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ABSTRACT
Emerging memory fabrics and the resulting composable in-
frastructures have fundamentally challenged our conven-
tional wisdom on how to build efficient rack/cluster-scale
systems atop. This position paper proposes a new computing
paradigm–called Fabric-Centric Computing (FCC)–that
views the memory fabric as a first-class citizen to instanti-
ate, orchestrate, and reclaim computations over composable
infrastructures. We describe its design principles, report our
early experiences, and discuss a new intermediate system
stack proposal that harnesses the uniqueness of this cluster
interconnect and realizes the vision of FCC.
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1 INTRODUCTION
Memory fabrics (such as Gen-Z [10], OpenCAPI [18], CCIX [4],
and CXL [6]), an emerging cluster interconnect, have gained
significant interest recently and are being considered to re-
place today’s communication fabrics used for building en-
terprise racks and on-premise clusters. They provide the
load/store access model and enable tight integration of cross-
node memory and accelerators into host systems, resulting
in a real composable infrastructure. Such an architecture will
bringmany benefits, such as on-demand scaling, fine-grained
computation resource sharing, and energy/cost-efficiency
improvements. The last few years have seen a number of
memory fabrics and composable testbeds [3, 9, 17, 24, 54, 73]
being proposed, developed, and sampled.
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However, a memory fabric fundamentally differs from a
communication fabric as follows. First, it is transparently in-
tegrated into the memory hierarchy and execution pipeline
of the host processor, requiring a synchronous execution
model. Second, a memory fabric brings back several memory
node types proposed in early scalable and shared-memory
machines, yielding more data placement options. Third, its
performance heavily hinges on how routable PCIe performs
at scale, especially when handling unpredictable and concur-
rent PCIe transactions. Fourth, it enables a lightweight and
fast context-switching scheme among fabric-attached execu-
tion engines for coordinated computation. Finally, a memory
fabric introduces passive failure domains where a remote
node has little capability to implement fault tolerance mech-
anisms. Therefore, these differences make our prior system
design philosophies and techniques of building communica-
tion fabric-based rack/cluster-scale systems either ineffective
or invalid for the composable infrastructure.
In this paper, we propose a new computing paradigm–

called Fabric-Centric Computing (FCC)–that views the
memory fabric as a first-class citizen to instantiate, orches-
trate, and reclaim computations over composable infrastruc-
ture. FCC materializes the memory fabric’s capabilities as
primitives and abstractions, defines the interaction interface
and templates for different fabric-attached components, and
coordinates computations based on the communication lim-
its of the fabric. We propose several design principles to real-
ize the vision of FCC: data movement as a managed service,
host-assisted memory node type-conscious data structures,
idempotent tasks and hardware cooperative scalable func-
tions, and a fabric central arbitrator via dedicated lanes. We
then sketch an intermediate system stack following these
principles to realize a vision of FCC.

2 MEMORY FABRIC AND COMPOSABLE
INFRASTRUCTURE

2.1 A Quick Memory Fabric Primer
Amemory fabric is an emerging low-latency and high-bandwidth
lossless cluster interconnect that enables tight integration of
cross-node memory and accelerators into host systems. Com-
pared with communication fabrics (such as Ethernet [12], In-
finiBand/RoCE [13], AMD’s Infinity Fabric [2], Intel’s Omni-
Path [14]), a memory fabric provides the load/store access
model and is inherently integrated into the memory hier-
archy of a host processor with restricted cache coherence
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Interconnect Vendor Active Development Specification Product Demonstration

Gen-Z [10] HPE/Gen-Z Consortium 2016-2021 Gen-Z 1.0/1.1 Gen-Z Media Kit [9], Gen-Z ChipSet for
ExtraScale Fabric [54]

CAPI/OpenCAPI [18] IBM/OpenCAPI Consortium 2014-2022 CAPI 1.0/2.0, OpenCAPI 3.0/4.0 BlueLink in POWER9 [73]
CCIX [4] Xilinx/CCIX Consortium 2016-now CCIX 1.0/1.1/2.0 CMN-700 Coherent Mesh Network [23]
CXL [6] Intel/CXL Consortium 2019-now CXL 1.0/1.1/2.0/3.0 Omega Fabric [17], Leo Memory Platform [24]

