
High-Performance ACID via Modular Concurrency Control

Chao Xie1, Chunzhi Su1, Cody Littley1,
Lorenzo Alvisi1, Manos Kapritsos2 and Yang Wang3

1The University of Texas at Austin 2Microsoft Research 3The Ohio State University

Abstract: This paper describes the design, implementation,

and evaluation of Callas, a distributed database system that

offers to unmodified, transactional ACID applications the op-

portunity to achieve a level of performance that can currently

only be reached by rewriting all or part of the application in a

BASE/NoSQL style. The key to combining performance and

ease of programming is to decouple the ACID abstraction—

which Callas offers identically for all transactions—from the

mechanism used to support it. MCC, the new Modular ap-

proach to Concurrency Control at the core of Callas, makes

it possible to partition transactions in groups with the guar-

antee that, as long as the concurrency control mechanism

within each group upholds a given isolation property, that

property will also hold among transactions in different groups.

Because of their limited and specialized scope, these group-

specific mechanisms can be customized for concurrency with

unprecedented aggressiveness. In our MySQL Cluster-based

prototype, Callas yields an 8.2x throughput gain for TPC-C

with no programming effort.

1 Introduction

This paper describes the design, implementation, and eval-

uation of Callas, a distributed database system that aims to

unlock the performance potential of the ACID transactional

paradigm, without sacrificing its generality and simplicity.

Performance is not traditionally one of ACID’s strong

suits: after all, the BASE/NoSQL movement [10, 17, 23, 26]

was born out of frustration with the limited scalability of

traditional ACID solutions, only to become itself a source of

frustration once the challenges of programming applications

in this new paradigm began to sink in.

Callas aims to move beyond the ACID/BASE dilemma.

Rather than trying to draw performance from weakening the

abstraction offered to the programmer, Callas unequivocally

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SOSP’15, October 4–7, 2015, Monterey, CA.
Copyright c© 2015 ACM 978-1-4503-3834-9/15/10. . . $15.00.
http://dx.doi.org/10.1145/2815400.2815430

adopts the familiar abstraction offered by the ACID paradigm

and sets its sight on finding a more efficient way to implement

that abstraction.

The key observation that motivates the architecture of

Callas is simple. While ease of programming requests that

ACID properties hold uniformly across all transactions, when

it comes to the mechanisms used to enforce these properties,

uniformity can actually hinder performance: a concurrency

control mechanism that must work correctly for all possible

pairs of transactions will necessarily have to make conserva-

tive assumptions, passing up opportunities for optimization.

Callas then decouples the concerns of abstraction and

implementation: it offers ACID guarantees uniformly to all

transactions, but uses a novel technique, modular concur-
rency control (MCC), to customize the mechanism through

which these guarantees are provided.

MCC makes it possible to think modularly about the en-

forcement of any given isolation property I. It enables Callas

to partition transactions in separate groups, and it ensures

that as long as I holds within each group, it will also hold

among transactions in different groups. Separating concerns

frees Callas to use within each group concurrency control

mechanisms optimized for that group’s transactions. Thus,

Callas can find opportunities for increased concurrency where

a generic mechanism might have to settle for a conservative

execution.

To maximize the impact of MCC on scalability, Callas

heuristically focuses on identifying the best grouping for

those transactions whose high conflict rate bottlenecks the

application and can therefore most benefit from an aggres-

sive concurrency control mechanism, leaving the rest in a

single, large group. Such performance-critical transactions

are typically few [33], which results in two advantages for

Callas.

First, it permits the systematic study of the performance

benefits of grouping—though we find that even a simple

greedy heuristic can yield substantial returns.

Second, it enables concurrency control mechanisms that,

because of their limited and specialized scope, can seek oppor-

tunities for concurrency with unprecedented aggressiveness.

For example, Callas’ in-group mechanism uses two novel run-

time techniques that, by refining the static analysis approach

used by transaction chopping [29], create new chances for

concurrency.

Even existing mechanisms designed to boost concurrency,

279

however, can benefit from a more limited scope. In particular,

we find that also traditional transaction chopping, which re-

lies on the absence of certain dependency cycles among all

transactions, becomes much more incisive when the lack of

circular dependency must apply only to the small number of

transactions within a group.

