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ABSTRACT
Shell scripts are critical infrastructure for developers, admin-
istrators, and scientists; and ought to enjoy the performance
benefits of the full suite of advances in compiler optimiza-
tions. But between the shell’s inherent challenges and neglect
from the community, shell tooling and performance lags far
behind the state of the art. We propose executing scripts
out-of-order to better use modern computational resources.
Optimizing any part of an arbitrary shell script is very chal-
lenging: the shell language’s complex, late-bound semantics
makes extensive use of opaque external commands with
arbitrary side effects.

We work with the grain of the shell’s challenges, meeting
dynamism with dynamism: we optimize at runtime, specu-
latively executing commands in an isolated and monitored
environment to determine and contain their behavior. Our
proposed approach can yield serious performance benefits
(up to 3.9× for a bioinformatics script on a 16-core machine)
for arbitrarily complex scripts without modifying their be-
havior. Contained out-of-order execution obviates the need
for command specifications, operates on external commands,
and yields a much more general framework for the shell.
Script writers need not change a thing and observe no differ-
ences: they get improved performance with the interpretabil-
ity of sequential output.

CCS CONCEPTS
• Software and its engineering→ Scripting languages;
Compilers; Operating systems.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
HotOS ’23, June 22–24, 2023, Providence, RI, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0195-5/23/06.
https://doi.org/10.1145/3593856.3595891

ACM Reference Format:
Georgios Liargkovas, Konstantinos Kallas,Michael Greenberg, andNikos
Vasilakis. 2023. Executing Shell Scripts in the Wrong Order, Cor-
rectly . In Workshop on Hot Topics in Operating Systems (HotOS ’23),
June 22–24, 2023, Providence, RI, USA. ACM, New York, NY, USA,
7 pages. https://doi.org/10.1145/3593856.3595891

1 INTRODUCTION
Shell programming is as prevalent as ever. GitHub has steadily
ranked the shell among the top ten programming languages
for the past decade, and with increasing popularity [15]: in
2020 it jumped to eighth—growing faster than languages
such as C and Ruby; in 2021 it ranked sixth for popularity
increase—above languages with active communities, such
as Python and Kotlin. These return-to-the-shell trends in
industry are mirrored by a resurgence of academic research
on the shell [5, 10, 11, 13, 16, 18, 22, 25–27, 31].

Despite its popularity, shell tooling has not kept up: weak
linters, no debugging, and—our focus—no compilation or
optimization. Even with its sub-par performance, the shell is
the go-to choice for many long running tasks—e.g., builds,
orchestration, continuous integration, and data-processing.
Poor support for the shell is hardly a surprise, though: it is a
‘mere’ glue language, a polyglot patchwork of external com-
mands in one of the most dynamic, latest-bound languages
in common use—optimization is quite a challenge!
We identify dynamic interposition, tracing, and contain-

ment as key ingredients for this kind of optimization support.
Combined, these enable a powerful optimization: out-of-order
program execution [1]. A program’s execution order need
not be determined by syntax, i.e., the order in which blocks
or instructions are written, but rather by semantics, i.e., the
true dependencies between different blocks or instructions.
It is only safe to rearrange a program in ways that respect
these dependencies; to be worthwhile, a rearrangement must
also (1) accelerate execution, e.g., by executing fragments for
which input data is already available, and (2) better utilize
the underlying resources available to the program. Trac-
ing and containment yield another advantage over prior
work [16, 25, 31] on the shell: we can appropriately trace,
contain, and selectively merge a command’s effects without
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1 SAMPLES="100 101 102 103"
2 REF="hg19.fa"
3 GROUPS="1 2"
4 # (a) Index
5 bwa index "$REF"
6 for sm in $SAMPLES
7 do
8 # (b) Align sample
9 for gr in $GROUPS
10 do
11 bwa aln "$REF" "$sm.$gr.fastq" > "$sm.$gr.sai"
12 done
13 # (c) Combine sample pairs
14 bwa sampe "$sm.1.sai" "$sm.2.sai" |
15 samtools view -Shu - > "$sm.bam"
16 # (d) Remove polymerase chain reaction-induced dups
17 samtools rmdup "$sm.bam" "$sm.nodup.bam"
18 # (e) Plot coverage histogram
19 samtools mpileup "$sm.nodup.bam" |
20 cut -f4 | python plot.py "$sm.coverage.pdf"
21 # Delete temporary files
22 rm -f "$sm.1.sai" "$sm.2.sai"
23 done

