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Abstract.   

In October of 2015, we celebrated the 50th anniversary of SOSP as part of SOSP 25.  Peter Denning 
formed a “history day” steering committee, and invited me to give a short talk on the topic of fault 
tolerance (and also asked if I could help organize the remainder of the day).  This essay is intended as an 
accompaniment to the video and slides of my talk.   

My topic here is dominated by two fairly specific questions, central to the way we think about the 
discipline:  Must strong properties bring complexity, poor scalability, high latencies and other significant 
costs?  Can a system support consistency without dictating to its users?  The debate surrounding these 
issues has animated the community at least since the mid 1980’s.    

Any decision to focus dictates a degree of narrowness.  For example, Butler Lampson has argued that one 
cannot have security without reliability, and vice versa [25], and the SOSP 2015 program supports his 
view.  Nonetheless, I won’t be discussing security here.  I hope that nobody is offended by my omission 
of this and other important work; just like the other history day speakers, I was required to keep the scope 
of my talk manageable and focused, and omissions were unavoidable.   

Introduction. 

Fault tolerance has been important to the operating systems community from its earliest days, but the term 
has completely different meanings within distinct subsets of the community.  In this essay, I’ll touch upon 
several of those many meanings, but for brevity and clarity will focus on a more restricted question:  Is 
fault tolerance (specifically, approaches that use consistent data replication) at odds with the most basic 
principles of the operating systems field and community? 

That one might ask such a question may seem perplexing to those new to our field: if you explore the 
program for SOSP 2015, you’ll quickly see that fault tolerance has become one of the most dominant 
themes: six papers are concerned with Paxos, and another three with transactional mechanisms, and 
beyond those nine, others explore consistency and correctness after failures.    In 2015, the SOSP 
community is very much a fault tolerance and consistency community. 

However, this was not always so.  In 1993 SOSP was torn by a huge debate associated with a paper by 
Cheriton and Skeen entitled Understanding the Limitations of Causal and Totally Ordered 
Communication [1].  What we’ve come to refer to as the CATOCS controversy [2][3][4] centered not so 
much on whether one could build communication tools and platforms that offer strong fault tolerance and 
consistency guarantees, but whether in doing so one arrived at application-specific mechanisms, not 
belonging in the operating system.  The underlying theme was that consistency mechanisms don’t 
perform or scale adequately to belong to the core systems area.  Hence, the “S” in CATOCS. 

The 2015 SOSP program represents one form of judgement on that question, but in some sense, isn’t a 
direct response to the question: none of those papers were really focused on core operating systems 



components or advocating new principles, and none referred back to the CATOCS controversy.   Indeed, 
as of 2015, the CATOCS argument itself had reemerged in a new form.   

The modern version is associated with Eric Brewer’s CAP conjecture, capturing a line of thought that I 
first became aware of after Eric gave a keynote talk at PODC in 2000 [5] and then presented his SEDA 
paper at SOSP in 2001 [6].  Eric suggested that there may be deep tradeoffs between consistency (by 
which he meant database-style ACID guarantees), availability, and partition tolerance of large-scale 
systems.  Inktomi, a scalable system Eric and his group created for web search, leveraged CAP to gain 
better performance and scalability, and Eric argued that other web-based systems could do so as well.  
Later, a more general version of CAP came to be widely adopted by the cloud computing community 
(today we might call this the PaaS community: Platform as a Service, which is one of the main styles of 
using the cloud, and refers to applications created on subsystems like Google’s AppEngine or Microsoft’s 
Azure platform).  CAP shaped several SOSP papers too, notably the Amazon Dynamo paper in 1997 [7], 
and eBay’s recommendation that cloud developers reject ACID and embrace BASE [8].  A version of 
CAP was soon proved in a paper by Gilbert and Lynch [9], although for a fairly narrow scenario.   

CAP has become the emblem of an outspoken community that builds big cloud platforms and believes 
that strong forms of consistency and fault tolerance are at odds with scalability, fast response and overall 
system capacity.  Whereas CATOCS never won a large following, CAP has succeeded in this sense.  Yet 
how can an embrace of inconsistency not sound reckless and wrong?  At the very least, we as a field 
really should try to understand the underlying rationale.   Yet doing so isn’t trivial: CATOCS and CAP 
are both somewhat ambiguous concepts, and even the proponents aren’t entirely clear about what these 
principles really mean, or why the BASE methodology is sound.  The CAP community seems to think of 
CAP as a very broad and universal principle, and yet the Gilbert and Lynch paper points out that their 
CAP theorem wouldn’t hold if the definitions are relaxed in any substantial way, and even offer an 
example of a practical scenario under which one really can have all three properties at once.  

To me this highlights a tension within our community.  Many practitioners, working down in the trenches, 
have become convinced that cloud-scale systems just can’t afford  consistency.  Meanwhile, the 2015 
SOSP community seems to believe that CAP is just a practical obstacle that can be surmounted with 
clever systems work.  Which perspective is the right one?  The answer isn’t completely obvious, because 
the SOSP community isn’t always right: sometimes developers and users can see an obvious truth that  
the research community has completely overlooked! 

When you look more closely at the CAP community,  it is striking that they cite CAP in settings quite far 
from those Eric Brewer had in mind.  As noted,  the CAP theorem really is very narrow: it points to a 
tradeoff  in a situation where transactions run against a highly available database split over two data 
centers.  To get the result, the authors set up a case in which the system must guarantee availability for 
both replicas, even during periods when the WAN link connecting them is down, and then present the two 
subsystems with conflicting transactions: not a particularly general scenario.  In contrast, the 
contemporary “CAP community” often takes CAP to mean that we should abandon consistency even in 
the first tier systems running in a single data center, when a network partition would either shut down the 
impacted computers, or the whole data center.  For the theory community, this looks like a misapplication 
of CAP.  But if pressed, the community that believes most strongly in CAP just simplifies it to CP: they 
tend to argue that consistency has a huge performance impact, and that in settings where scalable 
performance is the main goal, weakening consistency brings tremendous speedups.  This sort of practical 
rule of thumb may not be what the CAP theorem expresses, but it does seem to be close to what Eric was 
thinking about, and it clearly has a strong following. 



The irony (speaking as a person whose work is, in effect, challenged by both CATOCS and CAP), is that 
in my view, the issue isn’t purely a practical one: I actually think that fundamental questions are present.  
The problem has been that CATOCS and CAP don’t articulate those questions terribly well.  
Accordingly, what I hope to do in the remainder of this essay is to try and understand the sense in which 
our field has a set of core principles, and then to ask whether or not mechanisms that guarantee 
consistency defy those principles.   

Yogi Berra, the baseball star, once remarked that “It’s tough to make predictions, especially about the 
future.”  But sometimes the fix is in. I think this may be the case for us, too: the hardware platforms of the 
future are already in hand, even if research on leveraging that hardware is just getting underway.  With 
this in mind, I’ll end the essay with some speculation about what may come next, hoping that my guesses 
won’t be too far off the mark.   

The Many Faces of Fault Tolerance 

The best place to start a review of fault tolerance research is by reiterating that the term can really be used 
in connection with all sorts of questions, some very different from the ones on which I’ll focus here.  The 
OS community has looked at fault tolerance at the level of the operating system itself (for example by 
making the OS tolerant of faulty device drivers and hardware [10][11][12]), and tolerating damage to 
persistent storage structures so that the OS won’t crash if you try to mount a corrupted file system [13]).  
We’ve explored ways to mirror applications: Tandem’s original process pair concept [14], for example, 
or the more ambitious perfect mirroring that Stratus Computer did back in the late 1980’s with their “pair 
and a spare” hardware architecture [15].   We’ve become experts in bug-finding and code analysis, with 
entire conferences dedicated to such topics (and some great SOSP and OSDI papers, too1).      

Beyond this our community has done a huge amount of work on logging, rollback, and checkpointing  
[18], and on using virtualization to contain failures or allow speculative executions [20][21].  We’ve done 
this at every granularity one could imagine: the process, sets of processes in a componentized application, 
the VM, sets of VMs and even in the file system.  We’ve learned to mirror individual applications by 
logging events within a virtualized environment and even found ways to replay non-deterministic 
executions [19].  We know how to mirror file systems or entire data centers, and used those ideas to 
develop digital libraries that collaborate to preserve content2 [22][23].   

A significant area of study has focused on ways of either incorporating transactions directly into the OS 
or programming language environment  [26][27]  (an idea that went on to be widely adopted in industry 
[28]), or performing file system operations in ways that would leave the file system intact after a crash 
(and even here there have been many ideas: the early BSD file system work worried mostly about the OS 
interaction with file systems metadata [29], whereas systems like IBM’s QuickSilver or CMU’s Coda 
[30][31] went further and offered ways for applications to update sets of files atomically).  For OS 
researchers from my era, late nights spent fixing a damaged file system after a crash was a price of 
developing new OS mechanisms; today, that sort of problem could never happen. Moreover, it has 

                                                           
1 Here, I’ll omit citations: I could make a list of some of the papers by Dawson Engler’s group, or Yuanyuan Zhou’s, 
but I’m not sure which to include.  And this is will be the pattern:  when I leave out citations entirely, you should 
just understand that I was lazy and didn’t want to spend an hour to track them all down! 
2 Brewster Kahle, creator of the Internet Archive, once gave a talk at Cornell in which he remarked that the 
overarching goal of the Archive is to preserve humanity’s collective knowledge even in the event of a global 
collapse of civilization.  Hopefully, that particular goal won’t ever be put to the test, but if a failure of that scale 
ever occurs, it would be nice to believe that we have the technology to recover from it! 



become very easy to use transactions within modern programming environments such as the runtime 
support systems for Java, C# and C++ 11.  