In summary, we make the following contributions:

• We propose MCC, a new, modular approach to concur-

rency control. By decoupling abstraction from mechanism,

MCC retains the simplicity of a uniform ACID API; by

separating concerns, it lets each module customize its in-

ternal concurrency control mechanism to achieve greater

concurrency without sacrificing safety.

• We introduce Runtime Pipelining, a technique that lever-

ages execution-time information to aggressively weaken

within a group the conservative requirements of the current

theory of safe transaction chopping [29] and gain, as a re-

sult, unprecedented opportunities for concurrency. The key

to the effectiveness of Runtime Pipelining is the flexibility

offered by MCC, which makes this technique applicable

within small groups of well-suited transactions.

• We present the design, implementation and evaluation of

Callas, a prototype implementation of MCC within a mod-

ified MySQL Cluster distributed database. Our evaluation

of Callas suggests that MCC can deliver significant per-

formance gains to unmodified ACID applications. For ex-

ample, we find that, for TPC-C, Callas achieves an 8.2x

speedup over MySQL Cluster without requiring any pro-

gramming effort.

The rest of the paper is organized as follows. After Sec-

tion 2 discusses why an undifferentiated concurrency control

mechanism is undesirable, Section 3 introduces MCC and

specifies the correctness conditions that any valid instanti-

ation of MCC must meet. Section 4 and Section 5 present

the mechanisms Callas uses to ensure isolation across groups

and within each group, respectively. The implementation of

Callas is the topic of Section 6, while Section 7 presents the

results of our experimental evaluation. Section 8 discusses

related work, and Section 9 concludes the paper.

2 The cost of uniformity
The power of the ACID paradigm lies in its simplicity. De-

velopers need only wrap their code in an ACID transaction,

and it is guaranteed to be executed atomically, to leave the

database in a consistent state, to be isolated from any other

transactions, and to be durable. One of the great assets of

this abstraction is that it applies uniformly to all transactions,

independent of the internal logic of other transactions, thus

freeing the developer from having to worry about transaction

interleavings.

Current ACID databases support this uniform abstraction

with an equally uniform mechanism. Notwithstanding its sim-

// transfer balance
begin transaction

bal dest = bal dest + val
bal orig = bal orig − val

commit

// sum balance (infrequent)
begin transaction

return bal orig + bal dest
commit

Fig. 1: A simple banking application.

plicity, when it comes to enforcing isolation this choice can

become an obstacle to performance and scalability. Whether

using locking or optimistic concurrency control (OCC), cur-

rent ACID databases rely on one-size-fits-all—and thus fun-

damentally conservative—mechanisms to ensure isolation.

For example, when a transaction accesses an object (e.g.,

a database row), a lock-based mechanism must acquire a

lock that is held until the end of the transaction, preventing

all other transactions from observing intermediate states of

that transaction. Perhaps surprisingly, given their name, OCC

mechanisms are, in their own way, equally conservative. Al-

though they allow transactions to speculatively execute in

parallel without acquiring locks, they do not refine the crite-

ria for determining contention, but simply delay the check: if

contention is detected at commit time, they force all but one

of the contending transactions to rollback.

By treating all transactions equally, one-size-fits-all mech-

anisms cannot take advantage of workload-specific optimiza-

tions. Isolation is uniformly enforced to prevent all other

transactions from observing intermediate states. In some cir-

cumstances, however, such precautions are excessive: it is

quite common to find transactions that can safely expose

some of their intermediate states to some other transactions.

Consider, for example, how a lock-based mechanism

would handle the simple banking application that uses the two

transactions defined in Figure 1: transfer balance deducts

some amount from the bal orig account and adds it to

bal dest; sum balance computes the total assets across the

two accounts.

When these transactions can execute concurrently, uni-

formly enforcing isolation requires transfer balance to keep

the lock on bal dest until the transaction commits, to prevent

sum balance from computing the wrong total by observing

the intermediate state where bal dest has been credited but

bal orig not yet charged. Keeping the locks for so long, how-

ever, also prevents other instances of the transfer balance
transaction from executing concurrently, even though they

could do so safely, since their operations commute.1 Ideally,

one would like to release the lock on bal orig after the amount

is deducted from it, but only for other transfer balance trans-

actions; sum balance should still be prevented from observ-

ing the intermediate state. Recent work on the Salt distributed

database [33] shows that leveraging this insight can yield sig-

nificant performance benefits. To extract them, however, Salt

forgoes the simplicity of a uniform ACID paradigm and in-

1Commutativity is only one example of the missed opportunities for
greater concurrency that constitute the cost of uniformity—we discuss the
performance implications for transaction chopping [29] in Section 5.

