
Design and Implementation of the Lambda
µ-Kernel based Operating System for Embedded Systems

Kenji Hisazumi Teruaki Kitasuka
Tsuneo Nakanishi Akira Fukuda

Graduate School of Information Science and Electrical Engineering, Kyushu University
6-1 Kasugakouen Kasuga–city, Fukuoka 816-0922, Japan.

{nel, kitasuka, tun, fukuda}@f.csce.kyushu-u.ac.jp

Abstract

With large-scale embedded systems, improvement of de-
velopment efficiency is one of the most important problems.
In this paper, we design and implement an embedded op-
erating system, called the Lambda operating system, which
improves the maintainability and development efficiency of
the operating system. The Lambda operating system em-
ploys micro-kernel architecture, which allows the operating
system to be easily designed. In addition, we propose a
method to improve operating system performance by recon-
structing it in implementation. With the method, Lambda
is implemented as monolithic kernel. The method allows
the operating system to be quickly developed and gives high
performance. This paper also shows that the method is use-
ful through implementing a prototype of Lambda and its
performance evaluation.

1. Introduction

Since portable telephones and information electric home
appliances come onto the market, embedded systems be-
come more complex. Recent embedded systems have to
provide functions such as multimedia data handling and net-
work one. The development term of the large-scale em-
bedded systems increases more than before. On the other
hand, short-term development and time-to-market are re-
quired due to severe competition. Therefore, improvement
of development efficiency is one of the most important is-
sues.

Although maintainability and development efficiency of

embedded operating systems are important issues, there are
very few studies on them.

In this paper, we design and implement an embedded op-
erating system, called the Lambda operating system, which
improves the maintainability and development efficiency of
the operating system.

Typically the maintainability, development efficiency
and performance are exclusive. For example, an operating
system which employsµ-kernel structure is easy to develop.
However performance of this one is bad. Most of embed-
ded systems require high performance. On the other hand,
an operating system which employs monolithic structure is
faster thanµ-kernel structure. This structure needs careful
developing to keep maintainability and development effi-
ciency.

Therefore we propose transforming techniqueµ-kernel
structure to monolithic one to concomitants with high per-
formance and maintainability.

2. Memory protections for embedded software

Most of embedded operating systems don’t have any pro-
tection to keep the constraint of memory size, performance
and so on. However memory protections become important
since scale of software for embedded systems is becoming
large. In this section, we consider the purpose of memory
protections for embedded software.

There are some purposes of memory protections.

• For protection of text and data.
To protect text and data from invalid memory access
at runtime is necessary for the system to prevent into
fatal.

178

• For security.
We download software into embedded systems from
the Internet. This software may destroy the embedded
system software.

• For isolating untrusted software.
When the developer buy an application program from
other company (ex. WWW browser), this program
may be unstable. This case is to protect other software
from untrusted software.

• For debugging.
Developing software may destroy other stable software
area. If there is no memory protection, you cannot find
this invalid memory access. If there is it, operating
systems tell us it. To remove this protection after de-
velopment is better.

The protection for debugging is especially interesting.
Most of programs in embedded system are not changed af-
ter debug and we can trust them. In developing phase, we
run programs under protection for debug. After develop-
ment we remove protection of this part and get high perfor-
mance. We consider of technique of removing protections
next section.

3. Lambda Operating System

The Lambda operating system employsµ-kernel archi-
tecture, which allows the operating system to be easily de-
signed. Embedded systems have various hardwares and we
must develop device drivers for them. This feature is very
important for embedded systems. However,µ-kernel archi-
tecture is slower and consumes more memory than mono-
lithic architecture. Although these week points are im-
proved by L4[5] roughly, but it is not enough. Cost and
performance of embedded systems is more important than
general–purpose systems. Therefore the Lambda operat-
ing system improves performance more, and cope with both
performance and easy development by two features: the se-
lectable memory protection and the automatic change from
µ-kernel structure to monolithic structure.

The first feature of the Lambda operating system is the
selectable memory protection. The Lambda operating sys-
tem provides a mechanism that allows processes of system
servers and application programs to be implemented in ei-
ther user process mode or kernel mode. In user mode, pro-
cesses run with memory protection. In kernel mode, they
run without it. At development phase, processes run in user

process mode to debug the system. In this phase, we can
use memory protection for effectively debugging. At fi-
nal phase, memory protection can be removed. The system
functions run in kernel mode. In this phase, system perfor-
mance is higher than that in development phase.

Second feature of the Lambda operating system is the
change fromµ-kernel structure to monolithic structure.
A thread, which runs in kernel mode still needs inter–
thread communications (ITC) to call other thread functions.
Therefore system performance with this implementation is
lower than that with monolithic structured implementation.
The Lambda operating system alleviates the ITC overheads
by automatically replacing the ITC mechanism to the func-
tion call mechanism. System performance with the function
calls mechanism is higher than that with the ITC mecha-
nism.