Another category of work starts by assuming a group of servers that might need to tolerate failures by 
some or all of the members.  Here, we can talk about crash failures, network partitioning failures, or even 
data corruption and Byzantine behaviors, and each of those topics has an associated collection of seminal 
papers and results [32] , as well as more recent work that often takes an integrative approach [33][34][35], 
addressing several topics at once (for example, the Cambridge work on the CHERI processor is 
noteworthy for its breadth of coverage [24]).  This recent trend is a departure from early work, which 
generally either tackles some specific category of failure (most work either looks at crash failures, or goes 
to the other extreme and assumes a Byzantine fault model), by the behavior desired (provably safe 
resumption of activity after a problem is resolved, versus continuous operation).  There even is a whole 
school of thinking concerned with systems that can restore invariants even after a failure creates a period 
of havoc (the so-called self-stabilization methodology, proposed by Dijkstra [36] and then explored 
exhaustively by Shlomi Dolev and others [37]).  On the other hand, the SOSP community hasn’t really 
done much work with the self-stabilization approach.  I’ve often wondered if we err by not doing so: it 
seems to me that self-stabilization theory might be useful as a rigorous way to formalize the BASE 
approach favored by the CAP community, a point to which we’ll return shortly.   

In the remainder of this essay and my talk I’ll be focusing on consistent data replication of the kind used 
for fault tolerance in groups, for example in support of state machine replication (groups in which 
deterministic replicas are launched in the same state and then perform the same actions in the same order, 
hence go through the same evolution of states).   The CATOCS and CAP conjectures are commonly 
perceived as criticisms of this class of systems, so we can drill down to understand the underlying tension 
that continues to trigger passionate debate decades after seemingly good solutions to the scientific 
problems were found.    

Consistency: Fault tolerance’s Mirror Image 

What does it actually mean to “tolerate a failure”?  It’s going to turn out that our story centers on how we 
answer this very basic question.  Some of the least exciting work in the area stems from shallow, 
simplistic answers to the question: if you start with an extreme position it can be easy to prove that fault 
tolerance is absurdly costly, or impossible.  But the resulting extreme claims have little to do with what 
OS engineers or large scale application designers are able to pull off.  Systems builders are engineers, and 
don’t need to guarantee that their systems will function even under the very worst scenarios imaginable.  
Our task is to build systems that should work well in the settings where they will actually be used, and 
that should tolerate reasonable patterns of failures.  If the whole data center shuts down because power 
has gone out or the network has failed, well, obviously our fault tolerance solutions won’t work until 
acceptable conditions are restored.   

So with that in mind, let’s lay out some basics.  A good place to start is to realize that fault tolerance is 
inextricable from consistency, which is really just a formal way of talking about the correctness of a 
potentially complex system.  In rough summary, we take some target system and create a list of properties 
it should satisfy.  We call these safety properties: if they continue to hold, nothing bad will happen 
[38][39][40][41].  The collection of such properties defines the consistency of the application. 

Notice that I haven’t said anything about transactional ACID guarantees [42][43].  As readers of this 
essay will surely be aware, transactional databases offer a set of four core safety properties (atomicity, 
consistent operations that maintain data invariants, isolation and durability), so in this sense ACID is an 
instance of a consistency property.  But one could equally well say that the Facebook caching 



infrastructure guarantees consistency provided that every image it returns to an edge client is one that was 
valid at some point in the past within the Facebook system [114].  This isn’t an ACID guarantee and 
might violate “consistent caching,” since some of those images be stale (think of a Facebook profile 
picture replaced by some newer profile picture for the same user).   Yet if this is good enough for 
Facebook, perhaps we shouldn’t think of it a weakening of consistency, but rather as a strong consistency 
statement that simply isn’t identical to the ACID properties.  Further, notice that Facebook’s caching 
guarantees might not even be strictly weaker than ACID: perhaps Facebook achieves some form of 
probabilistic quality guarantee, or some kind of timeliness property.  ACID does not cover such forms of 
consistency, so those properties would in some sense be stronger than what ACID offers! 

In fact, Facebook would incur a meaningful  “penalty” if the typical profile photo returned by its cache 
were stale, and it would completely unacceptable for it to substitute someone else’s profile picture for 
mine.  Amazon might have trouble selling products if their web pages constantly showed stale data: such 
a page might have incorrect pricing or could misreport the inventory for a highly desired product that has 
actually sold out.  So one often brings additional safety properties into the mix.  Notice that as I’ve 
expressed them, these are still safety properties, hence part of what I’ll call the consistency model of the 
system.  One could even write down a utility function describing the value to the system for enforcing 
such properties, and then build an infrastructure that maximizes utility.  Such an approach would be 
inherently probabilistic. 

In contrast, we use the term liveness when guaranteeing that something good will happen within bounded 
delay [38].   For example, we might want to guarantee that an Amazon inventory report on a web page is 
accurate to within 2.5 seconds.   The difficulty is that as normally expressed by the theory community, 
liveness is an absolute, and hence can be a problem in a world where our goal is to engineer systems that 
simply need to be good enough to work well under normal operating conditions.  All of those 
qualifications shift us away from the theoretical concept of liveness towards a more probabilistic form of 
conditional safety.  Real systems aren’t live, in the formal sense of the term. 

In particular, Fischer, Lynch and Patterson (FLP) published a seminal paper in 1985 [44] , showing that in 
an asynchronous distributed system it is impossible to guarantee liveness for any protocol capable of 
solving a problem they formalized as Fault-Tolerant Consensus [48].  Consensus is simply the task of 
reaching agreement among a set of processes on an input: typically, 0 or 1.  We insist that the value be an 
input to rule out trivial solutions (e.g. where everyone always decides 0).  When we say that FLP holds in 
an asynchronous setting, we mean that no correct protocol can guarantee liveness if it will need to run in a 
system with no access to clocks and no bounds on message delay.  The proof shows that if a protocol is 
correct, and is designed to tolerate crash failures (even just a single crash), there must be runs that take an 
unbounded number of steps and send unbounded numbers of messages, yet never reach a decision.   

In some sense, FLP is a worst-case result: for example, network partitioning failures or data center power 
outages result in situations far more extreme than the one considered in FLP, and are more common too. 
With partitioning failures it is very easy to see that consensus cannot be achieved (suppose that you and I 
need to agree on a bit, and that the value must be a legitimate input and not a default value of some sort, 
but that the network is down and hence we cannot send messages to one-another.  Game over: It can’t be 
done).  But FLP applies in a much more subtle situation, and as such, is a somewhat surprising result. 

Yet while FLP establishes that we cannot guarantee liveness, it certainly doesn’t prevent us from building 
protocols that achieve strong forms of consistency and that are also highly likely to tolerate the patterns of 
faults that real systems actually experience.  There are other theory results that speak precisely to this 
question.  A great example is the work of Chandra and Toueg on what they characterize as a “hierarchy” 



of failure detectors [45].  They show that if a failure detector satisfies a property at least as strong as a 
predicate they call <>W, then it can be used as the basis for a consensus protocol that will guarantee 
progress.  The pragmatic implication is that as systems engineers, we can often make progress extremely 
likely.  Moreover, <>W suggests a practical way to approach the question: if you want to build a fault-
tolerant system, they recommend that failure detection be done by a failure detecting service, which 
should report failures and recoveries by some form of status update.  This is exactly how modern data 
centers handle such issues: they have a “health monitoring” infrastructure.  

I’ll just add one last digression before switching to focus on that question of deep principles.  I find it 
fascinating that we have all sorts of results on Byzantine Fault Tolerance (BFT) for what are called 
synchronous networks: systems in which there are perfect clocks, and where the network runs in perfect 
rounds, and where every message sent is always delivered within the same round [46][47].  Clearly we 
can’t really build such hardware, yet we know more about BFT in this context than you could possibly 
imagine; there must be literally hundreds of papers, some very deep.  These papers include actual code 
intended to run on a kind of computer will never exist.   

Now, not all BFT work is aimed at code for imaginary, unrealizable computing devices.  Here in the 
SOSP community we would tend to point to papers like the PRACTI work by Castro and Liskov [33], the 
so-called CASD (delta-T) atomic broadcast protocol of Cristian, Aghili, Strong and Dolev [49], or the 
Zyzzyva paper by Kotla and Alvisi [34], in which BFT is integrated with a gossip protocol [51] that can 
be used in real networks.  But these results are not typical of the main body of BFT work, which really is 
focused on how to write code for an imaginary kind of data center that embodies unrealizable hardware.   

So hold that thought, and now think back to what FLP tells us.  A first thing to notice is that while the title 
of the FLP paper uses the word “impossibility”, in fact the justification for that particular choice of words 
will turn out to involve the formal definition of the term “impossible”, which the authors take to mean 
that there exists some way to attack the system that will prevent termination.  To carry out an FLP-style 
attack on a real system, it is necessary to continuously tracking the state of every component and control 
the delivery time for every message sent.   

When we put FLP next to BFT, we see a very strange juxtaposition.  On the one hand, we have an 
impossibility result (a very unlikely one) for a kind of network we actually can build, and on the other, we 
have code that would solve BFT but only on a kind of computer that cannot be built!  In an ideal world, 
we would want the exact opposite: a lot of work along the lines of PRACTI and Zyzzyva, or lots of 
solutions like the consensus protocol used in the <>W proof.  But we have a surprising paucity of such 
work; the theory community seems to have a fascination with results inapplicable to practice.  

They say that academic arguments are particularly nasty because so little is at stake, and perhaps this 
speaks to the point I want to make.  As systems builders, our community has always been focused on 
pragmatics.  We know perfectly well that most systems fail by crashing, and that mostly the failures 
won’t corrupt data.  Real failures actually don’t result in bizarre worst-case Byzantine behaviors; for that, 
one has to imagine a virus compromising a few (f) servers, out of a larger set (at least 3f+1 would be 
needed), which can then overcome the failure.  But 3f+1 is a very high price to pay for a very unlikely 
scenario.  Anyhow, why wouldn’t the virus just infect the other 2f+1 machines?   