280

stead introduces a new abstraction, BASE transactions. Salt’s

isolation mechanism offers BASE transactions the ability

to make certain intermediate states visible to other BASE

transactions, but invisible to ACID transactions. The cost

of this flexibility, however, is added complexity for the pro-

grammer. Even though it suffices to rewrite only a few [33]

performance-critical ACID transactions as BASE transactions

to reap substantial performance benefits, the programming

effort involved is still significant and can easily introduce

bugs.

In Salt, abandoning a uniform concurrency control mecha-

nism to increase performance has led, as if by necessity, to

also surrendering the benefits of a uniform ACID abstraction.

In its own attempts to leverage the same insight that moti-

vated Salt, Callas strives to stay clear of the pitfall of tightly

coupling the scope of mechanism and abstraction, and comes

to a fundamentally different conclusion.

3 A modular approach to isolation
Callas aims to offer to unmodified, transactional ACID appli-

cations the kind of performance that previously could only be

achieved by rewriting applications in a BASE/NoSQL style.

Such coding exercises are notorious for being error-prone and

time consuming [30], even when backed by Object-Relational

Mapping systems [12]. Callas’ goal is to do away with them

completely, with only a negligible cost in performance.

The design of Callas is based on a simple proposition:

that the key for combining performance and ease of program-

ming is to decouple the ACID abstraction—which should

hold identically for all transactions—from the mechanism

used to support it—which should instead adapt to the unique

characteristics of different transactions. The approach that

we propose is rooted in three main observations.

First, no existing programming paradigm approaches the

simplicity offered by ACID. Such is its superiority on this

front to bring into question whether any performance benefit

that a BASE alternative can deliver is actually worth the

trouble [18, 30, 33].

Second, significant improvements to the performance of

ACID are unlikely to come from techniques that rely on

properties that must hold for all of the transactions in a given

application. A case in point is transaction chopping [29], an

elegant technique that can yield greater concurrency while

maintaining serializability, but only if a specific property

(which can be formalized as the absence of SC-cycles2 [29])

holds across the entire set of an application’s transactions. In

practice, enforcing this property can often significantly limit

opportunities for concurrency in applications that suffer from

high contention.

Third, as the Salt project has recently demonstrated, the

potential performance gains to be had by allowing individual

2We will discuss SC-cycles in more detail in Section 5.

transactions to export multiple granularities of isolation can

be substantial [33].

The architecture of Callas leverages these observations

by supporting a modular approach to regulating concurrency,

realized through a novel technique we call modular con-
currency control (MCC). The vision that motivates MCC is

simple. Instead of relying on a single concurrency control

mechanism for all transactions, MCC partitions transactions

in groups and enables the flexibility to assign to each group its

own private concurrency control mechanism; being charged

with regulating concurrency only for the transactions within

their own groups, these mechanisms can be much more ag-

gressive while still upholding safety. Finally, MCC offers a

mechanism to properly handle conflicts among transactions

in different groups.

An attractive feature of this approach is its generality. First,

it imposes no restrictions on the types of transactions it can

handle. In particular, it does not require to predefine all trans-

actions that will be run in the system: interactive or external

transactions can always be handled by placing them in a sep-

arate group that uses a standard, conservative concurrency

control mechanism. Second, although our current implemen-

tation of Callas leverages modularity only within the context

of lock-based mechanisms, MCC does not, in principle, de-

pend on whether concurrency control is implemented using

locks or OCC, or on whether the targeted isolation level relies

on a single version or a multiversion database—we leave a

thorough exploration of the performance opportunities of-

fered by this generality to future work.

To succeed, this high-level plan must address two comple-

mentary concerns: performance and correctness.

The key factor for performance is to group transactions

appropriately, in order for each group to best exploit opportu-

nities for optimizations. Not all grouping choices are equally

sensitive, however: optimizing grouping for transactions that

run infrequently or are lightweight is less critical. Callas

therefore heuristically assigns those transactions to a single

group, and instead focuses on determining the most favorable

grouping for the transactions that are primarily shaping the

performance profile of a given application. We discuss the

policy and mechanism used by Callas to group transactions

in Sections 4 and 6.

