPUs, memory, and storage is low. This inefficiency occurs because applications consume resources at variable rates and ratios, while clouds offer resources at fixed rates and ratios. This mismatch of offering and consumption styles prevents fully realizing the utility computing vision.

We advocate for fungible applications, that is, applications that can distribute, scale, and migrate their consumption of different resources independently while fitting their availability across different servers (e.g., memory at one server, CPU at another). Our goal is to make use of resources even if they are transiently available on a server for only a few milliseconds. We are developing a framework called Quicksand for building such applications and unleashing the utility computing vision. Initial results using Quicksand to implement a DNN training pipeline are promising: Quicksand saturates resources that are imbalanced across machines or rapidly shift in quantity.

1 Introduction

It has been over 60 years since the proposal of “utility computing” [22]—the notion that compute resources are consumed on a pay-per-use model, like electricity. Even though public clouds claim the mantle of utility computing, its vision has not been fully realized yet. In fact, modern computing is not just one utility but multiple utilities, such as CPUs, GPUs, memory, and storage. Cloud providers offer these resources through cloud instances (VMs or containers or serverless functions) at large granularities (e.g., GBs of memory, a full CPU core, etc). Consequently, users can only rent resources bundled together at fixed ratios that often fail to match an application’s exact needs. For example, an AWS Lambda instance allocates CPU proportional to the memory configured [8], but the user might use it only as an in-memory data cache that requires little CPU [60]. While there is a large menu of instance configurations, none of the choices may fit the resource usage exactly, as datacenter applications often have varying consumption [7, 55]. In other words, there is a mismatch between the cloud offering and the user consumption in resource granularity, ratio, and dynamism.

This mismatch hurts both providers and users: providers cannot multiplex applications to fully utilize the available hardware and must deal with stranded resources, while users must pay for resources they do not use and suffer from performance problems when the consumption exceeds what they expected. While one could hope cloud providers will modify their offerings to better match user needs, doing so would require fundamental changes to the cloud architecture [64].

The goal of this work is to liberate users from the challenging resource provisioning task and enable providers to fully utilize resources even if they are stranded or only available for a few milliseconds. To achieve this goal, we propose a new system called Quicksand, which asks users to build applications slightly differently from current practice, by using abstractions that disentangle the use of resources. With Quicksand, developers decompose their applications into different migratable components that each specialize in consuming a specific type of resource. The resulting application is fungible: it can use each resource type wherever present—even on different machines for different resources—while achieving good performance. Applications can adjust their consumption of each resource according to resource needs and availability in the moment, while the cloud places the corresponding application components on servers with the required resources.

For example, consider a batch image processing application that takes a large sequence of images, pre-processes each image on CPUs, and uses the resulting output to train a model on GPUs. Normally, such an application would run on a dedicated set of training machines with a fixed ratio of CPUs, GPUs, and memory. These resources are at risk of
With Quicksand, the application can adapt its demand to VMs or serverless functions) that are statically provisioned. To be adaptive, the system must react quickly in response to the workload. Applications have well-known compute-heavy and I/O-heavy fluctuation in incoming requests, and many batch processing applications have spikes in CPU use due to their nature. For example, a latency-limited application may have a period of idle CPU on the other machine.

There are many challenges in following this approach. To be performant, communication costs must be low enough to maintain performance compared to a traditional design. To be efficient, the system must support the rapid migration of application components to fill in brief resource usage gaps. To be usable, the system must react quickly in response to the change in resource consumption and availability. To be usable, the programming abstraction must be easy to adopt, while hiding the complexity of resource migration and scaling behind simple APIs. An efficient implementation must optimize the entire system stack, including the kernel, runtime, and programming abstractions.

2 Background and Motivation

Public clouds today offer resources through instances (e.g., VMs or serverless functions) that are statically provisioned and bundle resources at fixed ratios. For example, an AWS EC2 instance has fixed amounts of CPU, memory, network bandwidth, etc.; and an AWS Lambda function allocates CPU cores in a fixed ratio to memory. This scheme couples the allocation of different resources, creating hard problems for both cloud providers and users: cloud providers must fit fixed-size instances to fixed-size physical machines, while users must accurately predict their application resource needs and find the nearest fitting instance configuration.