4. Changing µ-kernel structure to monolithic
structure

Now we consider a changing method fromµ-kernel
structure to monolithic one. This method can be applied
to only Remote Procedure Call (RPC). The Lambda oper-
ating system often uses RPC. RPC is generally used with
small codes called stub. When a client calls a client stub,
the client stub encodes arguments and sends a request to a
server using RPC. A server stub receives the request, de-
codes arguments, calls a server function, and processes the
request.

We implement a new stub generator called Lambda In-
terface Generator (LIG). It generates stubs and templates.
If the server is in the same process of the client, the call
from the client is performed by the function call. On the
other hand, when the callee server is in a different process
form the process of the client, its call is performed by us-
ing RPC rather than function calls (Figure 1). This method
reduces communication overheads between a client and a
server both of which are in the same process by replacing
RPC to function calls.

5 Implementation and Evaluation

We implement a prototype of Lambda on a target ma-
chine of a Celeron 300A processor. We measure the execu-
tion time of some various models. Table 1 shows response
times of basic system calls for reference. Figure 2 shows
measurement models of same process RPC(a), cross pro-
cess RPC(b), same process RPC with the changing method

179

stub stub

client

thread

server

theard2
stub stub

server

thread1

Process1

Process 2

rpc

function call

Figure 1. Server stubs and client stubs

Table 1. Response time of basic system calls

system call cycles
threadcreate 3630
processcreate 30000

threadsched intra process 411
inter process 1986

of Lambda described before(called monolithic RPC) (c).
Figure 3 shows the execution times of each model. The
result of this measurement shows that the transformation of
process structure improves RPC performance 20% and the
changing method improves the system performance about
10 times.

6. Related works

LRPC[3] is a tequnique for reducing RPC overhead as
same as our method. The LRPC reduces it dynamically. On
the other hand, our method reduces it statically because of
a tequnique for embedded systems. Our method allows to
optimize globally with a compiler.

Component base operating systems, such as VEST[4]
Knit[2] EPOS[1], improve descriptiveness with small ob-
ject code and a good performance. However it is difficult to
test a component. A component of the Lambda operating
system can be run and tested with protections.

7. Conclusions

In this paper, we design and implement an embedded op-
erating system, called the Lambda operating system. The

RPCclient server

process

(a)

client server

process

(b)

process

client server

process

(c)

functioncall

RPC

Figure 2. The structure of measurement mod-
els

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 50 100 150 200 250 300

cy
cl

es

data transfer size(bytes)

function call
copy mode RPC (in process)
map mode RPC (in process)

copy mode RPC (cross process)
copy mode RPC (cross process)

Figure 3. The performance of cross process
RPC, same process RPC and monolithic RPC

180

Lambda operating system achieves both high maintainabil-
ity and high development efficiency of the operating sys-
tem. The Lambda operating system employsµ–kernel ar-
chitecture, which allows the operating system to be easily
designed. In addition, we propose a method to improve op-
erating system performance by reconstructing it in imple-
mentation. With the method, Lambda is implemented as
monolithic kernel. The method allows the operating sys-
tem to be quickly developed and gives high performance.
This paper also shows the usefulness of our method through
implementing a prototype of Lambda and its performance
evaluation.

Acknowledgments

This research is partly supported by Core Research for
Evolutional Science and Technology (CREST) Program
”Advanced Media Technology for Everyday Living ” of
Japan Science and Technology Corporation(JST).

References

[1] A.A.Frohlich. Tailor-made operating systems for embedded
parallel applications. InProc. of the 4th International Work-
shop on Embedded HPC Systems and Applications, number
1586, pages 1361–1373, 1999.

[2] A.Reid, M.Flatt, L.Stoller, J.Lepreau, and E.E.Knit. Compo-
nent composition for systems software. InIn proceedings of
4th Symposium on Operating Systems Design and Implemen-
tation, pages 347–360. Usenix Association, 2000.

[3] B.Bershand, T.Anderson, E.Lazowska, and H.Levy.
Lightweight remote procedure call. InProc of the 12th ACM
symposium on Operating systems principles, pages 102–103,
1989.

[4] J.A.Stankovic. Vest: A toolset for constucting and analyzing
component based operating systems for embedded and real-
time systems. Technical Report No. CS-2000-19, Dept. of
Computer Science, Univ. of Virginia, 2000.

[5] J.Liedtke. Improving ipc by kernel design. InProc of 14th
SOSP, pages 203–205, 1993.

181