So real systems builders are generally comfortable with 2f+1 replicas and frankly, in many cases we are 
perfectly happy with just f+1.  After all, if one copy of the Internet Archive survives the global collapse of 
civilization, shouldn’t we just thank our lucky stars (and Brewster’s foresight), dust ourselves off, and 
rebuild?  And this gets to the broader point: viewed from the theory perspective, systems builders seem 
frustratingly obtuse:  Strangely comfortable building solutions that only “work” if one adopts the most 



tortured possible definition of what it means for a system to be correct.  Worse, it really isn’t easy to 
formalize a statement such as “my system will work as long as the data center is running, and my wide 
area system should keep the wide-area infrastructure consistent so long as the WAN link is working.”  
Yet of course this is just what real systems builders do, all the time.  The fact that in doing so we are 
flagrantly ignoring impossibility results seems not to trouble us.   

Meanwhile, our counterparts on the theory side of the aisle have often had difficulty explaining why their 
proofs are even relevant to our real systems.  Many in the systems community reject the models our 
theoretical counterparts favor, and once you reject the model, you certainly won’t be very interested in the 
proofs.  So all of us have had frustrating lunch discussions, in which our theory friends patiently explain 
that “Well, if our failures could be Byzantine, you’ll need to employ a BFT model.” We builders react by 
being baffled by their models, and appalled at the costs, and so we reject that friend’s advice as 
unrealistic.  Now things start a dangerous downward spiral: theory friend feels that this cavalier rejection 
of mathematics is seriously testing the friendship!  Nobody wants to lose a friend, so the builder tries to 
explain that even though her or she isn’t comfortable with the BFT model, or for that matter with the 
asynchronous model, it really would be awesome to prove the solution correct, and a bit of help would be 
welcome.  But now theory friend repeats that this is hopeless, a waste of time: FLP makes it clear such an 
effort will fail.  Why waste effort on a fatally flawed endeavor?  Well, systems builder retorts (things are 
getting a bit emotional…), because if we don’t convince ourselves that the solution works, it probably 
won’t.  Theory friend replies: “Well, it won’t work.”  The systems person tries to salvage hope: “Hold on, 
that model you theory folks are using is kind of strange.  Couldn’t that give us an angle we could explore?  
Maybe real systems just aren’t subject to these limitations?”  “Well,” theory friend responds (looking 
vexed), “if there is some other model that all of you systems folks are ready to endorse, pray tell, what 
precisely is that model?”    This is perhaps a good moment to switch to a less controversial topic, like 
politics or religion. 

Through countless such lunchtime dialogs, a schism has formed.  For decades, the theory community has 
produced waves and waves of results that the systems community has completely ignored, even though 
some of those results turn out to be relevant to practice.  Meanwhile the systems community has built 
huge edifices that the theory community has often ignored as incorrect by construction, even though in 
retrospect, one realizes that perhaps they are correct for the desired purpose, even if not correct relative to 
some very elegant but oversimplified model.  I’ve wondered if we might not be missing all sorts of 
insights that could have been achieved had we found a way to work more constructively, rather than 
becoming lost in pointless arguments over models.   

Three Fundamental Systems Principles 

With this context, it is time to briefly pivot and consider principles – the foundational beliefs of the 
systems community.  In his history day talk, Peter Denning spoke of this, quoting Jim Gray on the idea 
that principles should be eternal: timeless, spaceless, and hopefully as relevant a hundred years from now 
as they are today.  In fact, the evolution of hardware challenges many principles, so perhaps the hundred-
year test is unrealistic.  This said, the acronyms we’ve mentioned (BFT, FLP,  CATOCS and CAP, 
ACID) certainly aspire to this kind of special status.  Should we, in fact, recognize them as eternal 
principles of the systems community?   

For our purposes here, I want to focus on a smaller set that seem especially relevant.    A first principle 
was perhaps best expressed by Butler Lampson in his paper on Hints for Operating Systems Developers 
in 1983 [52].  Butler’s paper covers a lot of ground (it is well worth reading even now, 32 years after it 
was written), but especially apropos was this: he argued that for most purposes, the OS developer faces 



the challenge of extracting some kind of core functionality that will be of broad value and power, then 
simplifying it as much as possible.  Butler explains that our job is to take away everything that can 
somehow be removed from this core functionality, until what remains is as simplified and basic as 
possible.  Then the next task is to focus on this remaining module, understand its critical performance-
limiting paths, and to optimize those until the highest possible performance is achieved. 

Notice how Butler’s vision isn’t purely about speed: he also values simplicity and structure, and treats 
these as three aspects of a single methodology.  To me there is an elegance and clarity to this way of 
understanding systems: our task, if you accept this view, is to achieve a kind of balance between 
contending aspects of a single overarching process.  In setting after setting, the systems community has 
encountered this tension, and I think Butler has it exactly right.  These are three aspects of one 
methodology, inextricable and mutually interdependent.  So here we have a principle that genuinely 
deserves the eternal, timeless, spaceless status Jim had in mind. 

A second such principle generalizes the End-to-End Principle (E2E) of Saltzer, Reed and Clark [53].  As 
they originally stated it, the E2E principle was concerned with network functionality, and basically said 
that if the applications (the “end points” of a communication session) will need to implement some 
functionality no matter what the network layer does, then the network layer shouldn’t duplicate that 
functionality unless somehow doing so brings a huge performance improvement.   

The systems community seems to have generalized the E2E principle: our version echoes Butler’s view 
that modules within the OS should be as basic and general as possible and shouldn’t perform tasks that 
the application could perform instead, but then goes further to underscore that the OS should not impose a 
“model” on the higher level applications it supports.  In effect, models, properties and guarantees must be 
viewed as application-layer abstractions.  OS modules support abstractions but should themselves be 
general purpose building blocks that do not predetermine any behavior that the application-layer designer 
might prefer not to adopt:  The OS should enable, not constrain. 

So here we have two eternal principles.  It will turn out that CATOCS and CAP are in some sense 
evocations of them, with CATOCS more focused on the generalized E2E principle, and CAP more 
focused on performance, as if the “P” in CAP was actually about performance, and not concerned with 
network partitioning at all.  But in fact just as the OS community really transformed End-to-End in the 
process of embracing it, one could claim that the same has happened with CAP: those who cite CAP do 
so in a way that isn’t precisely what Eric Brewer originally articulated.  Indeed, as we will see shortly, 
this is true even for Paxos, the most famous of the strongly consistent replication solutions.  What people 
refer to using the name Paxos isn’t necessarily what Leslie Lamport had in mind when he coined the 
name.  This tendency of our community is to seize upon things, but in doing so to also transform them, is 
striking.  Perhaps this too is a deep and foundational principle: in systems, things often mean something 
other than what their creators initially had in mind.  Ours is not a simple history, for better or for worse. 

But before we tackle those complexities, there is actually one more foundational principle that I would 
like to cite, originating with Jim Gray.  Jim was a good friend of mine, and a mentor.  But he was also a 
mentor to the OS community, travelling long distances to join us at SOSP even though he published 
mostly in the database community, and forming strong personal ties to many of us, even though only 
some of those connections are reflected in papers.  Jim had as much of a role in shaping the OS 
community as any of the other “principals” one could name. 

Jim’s contribution to our small list of core principles emerged from a paper he published at SOSP in 1985 
where he looked at Tandem’s “non-stop” computing systems and asked why the applications “stop” just 
the same [54].  His paper highlighted the role of bugs, specification errors, confused users, and similar 



effects.  We’ve taken the resulting agenda to heart; today, we can point to dozens of papers on bug-
finding, modular design techniques that compartmentalize problems and allow a system to survive the 
failure of some of its components, data replication in support of such behaviors, etc. 

But the principle that I want to focus on was a bit different: in his 1985 talk, Jim directed some comments 
to the debate occurring at that time around the BFT model, commenting that if we really want to build 
fault-tolerant solutions, we would be wise to keep our eyes on the real needs of our real users.  He made a 
similar remark in a talk he gave at an informal get-together hosted by IBM Almaden that we called 
“Byzantine Business” and was held around 1986, where he argued that if we really wanted to have impact 
on a key question, we should invest much more effort towards explaining the seemingly universal 
importance of the 2-phase commit protocol.   (Many of the core BFT attendees were horrified… yet I 
think that the passing of time reveals that Jim was actually right: 2-phase commit has such a universal 
role, and this universality has never really been properly explained)  To me Jim’s comments mirror 
Butler’s point about focusing on the critical path: Jim’s additional insight was the recognition that the 
critical path that matters is the one that arises in real use.  Such a comment can seem trite, but in fact this 
critical path is not necessarily one that might seem to be the most important one on the basis of a purely 
mathematical model, or even the one that seems to dominate in experiments performed using a test setup 
in the lab.    For Jim, the real world was the ultimate testing ground and the needs of the real world were a 
source of inspiration. 

Jim loved to use mathematics as a tool for reasoning about complex questions.  So his point shouldn’t be 
taken as anti-theoretical.  Rather, he worried about our tendency towards an overly enthusiastic embrace 
of theories that often needed to be oversimplified to make them tractable. Throughout his career, Jim 
espoused this view, and his work was striking for his creative embrace of the complexity of real systems.  
For example one of my favorite papers tries to reduce the extremely complex world of replicated 
databases supporting ACID transactions to a set of very simple “rule of thumb” equations predicting 
scalability [55].  In that paper, Jim and his co-authors point out that unless you take care, every replica 
added to a database cluster will slow it down (his worst case scenario had an O(n5) slowdown!!).  But Jim 
and his colleagues didn’t stop with this finding and declare the “impossibility of database scalability.”  
Instead, they turned the question on its head, treating the negative funding as a tool that led them towards 
other approaches that often worked incredibly well: sharding, for example, and partitioning database 
functionality in ways that reduce conflicts between concurrent transactions.   