Application resource needs are hard to predict because they are complex and dynamic. An application rarely uses exactly all the resources available on its instance: there is often a bottleneck resource while others remain underutilized [47]. Moreover, resource consumption shifts over short periods in response to the workload. For example, a latency-sensitive application may have spikes in CPU use due to fluctuation in incoming requests, and many batch processing applications have well-known compute-heavy and I/O-heavy phases [18]. Such dynamic behavior makes it hard for cloud providers to effectively oversubscribe resources, as they must guarantee the promised resources without knowing their future consumption. Thus, they often have to conservatively provision resources for an estimated peak [52], resulting in under-utilization; many datacenters report average CPU and memory utilization below 60% [25, 58].

In order to achieve both high resource efficiency and performance, applications have to be able to adaptively scale in response to variable resource needs and availability. Unfortunately, existing solutions react too slowly (tens of seconds or minutes) [1, 6, 17, 25, 32] and fail to independently scale an individual resource (e.g., spawning a new lambda function allocates both CPU and memory). In an ideal world, by contrast, even a few milliseconds of idleness of a single resource could be productively exploited by other workloads that need precisely that resource. We believe that the hardware to achieve this already exists today thanks to fast datacenter networks; what is missing are better software techniques to enhance the fungibility of an application, so parts of the application can run and migrate wherever resources are available—a problem that we tackle in this paper.

We illustrate the power of fungibility through a motivating experiment. This experiment has two servers, each running an instance of a high-priority application (e.g., a latency-critical service). The high-priority application has phased behavior: every 10ms, it goes from consuming no CPU to consuming all the cores on the machine, and reverts to no CPU consumption after another 10ms. The two application instances on different machines are shifted in time: when one instance is idle, the other is consuming all cores, and vice-versa. We want to run another CPU-intensive application to fill the idle CPU cycles in the two machines, but in a classic cloud setting, this filler application could at best leverage one machine, leaving 50% of the other machine idle. In contrast, by making the application fungible, we can effectively harness the resources on both machines: as CPU cycles become scarce on one machine, the application quickly migrates to the other machine where the CPU is idle.

To design fungible applications, our starting point is the Nu system [50]. Nu introduces the concept of logical processes, which breaks down the traditional monolithic UNIX process into smaller, independently schedulable units called proclets. Each proclet has a heap for storing state and threads for performing computation. Proclets expose an object-oriented interface and can communicate with each other through method invocation. Since proclets are granular, Nu can quickly react to resource pressure by rapidly migrating proclets to machines with spare resources. Nu adopts a distributed runtime that spans all machines to facilitate migration and avoid...
cold starts. It takes only a few milliseconds to migrate a proclet with 10MiB of state, orders of magnitudes faster than migrating a VM or even a process.

Nu’s quick migration mechanism is a crucial step towards utility computing. In our motivating experiment, we structured the filler application as proclets with small state. When the CPU utilization spikes on the machine running the filler application, its proclets migrate to the other machine. We measure the speed of this migration and the goodput achieved by the filler application. Figure 1 shows the results: the filler application migrates in less than 1 ms between machines to fill in gaps in CPU utilization. This result shows that it is possible to harness tiny periods of idle resources via rapid migration, and that such an approach can increase both utilization and performance.

However, Nu’s rapid proclet migration mechanism alone is far from enough to achieve utility computing. First, Nu fails to unleash stranded resources as proclets still bundle different types of resources, making it hard to effectively combine resources from different machines. For example, a server may have much idle CPU but little free memory, while another server has little CPU but plenty of available memory. In this scenario, it may be impossible to fit proclets in either machine, even though in aggregate there are sufficient idle CPUs and free memory. This problem calls for a new abstraction that further decouples resource consumption.