Table 1: A list of commodity memory fabrics. CAPI=Coherent Accelerator Processor Interface. CCIX=Cache Coherent Intercon-
nect for Accelerators. CXL=Compute Express Link. Gen-Z and OpenCAPI have merged into CXL in the last two years.

support. There are three major driving forces behind the
design and implementation of such interconnects:
• #1: The increasing gap between core counts and memory

channel bandwidth per core on a server processor [5, 15],
coupledwith nearly stagnantmemory bandwidth improve-
ment, limits the attainable per-core computing through-
put. We have seen an 8×/6× increase in core counts of the
AMD/Intel x86 server CPU in the last 13 years, while the
per-core memory bandwidth has come to a standstill [1];

• #2: The inevitable processing overheads of the traditional
networking stack waste computing cycles at both local
hosts and remote devices [35, 65], complicating the way to
support disaggregated memory/accelerators. Researchers
resort to designing customized communication substrates
to facilitate host-device data transfer [53, 72, 79];

• #3: The lack of flexible physical resource scaling squan-
ders the cost-efficiency benefit of disaggregation. Most of
today’s remote memory or computing chassis are not stan-
dalone, relying on a server host to provide connectivity
via on-/off-chip interconnects. Hence, building a disaggre-
gated computing box requires equipping a beefy server
with sufficient bandwidth provisioned [11, 16, 20, 22].
Compute Express Link (CXL). Memory fabrics are gen-

erally realized via a specialized I/O bus technology. We base
our description on the Flex Bus architecture of CXL [6]–the
mainstreammemory fabric since absorbing Gen-Z and Open-
CAPI (Table 1). The Flex Bus (Figure 1-a), built atop PCIe [19],
provides root access points to the host processor, supports
both native PCIe and CXL modes, and is organized into three
layers (i.e., physical layer, link layer, and transaction layer).
The physical layer prepares transmitted data upon receiving
upper link-layer packets, deserializes the data received from
the physical bus, and converts it to the appropriate format
based on the bus operating mode. It supports both 68B and
256B flit modes, runs at most 64 GT/s link speed, and allows
x4/x8/x16 bifurcation configurations. The link layer, working
as an intermediary stage, provides reliable transmission be-
tween two endpoints using a hop-by-hop based credit-based
flow control. Each entity along the path allocates credits to
downstream ports based on its buffer capacity, uses a credit
update protocol to track inflight flit transmission, and runs an
overcommitment scheme to improve bandwidth utilization.

The transaction layer provides channel semantics and com-
munication primitives. Specifically, CXL offers three types

of channels: (1) CXL.cache, maintaining a small-sized and
fully coherent cache using standard processor snoop filter
mechanisms; (2) CXL.mem, allowing host CPUs to access
device-side memory via sheer load/store instructions, while
coherence operates under either host-only or device-only
modes; (3) CXL.io, wrapping around the basic PCIe protocol
with some enhancements (e.g., non-coherent read/write).

CXL allows scalable switching using a combination of Port
Based Routing (PBR) and Hierarchy Based Routing (HBR)
since CXL 2.0. It supports both direct and indirect topologies
akin to the Ethernet network. A CXL fabric contains several
domains connected via HBR links, where each one consists
of one or more switches that are PBR capable and intercon-
nected with PBR links. An intra-domain switch uses 12-bit
PBR IDs to address up to 4096 unique edge ports. It preserves
the semantics and properties (like reliability and orderliness)
of different channels via a series of buffering, backpressure,
and adaptive routing techniques. The switching routing table
is generally filled up by a central fabric manager.