Oh, and with respect to the BFT point:  Jim felt that real systems fail by crashing [54].  Others have since 
done studies reinforcing this view, or finding that even crash-failure solutions can sometimes defend 
against application corruption.  One interesting study, reported during a SOSP WIPS session by Ben Reed 
(one of the co-developers of Zookeeper), found that at Yahoo, Zookeeper itself had never experienced 
Byzantine faults in a one-year period that they studied closely.  But on the other hand, the clients of 
Zookeeper exhibited Byzantine behavior surprisingly often.  This is actually doubly surprising, because 
we in the systems community have generally trusted the clients and, to the extent that we’ve studied BFT 
behaviors, we’ve tended to focus on servers running in replicated groups! 

So let’s summarize our three guiding principles, and then we can start to tackle fault tolerance and 
consistency in a crash-failure model.  

I. Isolate core modules, simplify them as much as possible, and optimize the critical path. 
II. Core modules should be general purpose, flexible, and fast.  They should enable end-to-end 

properties and models but not impose decisions.   



III. Focus on real-world systems, with real problems and real challenges.  These may not match 
elegant models, but elegant models often steer you to overly complex, unscalable solutions.  

Perhaps we should also pause just to note that at the end of the day, the systems community is 
performance-oriented.  If solutions aren’t fast, really fast, than the work is suspect.  I mention this 
because this overarching fourth principle will turn out to be the most important of them all. 

Replication Techniques 

The 1983-1985 period also ushered in a series of practical solutions, including my own early work.  To 
set some context, recall that in 1985 the SOSP community had seen a series of wonderful papers on 
transactional and database systems, and many people were debating ways that such mechanisms could be 
used in object-oriented runtime frameworks and systems.  But the transactional model separates 
computation from storage, and many operating systems services and applications don’t easily support this 
kind of separation: we also need to host applications where the data is simply in local variables within the 
processes making up the system, and where the platform can’t somehow distinguish database state from 
application state.  Further, the transactional model provides isolation between concurrently active tasks, 
but in many settings, the OS needs to support cooperation among concurrent actors. 

This was one reason that Tommy Joseph and I became interested in the idea of replication as a fault 
tolerance tool for a more general class of arbitrary programs, with no associated database.  In the 1985 
period, there was much interest in state machine replication, an approach first suggested by Leslie 
Lamport in a 1974 paper [56] where he used a form of atomic broadcast to replicate a simple 
deterministic service.  (Fred Schneider eventually expanded on the idea in a widely read tutorial [57]).  In 
fact, as of 1985, there were no practical realizations of state machine replication, and if anything, the 
concept was perceived as being at odds with the trend towards multithreading (which brings inherent non-
determinism) and the growing use of componentized software design (CORBA was in the air, although 
the OMG had not yet been founded).  A componentized application might include a subsystem or two that 
use replication and yet the remainder of the application might not.  In fact the applications sharing some 
object might not even be identical.  This kind of reasoning led us to look at replication for complex 
systems implementing componentized abstractions.  We concluded that the state machine replication 
model, which treated applications as static sets of service replicas, subsets of which might be unavailable, 
was a poor fit to the need.  And while we loved its simplicity, we also concluded that the transactional 
model didn’t fit the need. 

The virtual synchrony model  we came up with reflects this mix of what we knew from prior work and 
these new elements.  A first paper [58], in 1985, showed how to accommodate a very dynamic style of 
replication in which processes could form groups, join and leave (or fail) dynamically, initialize 
themselves using a kind of checkpoint we called a state transfer, and use ordered multicast to update 
replicated state (we also treated membership of the group itself as a kind of replicated state, reporting it 
through “view-change” events).  The system was also designed to handle network partitioning events by 
ensuring that if progress occurred, only the “majority partition” could advance; any minority partition 
would sense that it was disconnected from the main group and shut itself down.  We proved that all of this 
would work correctly, and implement our solution in the first Isis system.   But this first system was 
painfully slow.   

In subsequent papers [59][60][61] we showed how Isis could be refactored into a membership service 
running a core membership protocol that we extracted from the 1985 system and called the group 
broadcast or Gbcast protocol, together with a set of protocols that consumed group views from this 
service and ran much faster by virtue of not duplicating the work already done in the membership service.  



We also introduce a number of optimizations: ways to send multicasts asynchronously while preserving 
causal order, ways to deliver messages early (a form of optimistic or speculative execution), and then a 
primitive we called “flush” that would form a barrier, preventing an application from revealing these 
speculative states until they had become stable.  Eventually, we refactored Isis into more of a library (we 
called it a “toolkit”), and in the process achieved speedups.  

It wasn’t long before the Isis Toolkit was running the New York Stock Exchange (it did so from around 
1995 to roughly 2005, recovering from countless failures quickly enough so that no trading disruption 
ever occurred), the French air traffic control system (by now, Isis has a 20-year record without a single 
hiccup), the US Navy AEGIS warship, Oracle’s network management system, a number of VLSI fab 
lines, telecommunications co-processors, and many other uses [62][63].  Quite a few of these Isis 
applications are still in use today.   

But Isis wasn’t the only practical distributed computing technology with fault tolerance properties.  
Earlier, I mentioned Jim Gray’s Tandem study.  Their process-pair technique for maintaining a hot 
standby was widely cited.  At IBM, Flaviu Cristian developed a real-time mirroring technique that was 
ultimately applied in a project that sought to upgrade the US air traffic control system; the associated real-
time multicast protocol was extremely interesting [49]: it starts as a simple all-to-all echo (so a multicast 
to N processes would trigger N2 messages), but then adds additional mechanisms to overcome various 
failure patterns and features to order messages and ensure that all deliveries occur within a short window 
of time.  On the other hand, this protocol struggles when one tries to run it rapidly, leading to some very 
curious failure modes, as discussed in [63].  Leslie Lamport introduced his first paper on Paxos in 1989 
[16].   We saw a sudden surge in interest in publish-subscribe communications, including a SOSP paper 
on the TIB system [64].  All of this set the context for the 1993 iteration of SOSP, when CATOCS 
suddenly dominated hallway conversations [65][66][67].  

The Origins and Evolution of the Paxos Protocol 

But before tackling CATOCS, I want to pause to say a few words about Paxos, because that work has 
turned out to be so impactful.  It is important to realize that the Paxos protocol existed before Leslie’s Part 
Time Parliament paper [16][69].  That paper was first circulated in Technical Report form late in 1989, 
and it wasn’t published in ACM TOCS until 1996.   Leslie picked a cute name for the protocol, and it 
stuck, but the protocol itself predated his focus upon it, a point that Keith Marzullo discusses in a sidebar 
that was published with the TOCS paper when it appeared in print [16][17].  Much of this section echoes 
the contents of that sidebar, although I can add a bit more color and a few details Keith omitted. 

Exactly when did Paxos originate?  For those of us working in the field at the time, Paxos didn’t really 
spring upon us fully formed, but rather emerged from a series of incremental steps.  Among these was the 
work on Isis just mentioned: the Gbcast protocol used in that 1985 version of Isis [58] and then 
“refactored” to become the main protocol in the Isis membership oracle in the 1987 and subsequent 
versions [59][60][61] was actually solving a Paxos-like problem.  It turns out that Gbcast bisimulates 
Paxos  [68][69], in the sense that any run that can occur in the classic Paxos protocol (the one Lamport 
focused on) can also occur in Gbcast, and any run possible for Gbcast is also possible for Paxos3.   Thus 
the existence of Gbcast had some of us thinking about other kinds of protocols that could run in groups 
with other properties: ordering, freedom from partitioning oddities (“split brain” syndrome), and strong 
enough to make the state of an application durable even across complete shutdowns.  The Isis Toolkit had 
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a number of such protocols, typically derived from Gbcast but with relaxations of one or another of its 
properties, and intended for use by applications that didn’t actually need those particular properties. 

But knowing that Gbcast can bisimulate Paxos doesn’t make Gbcast the first of the Paxos protocols.  In 
fact, under any sensible similarity metric, Gbcast and Paxos are very different.  In particular, Gbcast has 
some properties that Paxos lacks:  for example, Gbcast allows a client to send streams of asynchronous 
requests and will preserve the request ordering.  Paxos does not allow this form of asynchronous 
streaming: in the classic Paxos protocol, the client awaits responses and so can only send an asynchronous 
stream by forking off threads: each request would then be treated separately, and hence requests could be 
reordered. Of course, a client could batch requests and send several as one Paxos operation, or include 
some form of event ordering directly into the request, which the application could then enforce.  

The above may sound trivial, but it really isn’t.  Consider the following.  There is an failure case in which 
Paxos decides to leave a gap in the message order: some leader proposes X, and another leader proposes 
Y, and another leader proposes Z. None is successful.  Now suppose that the leaders for Y and Z re-
propose their commands in some other slot, but the leader proposing X fails, and hence X never commits.  
Paxos can end up with a gap in its command sequence.  Paxos includes logic for sensing and ignoring 
such a gap.   