Figure 1: A bioinformatics script slightly adapted
from Köster and Rahmann [17] that maps sequence
reads to a reference genome.

any foreknowledge of its semantics—that is, without need
for command annotations!
We explain our proposal with a concrete instance of a com-
mon disorder of shell scripts: overly sequential execution.
A patient: Consider the core of a real bioinformatics script
for mapping sequence reads to a reference genome (Fig. 1),
a typical task in, e.g., cancer genomics [21]. The script first
indexes the reference genome (a); it then aligns each set
of samples based on the genome (b), combines the results
(c), removes duplicates (d), and plots a coverage histogram
(e). Running this script for a 152MB reference genome and
3.3GB input samples takes about 30 minutes on a 3GHz 16-
core machine on Cloudlab [6]. The script invokes a vari-
ety of commands: specialized genomics executables (bwa,
samtools), core utilities (cut, rm), and custom scripts in inter-
preted languages (python plot.py). It combines these com-
mands using various shell features (parameters, for, >, |).
Several of those invocations are completely independent,
and could be safely executed in any order. Every command
depends on the initial indexing (a), but each outer loop itera-
tion works on a different sample and is independent of the
others. Within each sample, each group’s alignment can be
done independently. Sadly, the execution order of these invo-
cations on any modern shell interpreter will depend entirely
on the script’s syntax—i.e., the order in which the developer
wrote the commands—leaving significant opportunities for
optimization unexploited.
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Figure 2: A high-level overview of hs, a speculative
out-of-order shell-script executor. The preprocessor,
runtime hooks, and tracing extend components from
prior work [5, 16].

A treatment: We will optimize shell scripts by reordering
and interleaving their commands, letting the semantic de-
pendencies guide execution instead of syntactic ordering.
We will execute independent commands out of order and
in parallel, enforcing order only between commands that
depend on each other (true dependencies).
Easier said than done! Decoupling execution order and

syntax order poses daunting challenges. First, the shell is
hostile to analysis, so it is hard to predict which commands
will run at all, never mind their order: commands are in-
terleaved with complex and highly dynamic control flow—
e.g., if statements, command substitutions, and parameters
determined by previous commands. The shell’s dynamism
contrasts sharply with traditional compiler optimizations
working on object code, i.e., instructions sequences with oc-
casional control flow. Second, an invoked command’s seman-
tics is coarse, complex, and unbounded—if not completely
opaque. It is impossible to statically determine their inter-
dependencies. The shell, again, presents serious challenges
compared to the finite and well-defined set of instructions in
object code, with generally clear dependencies and effects.
A prescription: While compiler reordering optimizations
are traditionally static and pessimistic, our approach for
the shell must be dynamic and opportunistic. A dynamic
approach circumvents the intractability of ahead-of-time
order extraction: our techniques learn about the execution
order dependencies incrementally, building up understand-
ing as the script runs. An opportunistic approach means we
need not specify or even understand command behavior:
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our techniques optimistically execute commands in an iso-
lated environment—identifying and rolling back conflicting
side-effects as they arise.1