2.2 Composable Infrastructure
Memory fabrics bring computing resources close, yielding
system composability. A composable infrastructure consists
of the following components (Figure 1-b):
• #1: Fabric Host Adapter (FHA). It connects to the access
root port (RP) of host CPUs. An FHA converts channel
requests into fabric routable packets (or flits) following
the protocol specification and transmits them to the wire.
Similarly, when an adapter receives responses, it parses
the packets, obtains replied data or completion signals,
and delivers them to the processor execution pipeline;

• #2: Fabric Switch (FS). An FS consists of upstream ports
(UPs) for FHA connectivity, downstream ports (DPs) for
remote devices/memory modules, and internal switching
tables associated with efficient traffic orchestration. For
example, the Intelliprop’s Omega testbed [17] employs
a non-blocking crossbar topology between UPs and DPs.
Upon initialization, an FS discovers its connected compo-
nents, self-initializes the routing structure, and fills up the
switching table entries based on the topology;

• #3: Fabric Endpoint Adapter (FEA). An FEA stays close
to the remote device, operating as a target responder, re-
sponsible for fabric protocol processing and converting be-
tween the fabric packets and device-dependent primitives.
Some adapters (such as FA4004 [7]) also perform integrity
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Figure 1: An architectural overview of CXL layering and
composable infrastructure.

checking, request steering, and transmission speed syn-
chronization. Others (like XMM CXL E3.S [26]) directly
embed the FEA into the endpoint device;

• #4: Fabric Attached Memory (FAM) and Fabric At-
tached Accelerators (FAA). These are specialized and
standalone chassis, enclosing a dedicated SoC backplane,
a power supply, and a controller for configuration and
management. CXL defines three types of devices based on
selected channel semantics. CXL Type 1 device extends the
traditional PCIe device with a coherent cache, while Type
2 equips the device with both host-managed memory and
coherent cache and Type 3 works as a memory expander.
For example, the FAM chassis in the Omega testbed [17]
encloses six CXL E3.S memory modules [26], while the
FAA in GigaIO Fabrex [8] holds up to eight accelerators.

3 DIFFERENCES OF MEMORY FABRICS
Difference #1: Synchronous Execution. The memory fab-
ric is inherently integrated into the memory hierarchy and
execution pipeline of the host processor. This is in signifi-
cant contrast to the communication fabric, which interacts
with the CPU asynchronously in a submission-completion
fashion. Consider a DMA transfer between a processor and
a PCIe device as an example. The processor builds a DMA
instruction word, then submits it to a device-side DMA en-
gine to trigger data movement. Upon completion, the engine
notifies the processor through dedicated interrupt signals.
For a memory fabric, load/store requests are generated

transparently from the memory hierarchy and processed
synchronously. A memory read is issued when there is a miss
from the last level cache, while a memory write happens if
the victim buffer needs to flush. During the data transfer, the
current CPU pipeline is stalled and resumed after receiving
the response. This indicates that (1) the host-side caching
structure and CPU-assisted prefetching would transparently
accelerate memory fabric performance; (2) the throughput of
a memory fabric that a core can drive depends on its channel
bandwidth capacity and the depth of the CPU pipeline.

Further, reads/writes over thememory fabric becomemore
costly. Remote memory accesses are considerably slower
than local memory accesses. On the Omega Fabric testbed,

Memory Hierarchy Latency (ns) Throughput (MOPS)
L1 Cache Read/Write 5.4/5.4 357.4/355.4
L2 Cache Read/Write 13.6/12.5 143.4/154.5

Local Memory Read/Write 111.7/119.3 29.4/16.9
Remote Memory Read/Write 1575.3/1613.3 2.5/2.5

Table 2: The cacheline (64B) read/write performance com-
paring a local and a remote DIMM on the Omega Fabric
testbed [17]. MOPS=Million Operations per Second.

the performance of a CXL2.0-like memory expander is nearly
10× slower than its local ARM computing complex (Table 2).
A recent characterization study also reports the inferior per-
formance of a CXL1.1 memory expander on Intel Sapphire
Rapids servers [74]. As a result, host CPUs or FAAs have to
waste more cycles when accessing FAMs, experiencing dras-
tic performance degradation (especially when the application
working set exceeds the LLC capacity) and unpredicted long
execution stalls.
Difference #2: Eclectic Memory Nodes. The memory

fabric enriches the memory node types based on how device
memory is exposed and architected. Unlike communication
fabrics, where data transfer speed is usually agnostic of data
layout at the source and destination, the performance and ef-
ficiency of memory fabric hinge on the chosen memory node
type and its access pattern and locality. These specialized
memory nodes (discussed below) have been explored in early
scalable and shared-memory machines [37, 45, 47, 48, 58, 59].
• Fabric-attached CPU-less NUMA memory node, a

standalone memory expander with no processors. Most of
today’s CXL 1.1/2.0 Type 3 devices belong to this type. It
stays in the same hierarchy as the host-side local memory.
This node can be either owned exclusively by a host CPU
or shared across multiple hosts (where the FEA needs to
partition the capacity and enforce coherence at the device);