Establishing correctness involves a two step process: given

any of the traditional ACID isolation guarantees, first prove

that each group, separately, satisfies the guarantee; and then,

under the assumption that all groups do, that the isolation

guarantee is upheld globally.

The theoretical underpinnings that Callas uses to discharge

these obligations are found in the general theory for express-

ing isolation levels introduced by Adya et al [11]. We quickly

review some of the key features of their framework below.

281

3.1 Defining isolation

Similar to prior specifications of the ANSI SQL isolation lev-

els, Adya et al. define isolation levels on the basis of the unde-

sirable phenomena they proscribe. Unlike prior specifications,

however, theirs applies not only to lock-based implementa-

tions, but also to optimistic and multiversion concurrency

control schemes [15, 25]. Their elegant formulation refines

the classic approach of leveraging a serializability graph to

express whether a history is serializable: they express nec-

essary conditions that apply to weaker notions of isolation

as requirements on the structure of a new graph they define,

called the Direct Serialization Graph (DSG). Each node in

the DSG corresponds to a committed transaction, and each

directed edge from transaction Ti to Tj indicates one of the

following types of conflict between them:

• Read dependency. Ti installs a version xi of an object x and

Tj reads xi.

• Anti-dependency. Ti reads a version xk of x, and Tj installs

x’s next version.

• Write dependency. Ti installs a version xi of x, and Tj in-

stalls x’s next version.

Read and Anti-dependencies can be easily generalized

to range reads that, rather than explicitly naming an item,

apply to all items for which a given predicate (e.g., an SQL

statement) holds [11].

The DSG is central to this formulation because the oc-

currence of some of the phenomena proscribed by a given

isolation level is equivalent to the DSG exhibiting a refine-

ment of the following condition:

• Circularity. The execution history contains a directed cy-

cle.

The refinement consists of specifying which types of edges

can be used to construct the cycle: the more stringent the

isolation level, the larger the set of cycles to be prevented

(and of phenomena to be proscribed). For example, isolation

levels that forbid reading data that has not been committed

(dirty reads) require the flow of information between any

two transactions to be unidirectional—which can be achieved

by proscribing DSG cycles consisting only of dependency

edges [11]. Achieving serializability, however, requires ruling

out also cycles that include anti-dependency edges.

Not all phenomena to be proscribed, however, correspond

to cycles in the DSG. In particular, every ANSI SQL isolation

level that does not allow dirty reads must also avoid the

following two phenomena:

• Aborted Reads. A committed transaction T2 reads some

object (possibly via a predicate) modified by an aborted

transaction T1.

• Intermediate Reads. A committed transaction T2 reads a

version of an object x (possibly via a predicate) written by

another transaction T1 that was not T1’s final modification

of x.

All popular ACID isolation levels avoid these phenomena,

so, to simplify our presentation, we henceforth only consider

isolation levels that do.

3.2 Establishing correctness

We leverage the formalization of Adya et al. to specify, for any

given isolation level, the conditions that an instantiation of

the Callas architecture must satisfy to guarantee correctness:

Within each group The concurrency control mechanism for

group G must prevent Aborted Reads and Intermediate Reads

if T1 and T2 are both in G, and prevent Circularity (as defined

for the targeted isolation level) when all transactions on the

cycle are in G.

Across groups Aborted Reads and Intermediate Reads must

be prevented if T1 and T2 are from different groups. Further,

Circularity (as defined for the targeted isolation level) must

be prevented if at least two transactions on the cycle are from

different groups.

3.3 Callas at a glance

The next two sections describe the design of Callas along the

two axes we have used to articulate correctness. Section 4

describes how Callas leverages a new class of locks, called

nexus locks, to prevent Circularity and proscribe Aborted and

Intermediate reads across groups.

Section 5 introduces a new in-group concurrency control

mechanism, called Runtime Pipelining, designed to leverage

the modularity of Callas: since it regulates concurrency for

only a small number of transactions, it can afford to apply

aggressive optimizations. Runtime Pipelining owes much

of its performance—as well as its name—to its integration

of static analysis with novel run-time checks that guarantee

safety while increasing opportunities for concurrency.