We implement our approach in a prototype we call hs—so
called because it’s the shell (sh), but out-of-order. hs has
three parts (Fig. 2): a script preprocessor, a scheduler, and
runtime hooks. The preprocessor extracts commands and
their partial program order, leaving holes in the preprocessed
script where these commands were originally. Each of these
holes is instrumented with runtime hooks that communicate
with the scheduler; the partial order captures the syntac-
tically determined execution order of different commands
and is then handed off to the scheduler for execution. The
scheduler executes commands opportunistically out-of-order,
rolling back when dependencies have been violated. It uses
(1) tracing to discover command dependencies and detect
dependency violations, and (2) containment to shield against
interference and allow rollbacks. The runtime hooks are in-
voked while executing the preprocessed script and commu-
nicate with the scheduler; their job is to hide out-of-order
execution so that our reorderings are semantically trans-
parent, i.e., the script runs the same. They achieve that by
propagating environment updates to the scheduler so that
it has a fresh and correct view of the execution environ-
ment, potentially triggering some reexecution, and modify
the shell state according to the effects of each command that
was executed by the scheduler.
A relief of symptoms: On a 3GHz 16-core machine on
Cloudlab [6], the ordinary syntax-guided execution order ex-
ecutes the script in about 30 minutes; the speculative out-of-
order execution guided by the script’s semantics completes
in 7 minutes and 35 seconds (3.9× speedup).

2 THE TREATMENT, APPLIED
We now apply hs on the bioinformatics script (Fig. 1), sketch-
ing its design as we go (Fig. 2). hs combines preprocessing,
tracing, speculation, and containment.
Preprocessing: First, the shell script is sent through a pre-
processor that extracts all commands in the script. The pro-
totype preprocessor of hs builds on and extends the just-
in-time component of PaSh [16]. The preprocessor is the
only syntax-driven component of our approach, parsing the
shell script and replacing all command nodes in the abstract
syntax tree (AST) with holes managed by the runtime hooks
during execution. These command nodes are then added
to the execution set—all of the commands that need to be
executed—and sent to the scheduler. The execution set also
encodes the syntactic program order, i.e., the order in which
1We say ‘opportunistic’ rather than ‘optimistic’, as we modulate our opti-
mism: we will only speculate commands which we can see have some hope
of succeeding.

commands were originally (syntactically) written. This is a
partial (rather than total) order, as some commands are not
syntactically ordered—e.g., two different branches of an if

statement. The partial order is an under-approximation of
the control flow graph, as it doesn’t model control builtins
like break, reflection builtins like source, or function calls.
For the bionformatics script lines 5, 11, 14-15, 17, and 19-

20 (Fig. 1) would all be replaced with holes, with each hole
corresponding to a command in the execution set (Fig. 3).
After preprocessing, commands in the execution set may
contain all sorts of unresolved fragments—e.g., unexpanded
strings, unresolved variables, and unevaluated command
substitutions—similar to $REF (line 11). These are script frag-
ments that cannot be evaluated statically, as their values
might change during execution.
Runtime hooks: The runtime hooks are invoked during
the execution of the preprocessed script. When execution
reaches a hole, the hooks block and wait until the scheduler
has completed the execution of the command for that hole.
The hooks receive the command’s exit status and observe
its effects on the file-system and the shell state (like variable
updates or shell state reconfigurations (e.g., cd or set -e).
The hooks must propagate all of this update information
to the scheduler, as it will affect commands downstream
in the partial order. In Fig. 1’s script, the hooks propagate
assignments to variables such as $REF, $sm, and $gr to the
scheduler; other commands observe the latest state.
Scheduler: The scheduler is responsible for running com-
mands in the execution set according to the program’s par-
tial order. Commands can be in one of four states: not exe-
cuted (NE), speculated (S), committed/taken (C), and com-
mitted/not taken (CN). Committed commands form a closed
prefix in the partial order: if a command is committed, all
prior commands are committed, too.
A command’s state determines how the scheduler treats

it (Fig. 4). At each step, the scheduler selects a minimal (NE)
command in the partial order and executes it, tracing its
reads and writes; the runtime hooks ensure the command
runs in the latest configuration (filesystem, environment
variables, etc.). The scheduler speculatively executes a num-
ber of upcoming commands, optimistically assuming that
the configuration will not change in ways that affect their
execution. To speculatively execute commands safely, the
scheduler must be able to trace, contain, and merge (or roll-
back) their results—to achieve this, we execute commands
in a virtualized environment (see below).
Once the first command in the partial order program fin-

ishes executing, it is directly marked as committed/taken (C).
Its results are passed to the runtime hooks, which record its
write-set—i.e., the files that it wrote to—to later check for
any dependencies with the read- and write-sets of speculated
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Figure 3: Step-by-step scheduling and orchestration of Köster and Rahmann’s [17] script, simplified (Fig. 1).