• Fabric-attached CC-NUMAmemory node, exposing a
shared address space over remote memory regions with
cache-coherence support. This has been explored in previ-
ous shared-memory multiprocessor systems, such as Mul-
ticube [45], Aquarius [37], DASH [59], and FLASH [58]. It
is usually realized via a cross-node, directory-based, write-
invalidate cache coherence protocol within an FHA/FEA;

• Fabric-attached Non-CC-NUMA memory node. It op-
erates similarly to the CC-NUMA one but lacks cache
coherence, e.g., Intel’s SCC [50] and IBM Cell’s SPE [46].
This simplifies the hardware design of an FHA/FEA, but
complicates the software design and implementation;

• Fabric-attached COMA cache node. The Cache-Only
Memory Architecture (COMA), proposed in the 1990s,
such as DDM [48, 49], reduces the average cache miss
latency by dynamically migrating and replicating caching
objects within memory. Each node exposes a portion of
the global memory, augmented with a large cache and
managed through a hierarchical directory scheme.
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Difference #3: The Importance of Routable PCIe. Un-
der the hood, most commodity memory fabrics are carried
over Routable PCIe, where memory reads/writes are en-
capsulated as PCIe transactions. Researchers have studied
how PCIe interacts with networking adapters within a host
server [64], but developed little understanding of how well
PCIe holds cross-node FAAs/FAMs at a modest scale. Early
memory fabric prototypes [17] borrow the end-to-end virtual
channel technique from Infiniband [13], simplifying the sys-
tem deployment. Further, when employing an external PCIe
switch, one should understand how concurrent PCIe transac-
tions are interleaved and scheduled. For example, the FabreX
PCIe switch [8] delivers less than 100ns non-blocking switch
latency per port with up to 512Gbits/s bandwidth. When ac-
cessing a disaggregated Xilinx U55C FPGA card in a remote
chassis, concurrent 64B PCIe writes can add 600ns more one-
way latencies when compared with the case of holding the
card within the host. When interleaved with 16KBwrites, the
average latency of 64B requests can be degraded drastically.
The problem fundamentally boils down to the efficiency

of credit-based flow control (CFC) at scale. CFC has been pro-
posed and developed for ATM and Infiniband networks [55–
57], but receives less scrutiny in the context of routable PCIe.
We discuss a few unexploited issues below:
• Credit allocation. The de facto scheme is an exponen-
tial ramp-up approach based on port bandwidth utiliza-
tion [56]. A consistently heavily-used port would take
more credits, leaving little room for other contending
ports. Even with no bandwidth waste, this would create
interference and stall transactions from other ports;

• Credit-flow scheduling. The scheduling discipline of
CFC switches is credit-agnostic. Transactions receiving
more credits are not prioritized over the ones with fewer
credits. This would cause head-of-line blocking and credit
waste, impacting both bandwidth and latency;

• Credit coordination. Credit starvation can backpropa-
gate to upstreamed switch ports under scale-out scenarios.
Such congestion can spread across a large victim area,
yielding more credit waste and bandwidth loss.
Difference #4: Fast Context Switching among Execu-

tion Engines. Memory fabrics provide a lightweight and
fast mechanism to create, checkpoint, and ship computing
contexts. Compared to communication fabrics, when trigger-
ing computations in an Ethernet-attached accelerator, one
needs to first set up the communication channel to pass con-
trol signals and data through a customized networking stack,
then design a mechanism to launch the computing kernel by
filling up the execution context on the disaggregated device
(such as registers and push/pull buffers), and finally provide
programming friendly interfaces to host applications [38, 72].