Second, Nu is hard to use as it requires significant developer effort to manually decompose an application into granular pieces. While developers are accustomed to writing applications with high-level programming abstractions (e.g., data structure libraries, map-reduce frameworks, etc.), Nu only offers a low-level proclet interface. This problem calls for a higher-level abstraction that abstracts away the details of application decomposition.

Finally, fast migration is possible only for fine-grained proclets. A fine-grained proclet may evolve into a coarse-grained one amidst changing loads and resource demands. For example, a proclet that stores a hash table shard can grow significantly as data gets inserted into it. Nu’s proclets lack an ability to keep their own granularity small, thereby making migration slow as they grow. This problem calls for an adaptive repartitioning mechanism to preserve granularity.

3 A Path Toward Utility Computing

We now propose a potential path toward realizing the vision of utility computing by building upon Nu’s proclets. First, we introduce resource proclets, new types of proclets each designed to consume a specific resource (e.g., memory, compute, storage, etc.). Second, we propose higher-level programming abstractions, such as sharded data structures and distributed thread pools, that decompose resource usage into resource proclets while providing familiar APIs. Finally, we propose new adaptive mechanisms to split and merge proclets as resource consumption varies.

3.1 Decoupling Resources

Nu adopts hybrid proclets that bundle many types of resources, making it hard to independently map resource demand to the resources available on different machines. To address this issue, we propose different kinds of resource proclets, each tailored to a specific resource. For example, memory proclets store in-memory data, compute proclets perform computation, storage proclets keep persistent data, etc. The APIs of these resource proclets are specialized for their underlying resource type. For instance, compute proclets expose run(lambda) to support computation; memory proclets offer NewPtr<T>(args...) to allocate distributed pointers that work across proclets for accessing in-memory objects; and storage proclets provide ReadObject(id) and WriteObject(id) for accessing storage objects.

Resource proclets can interact with each other by invoking their APIs. For example, a compute proclet can consume data from a memory proclet by dereferencing distributed pointers. Quicksand’s runtime provides location transparency and optimizes performance; it automatically uses cheap function calls to handle local interactions and remote procedure calls (RPCs) to handle remote interactions.

3.2 High-Level Programming Abstractions

Our resource proclets are low-level constructs that require developers to manually decompose applications, which can be challenging. To make this easier, we will also provide higher-level programming abstractions for developers that hide the complexity of resource proclets.

For memory, we can offer a number of sharded data structures (vector, set, map, queue, etc.) built atop a general sharding library, inspired by existing work in distributed programming [9]. This library partitions data into disjoint ranges based on the sharding key, with each range stored within a separate memory proclet. An index memory proclet maintains a map of sharded ranges to data proclets, allowing users to access elements in these data structures transparently without awareness of which machines are currently storing them. Additionally, we can provide C++-like iterators for seamless iteration of elements across multiple shards. Iterators also provide rich semantic hints, enabling effective data prefetching to reduce the cost of accessing remote shards.

For compute, we can provide a distributed thread pool abstraction where the underlying threads are shared across compute proclets. The heaps within each shard are left empty, except for any objects temporarily allocated by threads. We can provide a set of commonly used parallel computation APIs (e.g., map, reduce, etc.), enabling users to easily compose memory and compute proclets together. For example,
users can pass data structure iterators to a map API; this uses
compute proclets to execute a function over each element
stored within memory proclets.

Similarly, we can also provide high-level abstractions for
other resource proclets, abstracting away the details of proc-
et decomposition. For example, for storage, we can offer
a flat storage abstraction [40] that automatically spreads
fine-grained storage proclets across multiple machines to
combine their capacity and IOPS.

3.3 Adaptive Procllet Splitting and Merging
It is crucial to keep resource proclets fine-grained so that
Quicksand can quickly migrate them to respond to changes
in resource demand or availability. Granular proclets also
reduce the complexity for the scheduler to binpack proclets
onto machines [39]. To ensure fine granularity, Quicksand
has a splitting mechanism for each resource proclet type.