But the effect is that if a client intended that X, Y and Z be done in sequence, we ended up with Y and Z 
committed in the Paxos log, but X is stuck in an uncommitted state: perhaps present in a number of 
acceptor logs, yet lacking a leader and essentially abandoned.  This leaves Y and Z orphaned in the eyes 
of the application: learnable (since they committed), but not “applicable” in the sense that the application 
intended that X be performed first.  Dahlia Malkhi has pointed out that in an even more obscure scenario,  
the group of acceptors might later be reconfigured to add a new acceptor (for example because some other 
acceptor has suffered an irreparable hardware fault that damaged the disk).  In such a situation, it would 
be common to initialize the new machine by copying the log from some existing acceptor to the joining 
acceptor (a discussion of this can be found in Chapter 22 of [63]).  Notice however, that in doing so, we 
replicate a log in which X may be present: recall that it was proposed for that original slot.  Thus, by 
creating one additional copy of this log, X could actually become committed long after it was initially 
proposed, and long after the system moved onward leaving a gap for that slot in the Paxos log!     Of 
course such issues are solvable; Malkhi has a nice solution, and Gbcast (which guarantees gap freedom) 
had a solution to this issue from the outset. 

There are also some differences in the other direction: Paxos has what might be called an implied notion 
of durability across full failures followed by recoveries: in such cases, the Paxos definitions require that 
the protocol state stored in the acceptor logs be learnable (Paxos doesn’t have an explicit definition of 
durability, per-se).  In contrast, Gbcast treats durability as a property of the application state, providing 
tools to help the application make its state durable.  Thus if a Paxos service is restarted from a total 
failure, Paxos itself remembers its past history; if a Gbcast-based service is similarly shut down and 
restarted. Gbcast remembers nothing.  The application is responsible for remembering its own state.  
Gbcast per-se is stateless.   Perhaps the most important difference is that the Gbcast proof was very 
clumsy compared to the Paxos proof.   Given the different treatment of causal gaps and durability, the fact 
that Gbcast looks very different from Paxos, and the awkward proof structure, it is clear that Gbcast 
wasn’t the first Paxos. 

Turning to the history summarized in Keith Marzullo’s sidebar, which today can be updated with 
additional discussions of prior work (notably in papers by a colleague of mine, Robbert van Renesse 
[76]), one can construct a loose history of other relevant prior work.  The timeline I’ve arrived at starts in 



1978 [56], when Leslie Lamport discussed replicated state machines [57] for the first time, but didn’t talk 
about asynchronous environments or how to solve consensus in such environments. This of course was 
long before any of the events mentioned above. 

By 1982, it was widely believed that consensus in an asynchronous environment with crash faults was 
impossible, but FLP offered the first strong proof [44], and the authors began to talk about their work 
around this time.  While not published until 1985, FLP was thus known to hold. 

In 1983, Michael Ben-Or designed working consensus protocols for an asynchronous environment with 
faults [71].  This protocol responded to FLP by proving termination with probability 1, technically a 
weaker guarantee that the form of total correctness defined in the FLP work.  The Ben-Or protocol 
achieves consensus with 2f+1 participants (matching the lower bound), and there is also a Byzantine 
version that uses 5f+1 participants (this exceeds the lower bound).  This paper appeared as an extended 
abstract in PODC without proof, but even so, introduces rounds (similar to Paxos ballots) and quorums.  
On the other hand, Ben-Or doesn’t have a similar notion of  leaders. 

Also in 1983, Bracha and Toueg, inspired by Ben-Or, proved lower bounds for both crash and Byzantine 
faults and presented protocols that meet the lower bounds and terminate with probability 1 (assuming a 
network that delivers messages in random order—an assumption Ben-Or did not make, and a bit 
unconvincing for those of us who work with real networks).  This work appeared as a full paper within 
the same PODC [72].  Again, the protocol lacked the Paxos concept of leaders. 

In 1984 Dwork, Lynch, and Stockmeyer designed and proved correct the first leader-based consensus 
protocol [73].  To address FLP, this paper adds an assumption (Global Stabilization Time) under which 
the protocol can be proven to terminate, and their protocol is thus totally correct with this assumption.  
However, while this protocol has similar power to Paxos, in much the same sense that Gbcast is similar in 
power to Paxos, it would be very hard to make a case that the protocol “is” Paxos. 

We’ve already discussed my work in the 1985-1987 period, so I won’t repeat that. 

In 1988, Oki and Liskov published a paper on a protocol they called Viewstamped Replication (VR) [70].  
The important innovations include the following: 

• VR supports consensus applied to a primary-backup style replicated database. 
• Like Paxos, VR is a “multi-decree” protocol: it is not necessary to solve consensus from scratch for 

each decision, and they offer this as an advantage, arguing that VR has overhead similar to that of a 
standard primary-backup approach. 

• VR  has “round skipping”: participants don’t have to wait for a round to finish before moving on to 
the next.  The feature is useful if multiple leaders are faulty, and Paxos has a similar mechanism. 

Based on these structural similarities to Paxos, many consider VR to be the first true Paxos protocol, but 
it is not trivial to simply accept this assertion.  The problem is that as presented, VR is not a clean Paxos 
protocol: The paper presents the protocol in the context of a database replication system built using it, and 
the “state” of the protocol is in fact the replicated database itself.  The original paper only includes a proof 
sketch, very informal, but the actual proofs, which did not appear until much later in Oki’s thesis, focus 
on the correctness of this composed system (protocol+database) and as a result, are not at all similar to the 
Paxos proofs in structure or style.  This is very important, because the Paxos proof structure is what made 
Lamport’s work so notable. 

Thus, when Lamport first began to circulate his Part-Time Parliament paper in 1989 (it was submitted to 
ACM TOCS in 1990), the work was striking not so much because it included the Paxos protocol, but also 



because the formal treatment of the protocol established a framework that has turned out to be of great 
importance to the subsequent evolution of work in the area.  The paper per-se is famously difficult to 
read, starting with its frequent use of people’s names rendered phonetically into Greek.  Setting that issue 
to the side, within it one finds a protocol similar to Viewstamped Replication, but applied to State 
Machine Replication, and associated with careful descriptions of the system model and proofs of safety.  
No liveness argument is given.  Thus while the paper may not be to everyone’s taste, one cannot dispute 
that the Paxos protocol is described in a careful and ultimately, beautiful, way.   

I would argue that Lamport’s very elegant proof by refinements, in which a basic property is established 
and then preserved while layering in a new property and a new proof, was tremendously innovative and a 
departure from any of the prior work I’ve mentioned.  A series of papers were written to try and simplify 
the exposition of the proof: these include one by de Prisco [74], one by Lamport [75], and one by Van 
Renesse [76].  I highly recommend this last [76]; for me, it is the most readable of all.  But it the more 
obscure failure cases that the Paxos proof addresses remain fairly hard to understand: the ideas are simple.  
The complexity arises because it is hard to visualize all the possible states of a distributed system in the 
face of failures or transient network partitioning events.  Indeed, Lamport himself worried that it would be 
very hard to convince oneself that implementations of Paxos were correct, and went on to create a whole 
formalism for constructing machine-checkable proofs using a notation he calls TLA+, which can then be 
model checked [77].  In adopting model checking, Lamport actually uses an approach to Paxos that is 
widely associated with Lynch [46].  A recent contribution in this spirit is the proof by Hawblitzel [95].   

In other work, Bickford, Rahli, Van Renesse and Constable proved Paxos using a constructive logic (one 
in which expressions can be true, false, or undecidable, and hence proof by contradiction is not possible).  
They start by defining a domain-specific language called the logic of events [79][80][82], then express 
Paxos in this logic, and then are able to synthesize a formally correct implementation of the protocol from 
the proof, and even a provably correct database recovery algorithm [81].  They also have a constructive 
derivation of FLP [83].   They also have used this technique to manipulate virtual synchrony protocols, 
for example  to synthesize versions optimized for specific patterns of use [89]. 

This idea of starting with one protocol and transforming it into a family specialized in various ways is 
universal within the field.  For example, after introducing the original Paxos protocol, Lamport also went 
on to create a whole family of Paxos variants, each retaining the core Paxos guarantees (non-triviality, 
request ordering and durability), but specialized for particular settings: Paxos with an elected leader (this 
shifts it closer to Gbcast), Paxos with membership dynamics (this was done very differently than in Isis), 
Paxos with batching (needed for speed), Disk Paxos (for cases in which the storage system played the 
acceptor role, but lacked “intelligence”), etc.  Some don’t even bisimulate classic Paxos [78]. 

Who, then, invented Paxos?  I’m not sure the question can be answered, although Brian Oki and Barbara 
Liskov clearly deserve recognition for writing the protocol down as part of their database research.  On 
the other hand, it is interesting to realize that Viewstamped Replication and Paxos do not actually 
bisimulate, a point Van Renesse touches upon in [78], concluding that Viewstamped Replication and 
Paxos both refine (backward simulate)  yet another, higher-level protocol.  Both Viewstamped 
Replication and Paxos do use a notion of ballot, leader, round-skipping, multi-decree, and quorums, but 
this work argues that one can’t map executions of one onto executions of the other, let alone in both 
directions at once. They do assume the same failure model and provide the same form of state 
“durability”, but in Viewstamped Replication, the protocol logs are actually used directly as the state of 
the replicated database itself. 



But the invention of Paxos turns out not to have ended even after Lamport gave the protocol that name.  
Over time, the name Paxos came to be attached to protocols that don’t bisimulate Paxos.  Lamport 
himself has done so, although he only uses the Paxos name for protocols strong enough to solve 
consensus, and with some rigorously defined notion of protocol state, non-triviality, ordering and 
durability.   Chubby, the widely cited Google lock manager  [84][85], is described by its authors as 
having been based on Paxos, but they also describe an extensive series of optimizations and extensions 
they made.  We tend to cite Chubby as the first highly visible real-world use of Paxos, but the actual 
Chubby protocol really isn’t one you would find in Lamport’s papers.  The same occurred when 
Zookeeper [90] was created: the developers (Flaviu Junquera and Ben Reed) describe themselves as 
having initially thought about basing Zookeeper on Paxos, but then making optimization after 
optimization.  By the time they finished this process, Zookeeper was remote from Paxos and if anything, 
more reminiscent of the virtual synchrony protocols used in Isis – although again, not identical.    
Meanwhile, in fact, the Isis implementation of virtual synchrony was itself evolving, away from the 1987 
version into a more complex “out of band” control structure that resulted in higher performance but 
brought new complexity into the system [61]. 