commands. When a command c that isn’t first in the partial
order terminates, we check its read-set against the write-
set of all preceding commands that were not yet committed
when we started speculating c. For example, when specula-
tively executing the fifth command samtools rmdup in the
second step of scheduling (Fig. 3, second column), the sched-
uler checks the write-sets of both invocations of bwa aln and
the invocation of bwa sampe (dashed arrows). If there is no
dependency (the read-set of the command is independent
from all preceding write-sets), we mark the command spec-
ulated (S); if there is a dependency, we leave the command
not executed (NE), considering it for execution in the next
round of scheduling.
If the scheduler selects a command that is already spec-

ulated (S), then we can try to commit: the scheduler makes
sure that the results of speculation are valid—i.e., that no
extra-command dependency changes were observed since
speculation. If no dependencies emerged, the scheduler com-
mits the changes, updating the file system and shell state,
and marking the command committed/taken (C). If a specu-
lateed command ends up not being executed (e.g., a branch
that was not taken), we mark the command as commited/not
taken (CN) to preserve the closed prefix invariant.
Tracing: In order to discover the read- and write-sets of
executed commands, we trace filesystem-affecting system
calls. Whenever a command performs a read (or write) call,
the tracer records it in the command’s read (or write) set. We
build on Riker’s [5] system call tracing, which already has
some optimizations to lower overhead: tracing only relevant
system calls, and intercepting calls to libc via LD_PRELOAD.
Virtualization: Our approach requires that the scheduler
can control whether (and when) to apply the effects of spec-
ulatively executed commands, making them persist in the
broader operating environment. We use a combination of
custom namespaces [19] and OverlayFS [3]: we can execute
commands speculatively in a restricted environment that
isolates side-effects between executions.

NE

 C

 S

CN

Speculatively Execute 
No Dependencies

Dependency 
Found

Speculatively Execute 
Dependencies Exist

Commit Results 
When In Frontier

Execute

Not taken branch

Figure 4: Transition system for command state in the
scheduling algorithm.

We use unshare to create new namespaces for specula-
tively executing commands, disallowing any types of side
effects—e.g., accessing the network or sending signals—except
from writing to a file or reading from a file in the file system.
The IPC, mount, network, PID, and user namespaces are un-
shared. We use OverlayFS to capture any modifications to
the underlying system in a separate copy for each speculated
command, deciding later whether to merge or drop these
changes. OverlayFS provides a layered representation of the
filesystem, allowing operation on one workspace copy while
keeping another copy clean. OverlayFS has three different
layers: merged, lower, and upper. The merged layer presents
the union of the lower and upper layers: it is the lower layer
with the upper layer’s changes applied. The lower layer is
the ‘base’ filesystem—for us, it’s the original filesystem, and
every overlay shares the same lower layer. The upper layer,
unique to each overlay instance, holds the updates to the
lower layer. When we speculate commands, they can only
see the merged layer: they seem to be affecting the whole
system, but their changes are caught and stored in the upper
layer; files are lazily copied from the lower to the upper layer
as writes occur.

Upper
�le1 �le2 �le3 Merged

�le2 �le3
�le2 Lower�le1

If a file exists in both layers,
the merged layer can only ac-
cess the instance of the upper
layer, concealing the lower layer—e.g., if file1 and file2 pre-
exist, running echo "foo" > file2 and echo "foo" > file3

results in the merged layer shown on the right. Committing
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a speculated command copies the contents of the upper layer
to the base file system, overwriting and deleting files when
necessary. When we detect a dependency, we discard the
upper layer of the speculated command and will re-run it
in a fresh overlay. We also capture the stdout/err of specu-
lated commands and release it once they become committed.
When a command reads or writes to pipes, we must be care-
ful to capture and replay the pipes appropriately should we
need to re-speculate the command.
Fail-fast speculative execution: Containment allows hs
to speculatively execute commands while collecting their ef-
fects and selectively applying them to the underlying system.
But some effects must actually happen for a command to
execute successfully. For example, a speculated (and thus con-
tained) curl would return a failed response, as the recv op-
eration over the network would be contained—no actual net-
work communication would be taking place. It’s not enough
to merely contain effects: we must detect when containment
changes behavior and treat the command differently.