4 Enforcing isolation across groups

The design of the mechanism Callas uses to guarantee inter-

group isolation is driven by several considerations. Foremost,

of course, is safety: the mechanism should enforce the cor-

rectness conditions identified in Section 3.2. Not far behind,

however, are performance and liveness. First, we would like

the inter-group mechanism to disrupt as little as possible

the ability of the group-specific mechanisms to extract con-

currency from the transactions they regulate. Second, we

would like to guarantee fairness: the eagerness of exploiting

performance opportunities within a group should not cause

transactions from a less fortunate group to starve.

Callas meets these requirements using a simple lock-based

approach. This choice is pragmatic: although there is nothing

in Callas’ architecture that would prevent the use of OCC,

282

��

��

����

����

����

����

��

����

�� ��

��

	
����

	
����

���������

�����������
������������������

����� ���
����
���

�������!��"���� ���#�
�� �������
���� ��
���� ����� ��#��
�������
��������
����
���

$��� ��
��
�������������� �������������%��
������

�� �
&��������
&��������

��
&��������
&��������

��
&��������
&��������

����������$�����'���������#����� �
���� ���� �����
��������
����
���

����

����

����

���� ����

����

����

� ����

����

����

��

��

��

	
����

	
����

���&��������
&��������

��
&��������
&��������

��
&��������
&��������

��

��

��

���&��������
&��������

��
&��������
&��������

��
&��������
&��������

���� ��������

�� ��

��

�� ��

��

Fig. 2: Circularity can occur if Callas does not regulate the order in which transactions from the same group release their nexus locks.

the MySQL Cluster distributed database we modify to im-

plement Callas does not support it.3 Indeed, any reasonable

implementation of the inter-group mechanism that meets the

above requirement of minimal disruption will do.

At the core of Callas’ inter-group mechanism are nexus
locks, a new type of lock whose role is to regulate conflicts be-

tween transactions that belong to different groups while leav-

ing transactions within each group relatively unconstrained.

Nexus locks in Callas are ubiquitous: any transaction, be-

fore being allowed to perform a read or write operation on

a database row, must acquire the corresponding nexus lock.

This demand may seem to run contrary to the requirement

of making the inter-group mechanism inconspicuous to the

concurrency control mechanisms specific to each group. The

key to resolving this apparent tension lies in the flexibility

of nexus locks. When two transactions in different groups

try to acquire a nexus lock on a row, the lock functions as an

enforcer: unless both transactions are reading the row, one

of them will have to wait until the other releases the lock.

If the transactions belong to the same group, however, the

nexus lock imposes no such constraints: both transactions

can acquire the nexus lock simultaneously.

Forcing transactions to acquire nexus locks on the rows

they access prevents Aborted Reads and Intermediate Reads

from occurring across groups. If two transactions from differ-

ent groups access the same row and one of them is a write,

only the first will acquire the row’s nexus lock, while the

other will not be able to acquire the lock until the earlier

transaction completes. It is thus impossible for the later trans-

action to read aborted or intermediate states from the earlier

one.

Simply acquiring nexus locks, however, is not sufficient

to prevent Circularity. Consider the first example of Figure 2:

it focuses on write dependencies, since write dependency

cycles are forbidden by all ANSI isolation levels. Assume, in

the spirit of MCC, that the concurrency control mechanism

of Group 1 guarantees no dependency cycles between T1 and

T2. Although nexus locks prevent dependency cycles between

T1 and T3 (and similarly between T2 and T3), a dependency

3MySQL Cluster supports only two versions of each object. While this
feature guarantees that reads never block, it falls short of full multiversion
concurrency control (MVCC).

cycle spanning T1, T2, and T3 can still form.

We extend the enforcement power of nexus locks by refin-

ing the way in which traditional locking prevents Circularity.

With traditional locking (Example 2 of Figure 2), the “de-

pends on” relation between transactions is tied to the “com-

pletes before” relation: if T2 depends on T1, then T2 must wait

for T1 to release its lock at the end of its execution, ensuring

that T2 will not start until T1 completes. Since “completes

before”, unlike “depends on”, is inherently acyclic, by tying

the two relations traditional locking guarantees that “depends

on” will be acyclic too.