All of this created a degree of confusion.  At one point, the Isis virtual synchrony model (the model 
implemented by Gbcast) was commonly described as being in competition with state machine replication 
and Paxos.  But this was just a skin-deep impression:  At the 2009 “Replication: Theory and Practice” 
workshop at Monte Veritas (the “Summit of Truth”) in Lugano, Dahlia Malkhi and Leslie Lamport 
described a model that incorporated  elements of the virtual synchrony model together with elements of 
the classic Paxos model, which permitted them to correctly support asynchronous event streaming and to 
leverage the virtual synchrony notion of a dynamic group of processes (they called this a stoppable and 
reconfigurable state machine [91] , but referred to the model as “Virtually Synchronous Paxos”).  In 
follow-on work, Dahlia, Robbert van Renesse and myself extended the idea to create a formal structure in 
which a true Paxos protocol can live side by side with the optimistic style of protocols used in the Isis 
Toolkit; this is discussed in Chapter 22 of my book [63], and is implemented in the Vsync system4 .   The 
library has been downloaded some 5250 times. 

To summarize, the technology we associate with Paxos emerged around 1988, acquired the Paxos name 
in 1990, and became increasingly successful during the late 1990’s, eventually displacing most other 
options.  However, this summary conceals a deeper and much less linear story: the real story involves 
many versions of Paxos (widely different protocols), unified in their ability to solve consensus-like 
problems and to provide totally ordered updates to replicated data, but rather different if compared 
carefully.  They often look very different, and some don’t bisimulate classic Paxos.  These more mature 
versions of Paxos commonly use leader election to avoid contention for slots in the Paxos command list, 
batch large numbers of commands per Paxos operation, support multiple leaders with ownership of 
disjoint Paxos slots, and may also include application-specific optimizations.  At least one uses dynamic 
group membership tracing back to the early Isis approach.  Viewed this way, Paxos is more of a category 
of protocols than any single, specific protocol.  Ironically, and confusingly,  it has come to include even 
work that was done before the classic Paxos paper had been published. 

Which is the purest version of Paxos?  To my taste, the recent work on Corfu [87] and Tango (sometimes 
referred to as Corfu-DB) [88] yields the service truest to the real Paxos definition.   Paxos is best 
understood as a system that maintains an append-only log on durable storage, offering a way to truncate 
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log prefixes if desired, but otherwise offering precisely the Corfu API.    Yet this simple statement might 
surprise some in the field! 

I’m always surprised that when I say explain to my students that Paxos defines a totally ordered and 
durable message log, many respond that no, Paxos is actually a kind of atomic multicast solution.  Those 
who think of Paxos as an atomic multicast are (in my view, but also Leslie Lamport’s), making a natural 
but incorrect association.  There is no question that Paxos resembles atomic multicast, just as virtually 
synchronous atomic multicast resembles Paxos.  Nonetheless, because Paxos holds data – has a notion of 
durable state – it turns out to be notoriously hard to use in applications that have their own distinct notion 
of durable state.  Recall the work by Oki and Liskov in which Paxos was actually the data storage 
subsystem of their Viewstamped Replication database solution [70]: This is really how Paxos was 
conceived by Lamport as well.  In contrast, with reliable multicast, it makes sense to talk about a layer 
that sits in front of the replicated database: a relaying stage that presents each update to each replica, but 
then lets the replicas maintain the true database state (a reliable multicast has no durable state of its own). 

The puzzle that arises if we put Paxos into this sort of staged configuration is that if the application has 
some sort of state external to Paxos, then it needs a synchronization mechanism to coordinate 
management of its own durable state with management of the durable state stored in Paxos itself.  In some 
ways, this explains why the Viewstamped Replication protocol is hard to separate into a Paxos-like 
protocol composed with a distinct, free-standing database application: with Paxos, it is actually more 
natural to just build a database in which the protocol state “is” the application state, exactly as 
Viewstamped Replication approaches the matter.  But if one wants to take a database like Oracle or SQL 
server and treat it as a black box, and then put Paxos in front of it to replicate updates, the durability issue 
leaps to the forefront and turns out to be very challenging – this is precisely where the Isis notion of 
providing tools to help the developer enters the picture.  Paxos lacks such tools. 

In fact, to use Paxos as a replication layer composed with a stateful application (in the sense of 
“applications with their own state, stored next to each of the replicas”), the application itself would 
generally need to be idempotent, meaning that if the same events are presented more than once, the 
application would be responsible for discovering this, filtering duplicates, and applying each event 
exactly once and in the proper order.  This is because when Paxos restarts after a complete failure, a 
component “relearns” the full contents of the durable log, and the best intuitive interpretation of the 
“learn” mechanism is to think of it as a protocol that presents a sequence of events to the application 
replicas, which each are expected to process that full sequence. It is up to the replicas of the application 
itself to understand which commands within the log have already been processed by the local instance: 
they must distinguish commands that have been applied to the application state from those that still need 
to be applied.  Further, the Paxos formalism doesn’t explain the conditions that the client must establish 
before it is safe to request log truncation, or offer a formal meaning for reconfiguration from the 
perspective of external application state.   

I should end this section by noting that the family of solutions we’ve discussed are not the only options in 
this space.  For example, when using replication for fault tolerance, many systems prefer to just 
implement some form of checkpoint-rollback [92][93], or adopt the chain-replication approach [94] (a 
generalized form of “warm standby” with f+1 replicas: updates are applied to the head of the chain and 
relayed to the tail; reads are done on the tail, where state is f+1 fault tolerant).  These are simple 
techniques, well understood, and they have been shown to work really well even at huge scale.  Further, 
they are supported by all sorts of software platforms, so you typically don’t need to roll your own.  They 
have connections to state machine replication, but the techniques don’t require remotely as much heavy 



machinery as for a dynamically managed process group with multiple leaders each proposing batches of 
commands against distinct slots and with heavy levels of asynchrony. 

Thus, the past three decades have left us with a family of protocols that has many members: all the 
variations of Paxos, the virtual synchrony systems (Isis Toolkit, Isis2, Transis, Ensemble, Horus, 
JGroups), Chubby, Corfu, Zookeeper, Sinfonia, chain replication, Raft, Zab, etc.  Members of the family 
can all solve consensus: the most fundamental problem.  Some treat failure detection and membership 
management as a core service, some batch operations for speed, some offer asynchronous streaming, 
some leverage optimistic early delivery with a flush barrier, some exploit a form of leader election, and 
this is just a few of their many features.  To a surprising extent, these protocols are actually different 
versions of a single story; sometimes (as with Gbcast and classic Paxos) we can find a series of edits that 
would basically transform one protocol into another; in other cases there are extra features or other 
changes that prevent such a transformation.    

Personally, I think of durability as an open question and a bit of a puzzle: many systems offer some way 
to make an application durable, but whereas some focus on the durability of the protocol itself, others 
treat durability as a question of application state, and still others solutions just don’t offer durability, but 
are intended for settings like publish-subscribe, where that property typically isn’t needed.   Above I 
discussed one aspect of the issue, but there is another aspect that may be of growing importance soon: the 
rapid emergence of a wide variety of non-volatile memory options, making it increasingly feasible to 
persist just about anything we like, without the huge overheads seen in traditional rotational file systems.  
High persistence delays had more of an influence on shaping protocols like Paxos than many might 
realize, and while one can definitely create a system like Corfu that optimizes Paxos for an NVRAM log, 
the broader question we need to ask concerns what durability should mean in applications that are 
replicated for various reasons.  Not every application will want to keep its state in a Corfu log.  To me, 
this highlights a sense in which durability could easily emerge as one of the dominant questions of the 
next era in distributed systems research. 

At any rate, all members of this consensus family share core correctness guarantees, and stretching over 
the entire family, we have a proof methodology popularized by Lamport (but with roots in prior work), 
permitting a powerful style of incremental proof by refinement, and supports model-checking of the code 
implementing the protocol.  Today, we can honestly say that these solutions are good ones, widely used 
by the industry, and with the performance required to support even very demanding use cases. 

The CATOCS controversy  

So with this backdrop, let’s return to CATOCS.  The authors assert that: 

• Systems of this sort violate the generalized End-to-End principle: they impose a model on their users. 
They claim that these systems are too complex to drop into the kernel and that they lack a clean 
decomposition compatible with Butler Lampson’s vision of a kernel composed of clean, simple 
building blocks that can be heavily optimized and then used in flexible, general ways.  

• Causal and total ordering are just two from a spectrum of possible ordering guarantees that could also 
include real-time features, special features to let applications leverage commutativity or other 
properties of the workload, etc.  Each application will need its own special mix; causal or total order 
will invariably prove to be too much, or too little. 

• Ordering guarantees are costly and by imposing them, we deny the user a chance to pay (only) for 
properties actually needed.  The CATOCS paper goes further, and asserts that causal order is complex 
to support and representation of causality potentially involves a data structure that will grow as O(n2), 



where n is the number of processes using the system.  Total order, CATOCS argues, is even worse, 
requiring contention for an ordering lock or token.  

• They sum all of this up with an argument that at the end of the day, CATOCS solutions are simply 
too slow: much slower than what might be theoretically feasible on the same hardware.   In effect, 
they claim that if application developers understood the cost, they would always reject strong 
ordering. 