Runtime interception can detect side effects in IPC names-
paces (e.g., signals) and network namespaces (e.g., recv).
When the runtime hooks detect such an effect, they (1) kill
the speculated command, tearing down relevant containment
setup and reclaiming its computational resources, and (2)
inform the scheduler to not speculate this command again,
since its success depends on non-virtualizable side-effects.
Worst-case performance: A critical requirement for any
out-of-order execution optimization is that its worst-case
performance does not significantly diverge from the origi-
nal straightline syntactic-order execution. The worst-case
performance in our setting corresponds to all speculations
having failed, always discovering dependencies and discard-
ing speculation results. The scheduler design satisfies this
requirement since in each round the first non-committed
command (the frontier) is executed normally, i.e., with mini-
mal tracing and without virtualization: even if all speculation
fails, the execution time will correspond to the baseline ex-
ecution time with the minimal overhead (from tracing and
the communication between the executor and scheduler).
For the bioinformatics script (Fig. 1), artificially introducing
failures into all speculation yields a 38 minutes execution
time (26% slowdown).
Applicability: hs is not limited to data processing scripts
(Fig. 1); it can be applied to any script that (1) spends signifi-
cant execution time and resources on external commands,
and (2) contains non-trivial dependencies between these com-
mands. Many shell application domains that satisfy these
requirements: data processing, build scripts, continuous in-
tegration and deployment (CI/CD), scientific computation,
orchestration, maintenance, and configuration.

Limitations: Our approach assumes that commands are
not malicious. While unshare offers more protection than
chroot, our speculation and virtualization support are not
intended to defend against security threats present in scripts.
Additionally, we assume that commands do not change their
behavior based on their relative execution times or absolute
PIDs—as these values will not be the same as in the original
executions for speculated commands (due to unsharing of
the process namespace). For example, if a command accesses
the PID of the previously executed command with $!, our
speculation engine will not provide the exact same value as
in the sequential execution. Our virtualization barrier is only
as good as the OS makes it: if, say, reading from a filesystem
is observable (e.g., it causes reads to an S3 bucket, which
causes billing), then our virtualization will be observable.

3 DISCUSSION
Our proposed system for out-of-order speculative execution
promises to improve shell script performance. But beyond
these immediate dividends, our work is also foundation on
which to build.
Virtualization as a primitive: We use containment and
virtualization to optimize the execution of compositions of
arbitrary black-box commands that could perform any side-
effect on their surrounding system; instead of knowing what
a command does a priori, we simply run it and observe what
it did. Easy and frictionless virtualization could have many
other uses for developers—it ought to be a primitive in their
toolkit. We envision a higher-order command—call it try—
where try cmd contains cmd and records its effect, letting
users decide whether to merge its effects onto the underly-
ing system. A motivating example: virtualize complex and
potentially risky third-party scripts before committing their
results. Today’s containerization systems, like Docker [20],
set up a different environment, making it hard to merge
changes to the underlying system—but try virtualizes the
existing system.2

Optimal scheduling and performance tradeoffs: Out-
of-order speculative execution trades compute for latency;
speculating more commands means lower latency but also
more CPU and memory usage through failed speculations.
Any fixed tradeoff will be wrong some of the time. A bet-
ter tradeoff would use a configurable, gradual scheduling
algorithm that makes bets commensurate with its budget:
at low system load, make bigger bets and speculate further
out; at high system load, make more conservative bets and
speculate less—or not at all.
Harnessingheterogeneous resources: Our simple sched-
uler speculatively executes all of a script’s commands on