For memory proclets that store data structure shards,
Quicksand enforces a maximum size based on a target mi-
gration latency. If a shard becomes oversized, Quicksand
splits it into two shards by invoking a data-structure-specific
split function. This technique can also be applied to storage
proclets to keep the desired granularity.

A compute proclet, used for parallel computation, can also
be oversized when it has more tasks than its CPU resource
supports. In this case, Quicksand can split it by dividing its
task queue. Splitting occurs only if there are enough CPU
resources in the cluster for the new proclet, thus avoiding
the creation of an excessive number of compute proclets.

Resource proclets can also become undersized. For exam-
ple, after removing many key-value pairs from a sharded
hash table, memory proclets can have many more hash table
buckets than KV pairs, resulting in low memory efficiency.
Quicksand can respond by invoking a data-structure-specific
merge function to combine the adjacent shards into a single
memory proclet. Undersized compute proclets can also occur,
such as in a data pipeline where producer proclets gener-
ate data faster than it can be absorbed by an external sink.
Quicksand can react by merging producer compute proclets
to match the production rate with the consumption rate.

Splitting/merging resource proclets may briefly disrupt
application performance as it blocks new proclet method in-
oculations until it completes. However, Quicksand minimizes
the performance impact by ensuring resource proclets are
granular so that splits and merges are always fast.

4 Case Study: DNN Training
We illustrate the benefits of Quicksand through a case study
in DNN image training, a commonly used cloud workload.
Here, a sequence of images must be pre-processed by CPU
servers (decompression, data cleaning, augmentation, etc.)
before being fed into GPU servers for training a DNN model.

Running these jobs efficiently in today’s cloud is challeng-
ing [21, 37, 38, 53]. Users struggle to provision CPU and GPU
resources without starving one of them. On the one hand,
GPUs are the most expensive resource, so in theory users
would benefit from adding CPU servers for preprocessing
in order to keep GPU servers saturated. On the other hand,
provisioning too many CPU servers wastes CPU cycles and
increases cost. The optimal amount of resources varies over
time as GPU availability changes [5] and training parallelism
varies [43].

Second, datacenter providers face difficulties in binpacking
jobs into available physical servers in which resource imbal-
ance is common [36]. To illustrate the challenges, consider a
scenario of preprocessing a large number of in-memory im-
ages with two machines. Suppose one machine has abundant
CPU cores but limited memory, and the other has abundant
memory but limited CPU cores. It is difficult for existing
systems to effectively combine the resources from both ma-
Chines, forcing them to either run out of memory or under-
Utilize CPUs.

Quicksand provides efficient abstractions to address these
issues. To saturate the resources of both machines in the
preprocessing stage, we store input images into a sharded
vector, therefore decomposing data into granular memory
proclets that can be independently scheduled to utilize idle
memory across the machines. Similarly, to perform the pre-
processing computation, we create a compute proclet that
can split on demand to harness free CPU cores across ma-
Chines. Compute proclets load images from memory proclets
using the vector iterator interface, enabling Quicksand to
effectively prefetch data to improve locality.

To balance CPU and GPU resources, we apply a sharded
queue to connect the CPU-based preprocessing stage (i.e.,
the producer of the queue) with the GPU-based training stage
(i.e., the consumer). The queue can absorb bursts in producer
output by storing it in memory proclets that can split and
migrate. Quicksand splits or merges preprocessing compute
proclets to match the data consumption rate of GPU training,
ensuring GPU saturation without wasting CPU resources.

Using an early prototype of Quicksand, we built a simple
DNN training pipeline and obtained promising results. The
pipeline has an OpenCV-based image preprocessing stage
atop Quicksand. For the training stage, we emulated GPUs
by adding a delay to consume data from the queue, as we
have not yet implemented GPU proclets.