How valid were these claims?  It is certainly true that early versions of Isis and Paxos were fairly slow 
and relatively complex, so one should grant this point, at least with respect to those implementations.  But 
over time, such systems became faster and faster and modern implementations are extremely performant.  
Some, like the highly modular Horus [96][97], Transis [98][99], Ensemble [100][101] and JGroups [102] 
systems, or the Libpaxos version of Paxos [103], are spare and elegant, with building block components 
that could be dropped into the kernel (although I am not aware that anyone has actually explored such a 
kernel-hosted option).  So this particular claim really depends on which version one is looking at, and 
even at the time was dubious.  It certainly isn’t a universal criticism of all such solutions. 

One can also dispute the CATOCS assertions about the cost of ordering.  Even by 1993 papers had been 
written on how to compactly represent ordering information [61][62][67][104][105].  Moreover, the 
CATOCS O(n2) claim makes sense only for causal order tracking for point to point messages.  This is 
relevant because in Isis, which is where that issue arose, causal ordering of this kind was available only 
for group multicasts, where an O(n) vector can cover the worst case needs, and a compressed one might 
be much smaller.   Further, Isis only used this feature in support of a particular form of lock-based 
concurrency control [106].  Better is to view these systems as using a gamut of tools for generating order, 
tracking order and enforcing it.  It strikes me as an overreach to brush those to the side and assert that all 
of them are “too complex” or to claim that all “scale poorly.” 

CATOCS also asserts that there will be as many kinds of ordering needs as there are applications, but do 
different applications really need different forms of order?  The example given in the paper involved real-
time [1], and they do have a point: many applications do have real-time considerations: a dimension not 
considered in the papers that CATOCS was focused upon.  On the other hand, one can add this property: 
Google’s Spanner system [107] merges real-time with logical consistency, and Spanner is just one of 
many such solutions (I like this example because Spanner scales remarkably well). 

The hardest question and perhaps the strongest of the many CATOCS points is perhaps the “slower than 
the hardware, and in opposition to our deepest principles” assertion.  For example, CATOCS views 
protocols such as the ones we mentioned as being overly complex.  There is no question that systems 
strong enough to solve consensus and able to tolerate failures are complicated, but on the other hand, the 
modular systems cited earlier are quite elegant.  And turning the question on its head, the implementation 
of a file system with strong security can be complicated too.  A thing should be as simple as possible, but 
not simpler (at least not if you want it to work correctly). So to argue that these mechanisms are too 
complex is really to argue that users don’t need them in any case.  Yet there is ample evidence that that 
consistency and total ordering are needed in real systems.  Our obligation, then, should be to offer it in a 
simple, elegant and highly optimized form, not to reject it out of hand. 

But it remains true that we haven’t done a very good job of isolating simple, robust building blocks that 
look elegant and easily fit within the OS kernel.    Today, the OS kernel component most relevant to data 
replication or reliable multicast is IP multicast, but this protocol is astonishingly unreliable and can 
actually destabilize entire data centers [108].   The other option is TCP: not a great match for replication.  



But perhaps the world is shifting under our feet in ways that broaden the notion of what it means to be an 
“OS module.”    The tools we’ve talked about exist mostly at the user layer, as libraries or stand-alone 
services, and in the past, might have been classified as “middleware.”  But the introduction of solutions 
like U-Net [109] and PCAP [110] was game-changing.  Today, as we look towards growing use of 
RDMA and NVRAM, the kernel plays a diminishing role in moving bytes or persisting them because the 
hardware is so much faster than anything we can do in software.   

I’ll leave it to the reader to reach their own verdict on the CATOCS controversy.  But as noted in the 
introduction, the 13 or so papers in the 2015 edition of SOSP that would seem to fall into this category of 
systems is perhaps the final word on CATOCS.  Total order, causality and strong forms of consistency 
have clearly found a place in our community. 

CAP Conjecture 

Meanwhile, a relatively recent rebirth of CATOCS has occurred under a different acronym.  When Eric 
Brewer first began his work on aggressively updated caching systems for the cloud (soft-state 
replication), he was onto something most of us had overlooked: the majority of today’s cloud applications 
can manage perfectly well with potentially stale cached data, provided that the application developer is 
prepared to do a little extra work to mask the oddities that can occur when reading cached information 
that might no longer be correct.  CAP reflects the recognition that for queries to give snappy responses in 
Europe, or Asia, there isn’t much of a choice: if they can’t respond using locally cached data, the delay of 
waiting to interrogate a backend-database that might be 125ms distant n California can be prohibitive.  
Thus CAP relaxes cache consistency to gain better availability and partition tolerance.  The CAP theorem 
formalizes this for a consistent (ACID) database confronted with conflicting updates during a period 
when a WAN link has broken, partitioning it into two disconnected subsystems [9][111]. 

Earlier we noted that CAP has been generalized by the cloud community, where a curious dichotomy can 
be perceived: the cloud infrastructure developers themselves, a sophisticated community, often use 
methods with strong consistency guarantees, like Spanner.  That is, they don’t necessarily impose CAP 
on their own solutions.  In contrast, the APIs offered to PaaS application developers provide significantly 
weaker guarantees.  Thus a web page rendered by a typical app running on the Apple cloud, or Azure, or 
Google’s App Engine will often be served cached images and other content that might be stale, with no 
indication that the content isn’t the most current version.  The designer is expected to minimize the extent 
to which the end-user would become aware of this.  If inconsistency does occur and somehow is evident 
within the system itself, a background reconciliation occurs [112].  This gives rise to a methodology 
known as BASE [113]:  BASE rejects the database ACID guarantees and instead offers a system that is 
basically available (BA), uses soft state (S) for most end-user interactions, then then employs a 
background mechanism to achieve eventual consistency (E).  For example, a background program might 
check a database against various data invariants, notice situations that violate the invariants, and then 
apply some sort of correction that will restore the invariant but might not be exactly what the external user 
would have expected.  Infrastructure owners who promote BASE frequently cite CAP, and then explain 
that in their environment, strong consistency is at odds with high performance, especially at scale.  
Network partitioning is viewed as a secondary concern.  And yet as noted, those same infrastructure 
owners often use stronger consistency in their own infrastructure subsystems! 

BASE is often touted as a rejection of consistency but it is interesting to ask just how weak this model 
actually turns out to be.  After all, distributed systems don’t work correctly for magical reasons.  Rather, 
there is a process of mutual accommodation: the designer adjusts the specification and the implementation 
until they match and also correspond to a highly scalable solution.  In this sense, CAP and BASE are 



simply justifications for an accommodation that promotes higher performance at cloud scale.  Further, 
notice that even a cache that might contain stale data still has a meaningful guarantee: the cached data 
should at least reflect a real state that system was once in.   Further, BASE systems don’t exactly revel in 
inconsistency: most try very hard to minimize inconsistency, recognizing that there is a negative utility 
associated with disappointing the end-user, and one of the 2015 SOSP papers documents this for 
Facebooks caching infrastructure, showing that even with CAP, they actually achieve very high 
consistency most of the time [114].  A Christmas shopper who sent her grandchildren a train set and the 
matching tracks would not be pleased if they opened the box to find only tracks.  On the other hand, that 
Facebook study didn’t consider situations when Facebook was experiencing failures or under some other 
form of rare stress, so there could be times when CAP temporarily permits significant inconsistencies. 

And what of the basic concern, namely that stronger forms of consistency are just too slow?  I haven’t had 
time here to discuss transactions and ACID guarantees, but as noted earlier, Google Spanner would seem 
to be an existential proof that global scale transactional solutions really can be made to work.  Yet 
whereas systems like the various Paxos libraries, or Corfu, or my Isis2 platform are pretty fast, 
particularly if requests are batched and the server receiving them is multithreaded, they are fairly slow 
relative to what the hardware could potentially be capable of if running at full speed.   

With modern RDMA hardware carrying the bytes, multicore platforms, and NVRAM or CrossPoint or 
similar non-volatile storage, we are able to move data at speeds of 100Gb/s today, with 200, 400 and a 
terabit expected soon, and making that data non-volatile simply requires selecting blocks of memory that 
live on a non-volatile storage technology.  In recent work in my lab, we built a reliable multicast over 
RDMA that runs at the full speed of the optical backplane when making as many as 32 replicas, and is 
still hitting nearly half the optical speed when replicating data to 512 nodes, and the HPC community uses 
a version of the MPI library that achieves similar speed on Infiniband.  Contrast this with what we might 
call good performance today for systems like Paxos or Isis2: in most papers, data rates in the 100’s of 
Mb/s are considered pretty reasonable, using tricks like batching request and employing different leaders 
for different Paxos slots.  Thus there is a missing factor of perhaps 100x, and that gap might be more like 
10,000x without the kinds of tricks just mentioned, which basically squeeze lots of work into each action.   

Durability is a mystery too: as noted earlier, Paxos makes its own state durable, which is not necessarily 
what an application using Paxos is concerned about.  The underlying design decisions often recall an era 
of rotating disks, where file access latencies were many thousands of times slower than DRAM access 
delays, and hence there was a significant risk of inconsistency if data was delivered to an application 
before the disk write had completed.  Thus if today we can make memory persistent just by requesting 
that a region be mapped to non-volatile storage, and the only impact is an access latency of a few 
nanoseconds for each block of data, we need to ask the obvious question:  Does it even make sense for 
these protocols to be structured as they presently are?  I suspect not. 

Discussion: CATOCS and CAPS in Context 

What then are we to conclude about CATOCS and CAP?  As we’ve seen, there are many ways to rebut 
both principles.  Neither rises to Jim Gray’s test of timeless, spaceless and eternal truth.  Yet in picking 
them apart and arguing that CATOCS gets the overhead costs of ordering wrong, or that the C and the P 
in CAP are often interpreted very differently than in the CAP theorem, we risk losing track of a deeper 
truth: both CATOCS and CAP speak to a valid concern. 