2https://github.com/binpash/try is a prototype.
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the same machine, betting that it has unutilized computa-
tional resources (e.g., additional cores) that could be used
to speed up the computation. To ensure correct execution,
speculated commands are already virtualized and isolated
from the main execution environment. With our commands
so neatly contained... why stay on the same machine? We
could run commands in a variety of ‘modern’ environments:
serverless functions, cloud compute, a distributed cluster.
Keeping the local and remote compute synchronized de-
mands a sometimes-eager sometimes-lazy file system syn-
chronization mechanism: the bottleneck becomes synchro-
nizing changes to file system state. Some relevant files could
be transferred up front (e.g., binaries, obvious inputs) while
the rest could be lazily transferred on demand.
Scriptmaintainability anddebuggability: The succinct-
ness of shell scripts facilitates quick prototyping and experi-
mentation, but makes it hard to maintain scripts for longer
periods of time. Our proposed approach records several de-
tails of a script: execution information and dependencies
between commands. Given such detailed information, we
could rewrite the input script to expose the true command
dependencies. If done with care, rewritten scripts could be
more maintainable and debuggable: explicit dependencies
provide documentation and can be used by the developer to
localize an error. At the same time, a rewritten script should
better utilize the underlying resources with less overhead
from speculation, tracing, or virtualization. Or, rather than
yielding a script, we could produce a Makefile or some other
explicit representation of dependencies.
More shell optimization: Given the feasibility of our com-
mand scheduling and out-of-order execution and the past
success of parallelization and distribution... what other op-
timizations can we apply to the shell? One possibility is
fusion [4], an optimization from functional programming
analogous to loop fusion: we can combine whole command
invocations to reduce redundant parsing/unparsing commu-
nication overheads between them, enabling whole program
optimizations across different commands. Such an approach
might be particularly effective on multi-call binaries, like
busybox. The space of compiler optimizations is vast, and
we suspect that our work could help support a variety of
other impactful optimizations, like constant folding, common
subexpression elimination, or deforestation [8, 32].

4 RELATEDWORK

Automated parallelization for the shell: Recent work
on shell-script parallelization and distribution [16, 25, 31]
has delivered significant performance benefits by exploiting
lightweight command specifications. Our approach, however,
does not require any command specifications—we infer the
necessary command-execution information at runtime.

Explicit dependency encoding: Workflow and build sys-
tems [9, 14, 17, 28] explicitly express dependency graphs by
manually encoding all input and output dependencies of each
step. Encoding dependencies statically and ahead-of-time
yields better program schedules, but (1) requires users to
provide all dependencies or suffer from stale or incorrect re-
sults, and (2) cannot express the high dynamism prevalent in
shell scripts. Our approach addresses both these challenges.
Speculative execution: Speculation and rollback are not
new ideas, with an extensive history not just in architecture
but also at the application level, e.g., for system configura-
tion [29] or security checks [24]. In some of these proposals
speculation is enabled by modifying the application (e.g.,
Undo [2]), while others support arbitrary black-box applica-
tions [23, 24, 29]. Thread-level speculation is a widely stud-
ied technique for extracting parallelism from applications at
runtime by speculatively executing parts of them in differ-
ent threads and rolling them back if dependencies are vio-
lated [7, 30]. We build on these ideas, coupling more tightly
with the shell’s language and semantics: instead of consider-
ing the whole script as a black-box application, separating
it into very fine-grained tasks, and tracking all interprocess
boundaries and low-level application state; we use the script
semantics to separate it into logical application components
(command invocations). Our approach lets us track less infor-
mation (file system modifications and shell state), reducing
overhead and simplifying our implementation.
Resurgence of shell research: The shell has enjoyed re-
newed academic interest [5, 10–13, 16, 18, 22, 25–27, 31]. We
build on and extend this work: not only do we expand the
reach and range of optimizations for the shell, but we extract
reusable tools and techniques for others.

5 CONCLUSION
Modern programming languages come with state-of-the-art
compilation and optimization machinery readily available
to everyday developers. Despite its prominence, the shell
lacks such support—partly due to its unusual characteristics,
and partly due to historical accident. Neglecting the shell
is a mistake, leaving performance and usability gains on
the table. We investigate a promising optimization for the
shell—out-of-order execution—which offers reusable tools
and techniques beyond the optimization itself.
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