Figure 2 demonstrates that Quicksand can efficiently com-
bine resources from different machines, even when they are
heavily imbalanced. In this experiment, we fixed the total
amount of CPU and memory resources and divided them be-
tween two machines with different configurations (memory-
unbalanced, CPU-unbalanced, and both-unbalanced). We
ran the preprocessing stage on Quicksand with these configurations and compared its performance with the ideal baseline configuration of a single machine with the same total resources (which avoids the overhead of utilizing remote resources). Our evaluation results show that Quicksand schedules compute and memory proclets to the appropriate machines regardless of the setup, achieving both high resource utilization and near-optimal performance. For example, in the scenario where both CPU and memory are unbalanced, Quicksand correctly schedules most of the memory proclets to the memory-heavy node and most of the compute proclets to the CPU-heavy node. Thanks to Quicksand’s data prefetcher, preprocessing images from remote memory proclets is as fast as preprocessing local images.

Figure 3 shows that Quicksand can dynamically adapt to varying GPU resources by rapidly scaling the number of preprocessing compute proclets, ensuring GPU saturation at all times. In this experiment, we vary the number of available GPUs between four and eight every 200 milliseconds. We see that Quicksand’s mechanisms can adjust the amount of CPU resources quickly, taking 10–15ms to split or merge compute proclets after learning of a change in GPU resources.

5 Discussion and Research Directions

How to design the scheduling policy? There are several challenges to developing effective scheduling policies for Quicksand. First, idle resources must be detected quickly so they can be filled with available resource proclets. Queuing delay could be one such signal to detect idle cores [12], but more techniques are needed for memory, storage, etc. Second, the scheduler has to find a balance between reaction time and quality. On the one hand, the scheduler has to react quickly in response to sudden changes in resource usage. On the other hand, the scheduler has to make high-quality decisions; this inevitably prolongs the reaction time, especially since the fine granularity of resource proclets leads to a large amount of scheduling units. A promising direction is to operate scheduling at two levels: fast local decisions to absorb usage spikes and slow global decisions that reflect long-term shifts in usage, as observed from runtime traces, compiler hints, and ML models. This could balance the need for fast reaction with the need for optimal long-term placements.

How can we maintain locality? When compute intensity is low, communication costs between resource proclets on different machines might outweigh the utilization benefits of allocating different resource types independently. It may be possible to further optimize communication so that short remote method invocations are efficient. However, another strategy could be to place resource proclets that frequently communicate with one another on the same machine, provided available resources permit it. This is feasible as the runtime can easily capture the affinity information and report it to the scheduler for making colocation decisions. Finally, the I/O path could be used to further reduce the burden of communication by offloading some computation into smart NICs or smart SSDs, which can operate closer to the data they are processing [35, 49].

What other resources can we decouple? We focused on compute, memory, and GPU proclets, but we believe resource proclets could be used to decouple other resources, such as storage, accelerators, or the network. Resources may have sub-resources that are consumed separately and can be decomposed too: for example, storage has capacity and IOPS; compute has cycles and last-level cache usage. Some sub-resources may be inherently tied together (e.g., storage IOPS and bandwidth), which may preclude decoupling. These situations may not allow full utilization of all sub-resources. We could consider different storage classes as different resources, each with its own proclet type: fast flash disks are increasingly used as slow cheap memory, while slower flash or hard disks are used to keep persistent data.

Each type of resource proclet needs its own placement policies and fast migration mechanisms—developing these will pose interesting technical challenges (e.g., how to migrate resource proclets across GPUs rapidly).

How can the hardware help? Faster networks could speed up resource proclet migration. Having a DIMM-attached NIC [3] and copying data directly to CPU cache lines or registers [27] might further boost performance. Offloading transport [24], RPC [33], and serialization [46] to hardware
could reduce communication costs, allowing for proclets with lower compute intensity to run more efficiently on different machines. Finally, new coherer memory disaggregation technologies like CXL [15] offer new design opportunities for our runtime to achieve better performance. For example, with the capability of accessing remote memory transparently, we can speed up resource proclet migration by postponing the copying of data. Another example is optimizing remote proclet communication by avoiding serialization and directly passing data pointers.