This concern, for me, centers on the three legitimate principles cited early in the essay.  I really believe 
that core systems components should be modular, powerful, general, and not impose decisions on the 
applications that use them.  I also agree with Jim that the most important problems to solve are the ones 



that arise in real systems.  As we survey the landscape of fault tolerance and consistency in October of 
2015, it seems clear that we haven’t done remotely enough to show that our solutions really rise to the 
standards articulated by these foundational truths. 

Consistency mechanisms remain complex, and difficult to use. Worse, to make them fast we often 
refactor them into separate modules but those modules remain so tightly coupled that the effect isn’t to 
simplify the solution.  A membership layer or a leadership election protocol that runs in a separate system 
component doesn’t qualify as separate module if there are countless calls and callbacks between it and the 
multicast protocol or message log code that uses it, depending upon the precise behavior of the 
membership or election mechanism, and doing so in subtle ways.  We lose the clean separation of 
concerns that Butler urged us to strive for.   

Further, when one structures protocols in this way, it turns out that many of the resulting modules have 
functionality duplicated in other standard OS components, yet protocol designers rarely tamper with the 
OS.  As a result, because we leave those other elements untouched, the OS as a whole is left with 
redundant and inconsistent handlings of the corresponding functionality.  For example, it is common for a 
multicast protocol or a message log to have a specialized notion of failure detection.  But failure detection 
also arises in the TCP protocol layer, and in the file system.  Thus if we leave them to implement their 
own, totally separate (and inconsistent) approach to detecting failures, the OS as a whole now has three or 
four ways of sensing failures.  When we modularized Paxos or Isis we didn’t really modularize failure 
handling in the OS as a whole.  We simply ended up with anarchy: localized structure, global chaos.  A 
coherent treatment of failure handling would have created a single module for that purpose, and then 
would have modified the entire operating system to use it in a consistent manner.  Doing that would 
abstract the notion of failure.  What we have done up in systems like Paxos and Isis is purely local to 
those elements and in this sense, ignores Butler’s wise advice. 

As it turns out, there are many such interdependencies.  We discussed durability in Paxos and the puzzle 
this has started to pose.  But just as failure sensing occurs throughout the OS, so do durability decisions.  
Today, we seem to treat NVRAM and other persistent memory stores as file systems, which certainly 
simplifies naming and block management, but might not there be other, cleaner ways to manage this 
property better matched to uses like creating a persistent log?  Memory management itself is a puzzle too: 
I haven’t discussed the point here, but when doing RDMA transfers from memory, the memory pages 
from which data is sent or received need to be preallocated.  Often, for security reasons, the OS will also 
zero such pages if this is the first time the application has had access to them.  They will need to be 
pinned to prevent paging or swapping, and preregistered in the virtualized IO-bus memory map.  In some 
systems the easiest option is to scatter-gather received data but then, once the actual received length is 
known, map the received blocks into a continuous segment using VM remapping because applications run 
fastest on contiguous memory regions.  And then there is the need to translate from the addressing the 
application is using into the addresses the NIC should use for DMA transfers.  Thus communication 
protocols that run at the very fastest speeds must be deeply integrated with the memory management 
abstractions of the OS.  And even here there are additional such questions: for example, multicore issues.  
In a NUMA architecture, the pages used for communication really should be local to the cores that will 
later be running the application code likely to touch the data.  At RDMA speeds we need to pin threads 
just to poll for I/O completions.  All of these observations lead towards a radically different notion of how 
an OS with a deep embrace of data replication should be structured.   That approach would respond to 
Butler’s advice, and to the generalized E2E principle; the approach we take now is piecemeal even if the 
protocols per-se are more and more modular and elegant. 



To me, the deep truth of CATOCS and CAP is this: while we’ve solved state machine replication at 
moderate scale and with reasonably good success, and have many impressive real-world uses of the 
resulting solutions that we can cite to back up the claim, there is a fundamental sense in which we’ve yet 
to actually tackle the contemporary version of the consistency question.  Needed is a more coherent OS 
structure in which the key elements relevant to data replication and failure handling are modularized and 
decomposed cleanly into separate components with clearly distinguishable roles, able to interoperate 
cleanly and to give us the various flavors of Paxos, but perhaps also used to support memory management 
in the rest of the OS, or durability for application-managed objects of other kinds.   Security overheads 
such as the zeroing of memory should be taken off the critical path.  Failure detection should be a service 
shared by all components and protocols that need to tolerate failures.  Then these modules will need to be 
assembled into a more familiar form, but in ways that promote clarity of function and elegance of the 
overall edifice, and that don’t introduce excessive cross-module dependencies.  In contrast, today we may 
have a reasonably elegant way to reason about Paxos, but are very far from a coherent view of this full 
structure, and might even need to rethink Paxos as part of the undertaking, because the assumptions used 
by Paxos may turn out to in some ways be at odds with the goals of such a redesigned OS structure.  

The overarching questions centers on performance: the most important metric of all.  We aren’t remotely 
near the achievable performance for modern infrastructures, as the experiments I mentioned earlier 
underscore.  The authors of the CATOCS and CAP work, at the end of the day, should probably just have 
pointed out that systems like Isis and Paxos were slow and left it at that; the resulting criticism would 
have been much harder to rebut.  Moreover, a performance-based observation would have been 
reasonably timeless: as we just noted,  even modern Isis2 or Paxos implementations move data 100x (if 
not 10,000x) slower than the optical backplane data rate, and with latencies that are correspondingly poor 
compared to what might theoretically be feasible.  One can certainly graft such systems to RDMA and 
NVRAM, and they will run faster, but this presupposes that the old choices of primitives are the best fit 
for the new architectures.  As we have seen, I very much doubt that this is the case. 

And so to conclude, what fascinates me about the historical CATOCS and CAP debate is that while none 
of the participants back in 1993 did a particularly good job of articulating their positions (myself 
included), there does seem to be an enduring validity to at least one important aspect of the CATOCS and 
CAP concerns.  Taken as shallow statements, one can demolish either proposition.   In a similar sense, 
CAP and CATOCS themselves took the goal of consistency in a shallow way, and demolished the 
resulting mischaracterization of the property.   But if we agree not to be petty, we need to acknowledge 
that there is a real point here, and that this real point is well taken.  The consistency mechanisms we’ve 
been working with, and refining and polishing, do work well.  But they are surprisingly expensive, not 
terribly modular, fit poorly into the overall OS, and impose architectural decisions that increasingly seem 
to be at odds with modern hardware and system goals!  

Disruption Is Coming 

Not long in the future our community will help create a new generation of cloud systems with strong 
consistency needs: smart cars, for example, will need help from smart cloud transportation services.  
Those, in turn, will depend on cloud-scale solutions that track sensors to monitor conditions throughout 
smart highways and cities.  Smart homes will be connected to a smart power grid that optimizes power 
generation and consumption to minimize the need for environmentally damaging coal-burning power 
stations.  Smart medical systems will offer health advice night and day.  Air traffic control systems will 
propose special routings to save fuel or time, and will dynamically replan flight schedules to ensure that 
preferred customers won’t miss connections.  The airlines themselves may shift towards just-in-time 
seating.  The coming world will be a true Internet of Things, it will be smart, and all of this will depend 



upon a new generation of cloud computing systems.  Today’s dumb systems may be fine with CAP and 
BASE, but tomorrow’s smart ones will need more. 

In this light, the realization that consistent replication seems to be 100x or more slower than should be 
possible on today’s RDMA and NVRAM platforms might not be a damning criticism.  On the contrary, 
such an observation begins to look like a tremendous opportunity.  We have a great reason to reinvent 
consistency and fault tolerance in a completely new setting, and the hardware has shifted in ways that also 
offer us all sorts of new architectural options.  In future systems, data will move out of band (I’m thinking 
of the control plane / data plane separation promoted in systems like BarrelFish [115], Araxis [116] and 
iX [117]), memory will be as durable as we chose for it to be, and multicore parallelism and cloud-scale 
parallelism will prevail.  SOSP and OSDI are impressed by 10x performance improvements, so the 
students who tackle such problems will be able to publish at least a few cycles of papers on their work.  
Moreover, the hardware is so different that there appears to be a real chance for completely new ideas. 

When he read this essay, Peter Neumann shared a few comments but then concluded with a powerful 
observation: he quoted a conversation with Butler Lampson in which Butler remarked that resilience 
without security is pointless, and that security without resilience is inadequate.  Peter’s point was that in 
focusing on fault tolerance and consistency without discussing security, I’ve discussed just one side of a 
multifaceted (well, at least two-faceted) question.  His point is very well taken, and it is absolutely true 
that a security perspective could be brought to bear on almost every topic I’ve raised.  Indeed, the logic 
formalisms used to reason about security and those used to reason about consistency are in a deep sense 
the same ones: a security system that behaves inconsistently would be useless, and in a similar sense, a 
consistent system incapable of supporting secure tasks such as credentials management is probably not 
powerful enough to play other roles that require strong guarantees.  Certainly, I wouldn’t want to be 
driven around by a smart car dependent on an insecure cloud computing infrastructure.  However, this 
essay is already far too long, so I’ll leave the topic as an exercise to the reader: I am sure that study of the 
ramifications of security in the context of the coming generation of systems will reveal all sorts of 
opportunities to build amazing systems and to write wonderful papers about them!  

And with that thought, I’ll conclude.   The next steps will need to be taken by the young members of our 
community.  In fact, you’ll have competition: my group is certainly going to work on these topics too.  
But I suspect that at the next SOSP history day, it will be my turn to attend, while someone else explains 
all the surprises that the coming 20 or 25 years of progress on fault tolerance will bring! 
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