The memory fabric brings an FAA close to the host and
makes it behave as a local device in the following ways.
First, it unifies the intra- and inter-interconnect such that
no fabric I/O conversions or specialized protocol stacks are
needed. Second, saving and restoring execution contexts
either within or across hosts becomes flexible given the par-
tially shared address space offered by various types of FAMs.
For example, CXL type 2 devices can even perform inter-
leaved execution, such as OpenCL cooperative kernels. Third,
developers can reuse existing device drivers, interfaces, and
system/application APIs, instead of doing API remoting [43].

Difference #5: Passive Failure Domains. Memory fab-
rics bring passive failure domains into the composable in-
frastructure. In communication fabrics, both source and des-
tination are active execution entities (e.g., general-purpose
servers) that employ fault-tolerant mechanisms to ensure
data consistency and minimize the recompute overheads.
However, in composable infrastructures, two character-

istics stand out: (1) hosts and remote devices usually stay
in different power domains and can fail separately; (2) the
controller of a FAM/FAA has provisioned little computing
resources for failure handling, making previous solutions
inapplicable. More importantly, the fault-tolerant scheme
should be resource-frugal and impacts the application per-
formance little. Carbink [78] has made early exploration for
RDMA-based far memory by outsourcing resource manage-
ment and monitoring tasks to a central memory manager
and employing a series of reliability/optimization techniques,
such as erasure coding and remote memory compaction.

4 FABRIC-CENTRIC COMPUTING
The characteristics of memory fabrics have motivated us to
rethink how to build rack/cluster-scale systems on compos-
able infrastructures. In the context of the communication
fabric, computation engines are our primary resources. We
usually view the communication substrate as an independent
layer and apply different kinds of optimization mechanisms
to facilitate communication for maximizing computation ef-
ficiency. For example, these techniques include minimizing
networking stack overheads [32, 51, 61, 67, 77], designing
new transport protocols [34, 63, 69], performing efficient
flow scheduling and load balancing [29–31, 68], streamlin-
ing/overlapping communication with computation [44, 62,
65], etc. However, these approaches may be invalidated or
ineffective given the memory fabric’s characteristics and
capabilities. As a straightforward example, optimizing the
host networking stack is unnecessary because the maximum
remote memory throughput that a core can drive depends
on the number of outstanding load/store instructions that it
can submit in its pipeline.
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We propose a new computing paradigm–called Fabric-
Centric Computing (FCC)–that views the memory fabric
as a first-class citizen to instantiate, orchestrate, and reclaim
computations over composable infrastructures. FCC materi-
alizes the memory fabric’s capabilities as primitives and ab-
stractions, defines the interaction interface and templates for
different fabric-attached components, and coordinates com-
putations based on the communication limits of the fabric.
In addition to performance and efficiency goals, FCC strives
to retain other properties: (1) on-demand scaling, where the
computing and communication resources can scale up/down
based on application demands; (2) flexibility, where it allows
arbitrary mapping between host servers and fabric devices;
(3) over-provisioning, indicating that one can preserve a
large number of computation resources; (4) general compati-
bility, which means that applications can take advantage of
the memory fabric with few modifications. We envision FCC
based on the following design principles:
Design Principle #1: Data movement as a managed

service. Memory fabrics require us to rethink data transfer
from three perspectives. First, data movement is only associ-
ated with two entities: an initiator and an executor, without
a completion facilitator, as in the communication fabric. To
mitigate stall-induced overheads, one should decouple the
initiator from the executor based on data movement cost and
computing urgency. Within the same memory hierarchy, a
movement request is triggered by the source core/FAA but
can be executed by either source, destination, or neighbor-
ing core/FAA. Second, the local memory hierarchy of a host
processor or FAA can transparently accelerate the access
performance of FAMs, indicating that exploiting spatial and
temporal locality will bring many optimization opportuni-
ties. Third, since reads/writes are instantiated by CPUs/FAAs
and served by FAMs, this yields a new type of unexplored
rack/cluster-scale traffic matrix.
FCC advocates data movement as a specialized and man-

aged service. It should effectively blend synchronous and
asynchronous communications to hide remote access over-
heads and facilitate CPU/FAA execution. Load/store requests
that are latency-sensitive or tightly coupled with the cur-
rent execution context (e.g., data structure traversal) are
performed synchronously. In this case, FCC enhances them
with SW/HW-assisted caching and prefetching optimizations
to exploit locality benefits, e.g., preloading the application
working set or partitioning the cache based on memory ac-
cess analyses. Other data transfers submitted by CPUs/FAAs
are then delegated to dedicated migration agents (in the
same memory domain) and orchestrated via a central mod-
ule that enforces control-plane policies (e.g., remote memory
bandwidth throttling). This design also allows FCC to easily
integrate heterogeneous memory nodes embodying different
access characteristics and capabilities.