How can the OS and runtime help? Our memory proclet migration currently hits kernel bottlenecks on page pinning and memory mapping—optimizing these could further speed up migration. Another opportunity lies in tighter coordination with the memory allocator, allowing Quicksand to skip freed memory during migration. Migration policies will benefit from hints from the OS and user libraries about what accelerators (GPU, TPU, DPU, FPGA) operate on what will benefit from hints from the OS and user libraries about with lower compute intensity to run more efficiently on.

How can compilers and profilers help? Compilers and profilers could help developers decompose their code into resource proclets, by providing semi-automated guidance based on static and dynamic analyses. With a more constrained programming model, compilers can also help validate the fine granularity of resource proclet decomposition. Profilers will also help identify non-performant resource proclets, while runtime analyses will guide migration policy.

6 Related Work

Improving Datacenter Utilization. Resource disaggregation is a trending approach to improve datacenter utilization. Existing work has demonstrated the feasibility of disaggregating memory [4, 23, 45, 51, 61], storage [29–31, 34], and accelerators [10, 13, 57, 59]. Quicksand has a complementary approach: rather than disaggregating resources, it makes applications fungible. Another line of work improves utilization by harvesting idle server resources; this includes CPUs [63], memory [19], and storage [48]. However, resource harvesting is limited to best-effort restartable applications, as the harvested resources can be forcibly reclaimed anytime under resource pressure.

Resource Decoupling. Existing work such as Monotasks [41, 42] also decouples a job into pieces that each dominantly consumes a single type of resource, similar to Quicksand’s resource proclets. However, their main design goal is to achieve a better performance visibility rather than a better resource efficiency through disaggregation.

Live Migration. Existing work live-migrate jobs across machines to balance load [14] and optimize cost [54] over a long time horizon. They conduct migration at coarse granularity—such as VM [14, 26, 28], container [44, 56], and process [11]—which takes more than hundreds of milliseconds. Slow migration impacts the service level agreement of applications and makes it practical only in latency-insensitive scenarios. Quicksand builds atop Nu [50], a recent system that supports fine-grained migration at the proclet level. Nu enables sub-millisecond migration with little performance disruption, thereby enabling Quicksand to fill in small gaps in resource utilization.

Training and Data Analytics Pipelines. Existing ML training pipelines [2, 20, 62] and data analytics pipelines [21, 53] also decouple state from compute. Compared to Quicksand, they are less general and flexible: each of them targets a specific application scenario and a specific machine resource distribution. With decoupling, these pipelines also support independent auto-scaling at each layer to balance performance; for example, Cachew (an ML training pipeline) [21] is able to automatically scale the data preprocessing stage to keep training GPUs/TPUs saturated. Compared to Quicksand, they target a much longer timescale; for example, Cachew takes minutes to reach an equilibrium whereas Quicksand takes only tens of milliseconds (§4).

7 Conclusion

Utility computing is in reality multiple utilities that are bundled together by cloud providers at large granularities in an imperfect offering. As applications consume these resources at variable rates and ratios, resources are often underutilized, either because applications allocate them but do not consume them (resource overprovisioning) or because the cloud cannot offer the resources in a usable form (resource stranding). We are trying to address this problem with Quicksand, by making applications fungible so that they can be distributed, scaled, and migrated to fit the availability of individual resource for even a few milliseconds, despite changing resource demands by applications and resource availability in the cloud. Early experience with a DNN training pipeline shows that this approach is promising.

Acknowledgements

We thank the anonymous reviewers, as well as members of the PDOS group at MIT and the ETOS group at Brown University, for their helpful feedback. We appreciate CloudLab [16] for providing the experiment platform. This work was funded in part by a Facebook Research Award, Google Faculty Awards, the DARPA FastNICs program under contract #HR0011-20-C-0089, the NSF under awards CNS-2104398 and CNS-2045170, and VMware.
References