DesignPrinciple #2:Host-assistedmemorynode type-
conscious data structure.Memory fabric introduces differ-
ent types of memory nodes (§3) with diverse performance
characteristics and capabilities. Designing an efficient data
structure should consider the memory layout across different
memory nodes, their access distribution, and data locality. Re-
searchers have extensively explored NUMA-aware or NUMA-
efficient data structure design [36, 60, 71]. For example, node
replication [33, 36] is a powerful technique that transparently
replicates data references across different NUMA regions by
analyzing thememory and node affinity, whichwould benefit
fabric-attached CC-NUMA memory nodes. But it is inappli-
cable for the CPU-less NUMA one since the remote memory
expander has no processing units. Far memory data struc-
tures [28] target one-sided access mode, augmenting remote
memory with three hardware primitives, thereby reducing
far accesses. However, it ignores the fact that far memory
accesses can indeed be hidden by the local processor’s caches.
AIFM [70] developed an RDMA-based object remote memory
without considering some memory fabric capabilities, e.g.,
far memory accessed via load/store instructions instead of
traversing networking stacks on both sides.
In FCC, we propose a new host-assisted memory node

type-conscious data structure design based on an active and
unified heap. FCC instantiates memory regions/segments
from different fabric-attached memory nodes as a series of
various-sized memory bins, and then uses a heap manager
for object allocation and reclamation. Under the hood is a
runtime system that (1) profiles the object’s access charac-
teristics and the underlying memory node’s availability; (2)
effectively migrates objects across various memory nodes
(including host local memory) based on the object tempera-
ture, concurrent access model, and memory node capabilities.
Developers use backward-compatible programming inter-
faces (like Smart Pointer) to port or build data structures.
We aim to achieve maximum performance gains without
exposing the peculiarities of memory nodes to programmers.
For example, frequently accessed objects would be cached at
the host processor and moved into the local host memory.

Design Principle #3: Idempotent tasks and hardware
cooperative scalable functions. Reliable and scalable exe-
cution on composable infrastructures is paramount to maxi-
mize its efficiency. In FCC, we advocate two abstractions to
achieve this goal. First, to handle the separated and passive
failure domain issue, we propose Idempotent Task, inspired
by the idempotent processor architecture to tackle the ineffi-
ciency of speculative execution [41] from the computer archi-
tecture community. The key idea is leveraging the principle
of idempotence to break programs into regions of code that
can be recovered through simple re-execution. FCC extends
this execution model to our domain, where an idempotent
task can be re-executed and restarted multiple times without
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jeopardizing correctness and data consistency guarantees.
MODC [52] explores a similar design. To realize it, we need to
develop (1) a new compilation framework to identify idempo-
tent code regions and encapsulate them as idempotent tasks;
and (2) a split runtime execution architecture–learned from
the tasklet and top-half/bottom-half interrupt architecture of
the OS kernel–to deploy them across host servers, FHA/FEA,
and FAAs.

Second, we propose a hardware cooperative scalable func-
tion for FAAs that extends the capability of today’s SR-IOV
and scalable functions [21] with an active execution context.
In addition to dedicated queueing resources, each function
defines (1) a domain-specific processing core; (2) a list of mes-
sage handlers, such as the actor programming model [27];
(3) an execution coordination sublayer that encodes how to
interact with other co-located functions. The entire design
resembles the TAM (Threaded Abstract Machine) and active
messages [40, 75]. We expect to build a basic template for
FAAs to inherit, serving as the hardware execution substrate
for idempotent tasks.

DesignPrinciple #4: Fabric central arbitrator through
dedicated lanes.Given the idiosyncrasies and non-determinism
of routable PCIe, FCC proposes an in-band centralized fab-
ric arbiter for bandwidth allocation, congestion control, and
flow scheduling. Similar ideas have been explored in the
data center network [39, 66]. We believe this would be more
applicable to memory fabrics for two reasons: (1) the intra-
server interconnect bandwidth has increased substantially
with the advent of PCIe Gen6/Gen7 and the growing I/O
capabilities of server processors. A dedicated control chan-
nel would bring little bandwidth waste. This is similar to
traditional mainframes (e.g, CDC 6000 series, IBM 360/370),
where control and data signals are separated; (2) The end-to-
end RTT of a 64B flit at the data link layer in an unloaded
scenario can be up to 200ns, yielding little impact on even
small PCIe transactions. Further, FCC would incorporate a
programmable interface with the control lane to query, re-
serve, and reclaim credits, and expose it to the application
layer via some programming abstraction (such as distributed
futures [76]), enabling compute-fabric co-design.

5 UNIFABRIC: A PROPOSAL
We sketch the UniFabric that abstracts the memory fab-
ric and works as a new intermediate stack for composable
infrastructures. Essentially, it is a distributed runtime sys-
tem that provides a collection of new/renovated program-
ming abstractions and system services at the rack/cluster
scale. UniFabric follows the aforementioned design prin-
ciples and encompasses the following components: (1) an
elastic transaction engine for (asynchronous) data move-
ment. It decouples the initiator and an executor, providing a
generic primitive, like eTrans(𝑠𝑟𝑐_𝑎𝑑𝑑𝑟_𝑙𝑖𝑠𝑡 , 𝑑𝑠𝑡_𝑎𝑑𝑑𝑟_𝑙𝑖𝑠𝑡 ,

𝑖𝑚𝑚𝑒𝑑𝑖𝑎𝑡𝑒_𝑏𝑖𝑡 , 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 , 𝑜𝑤𝑛𝑒𝑟𝑠ℎ𝑖𝑝). (2) a unified heap
manager. UniFabric will extend the existing MemKind li-
brary [25] to incorporate different kinds of memory nodes
and expose an active heap. One can reuse existing data struc-
tures and port unmodified applications using compatible pro-
gramming interfaces. We will also provide a list of new data
structures specially optimized for certain fabric-attached
memory nodes; (3) a compilation and execution framework
to develop idempotent tasks. It also contains a hardware
template and some referenced FAA examples to build hard-
ware cooperative scalable functions. Note that our design
doesn’t stick to any particular programming models; (4) a
communication substrate atop routable PCIe, backing up
elastic transactions. The orchestration, relying on dedicated
in-band link layer lanes, is facilitated via a central arbiter to
maximize communication efficiency.

Case study. We use the software-based MIMO baseband
processing engine [42] as an example to demonstrate how
to use the UniFabric layer. The engine resides between ra-
dios and the MAC, converting time-domain samples received
from radios to bits used by the MAC and vice versa. It encom-
passes multiple uplink/downlink handling pipelines, further
including a series of computing kernels, such as FFT/IFFT,
equalization, (de)modulation, and encoding/decoding. When
porting/implementing over UniFabric over a composable in-
frastructure, one should rethink data layout, computation
placement, and communication structure. The first step is
moving data objects (e.g., symbol frame and channel state
information matrix) to our unified heap using existing/new
data structures. Next, for each computing block, one should
choose its backend execution engine, generate idempotent
tasks via the compilation framework, and encapsulate them
as hardware cooperative functions within an FAA. UniFabric
frees programmers from the burden of FAAmultiplexing and
enables flexible stateful/stateless idempotent task migration,
but requires applications to decide where the computation is
performed and when it is moved. Finally, one should replace
all asynchronous communications with elastic transactions
and specify the ownership field that captures how comple-
tion is handled. Note that this case study only describes the
high-level steps of using UniFabric for application develop-
ment without discussing optimization opportunities.

6 CONCLUSION
This position paper proposes a new computing paradigm–
called Fabric-Centric Computing (FCC) given the emerg-
ing trend of memory fabrics and composable infrastructures.
FCC views the memory fabric as the first-class citizen in the
system to instantiate, orchestrate, and reclaim computations
over composable infrastructures. We discuss the uniqueness
of this interconnect, propose new design principles, and
sketch an intermediary layer to realize the vision of FCC.
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