If we now go back to the first example of Figure 2, what

went wrong there is clear: Circularity can arise because nexus

locks tie “depends on” to “completes before” only for trans-

actions that belong to different groups. Although T2 depends

on T1, since they are both in the same group T2 is allowed to

start before T1 completes. Were nexus locks to do otherwise,

however, and delay T2, they would curb concurrency within

Group 1.

To solve this puzzle, Callas refines the condition used

by traditional locking to avoid circularity. Rather than tying

“depends on” to “completes before”, Callas binds it to the

weaker (and yet provably sufficient [34]) “releases locks

before” and enforces the following rule:

Nexus Lock Release Order If transaction T2 depends on
transaction T1, and they are from the same group, then T2

cannot release its nexus locks until T1 does.
The third example of Figure 2 illustrates how this rule,

which is implied by the stronger “completes before”, pre-

vents dependency cycles without hampering concurrency. A

proof of correctness can be found in an extended technical

report [34].

To ensure that every transaction’s nexus locks are eventu-

ally released, Callas makes the simple choice of maintaining

a FIFO queue for each nexus lock. Note that, thanks to MCC,

the release of nexus locks is completely decoupled from

the act of committing the transaction that holds those locks,

which Callas leaves to the concurrency control mechanism

of the group to which the transaction belongs. As soon as a

transaction commits, any resource that the transaction held

to control concurrency within its group can be released, even

as the transaction may hold onto its nexus locks in order to

283

release them in the correct order.

Nexus locks, ACID locks, and latency An unobtrusive

inter-group mechanism is essential to achieving the potential

for greater performance of MCC. A key feature of nexus

locks is that any latency overhead they introduce, when com-

pared with ACID locks, is due solely to their implementation,

and not inherent to their semantics. Indeed, ignoring imple-

mentation overheads, if T2 wants to acquire and then release a

nexus lock held by T1, it can always do so no later than if the

lock had been ACID. The reason is simple: if T1 and T2 are

from different groups, then a nexus lock behaves exactly like

an ACID lock; if T1 and T2 are from the same group, then T2

is always allowed to acquire a nexus lock while T1 still holds

it, while instead access to ACID locks is exclusive unless

both T1 and T2 seek a read lock. The Nexus Lock Release

Order rule can delay the release of T2’s locks if T2 depends

on T1, but never more than if the locks had been ACID—in

which case, T2 would not even be allowed to acquire the locks

until T1 released them.

Of course, implementation overheads cannot in practice

be ignored. However, we find them to be low in most cases

(§7.4), in particular when compared with the substantial per-

formance gains nexus locks enable by making it possible to

safely deploy the kind of aggressive in-group concurrency

control mechanisms we are discussing next.

5 Enforcing isolation within groups
While the inter-group mechanism’s main goal is to do no

harm, the key to unlocking the performance potential of MCC

is in the group-specific concurrency control mechanisms that

it enables. Fulfilling that potential involves two steps: group-

ing transactions appropriately, and identifying mechanisms

that can yield greater concurrency within each group, while

maintaining safety.

The first of these steps appears hard to complete, as the

number of possible groupings to consider is exponential. In

practice, our experience building Callas is significantly more

encouraging. As we already pointed out, the transactions that

shape the performance of an application tend to be few [33]

and we found that even just one or two simple specialized

mechanisms can produce significant performance gains (§7):

with such small numbers, systematically exploring all inter-

esting groupings becomes a tractable problem (§6).

The additional concurrency called for by the second step

demands transactions to expose more intermediate states.

This could be done, for instance, by weakening their isolation

properties [33], but to do so within a group would violate our

requirement to offer all transactions the same ACID abstrac-

tion.

Transaction chopping (and its limitations) An attractive

alternative is to turn, as several recent systems have done [27,

35], to an elegant theory that increases concurrency by chop-

ping transactions—but in a way guaranteed to maintain seri-

alizability [29].

To prevent Aborted Reads and guarantee Atomicity, the

theory requires transactions to be rollback-safe, meaning that

any rollback statement must lie in the first subtransaction

produced by a valid chopping. Since for serializability the

absence of Circularity implies no Intermediate Reads, the

theory focuses on preventing the former. It uses static anal-

ysis to construct an SC-graph, whose vertices are candidate

transaction pieces, and whose edges, which are undirected,

are of two kinds: S-edges connect the pieces within a trans-

action; C-edges connect pieces of different transactions that

access the same object, when at least one of the accesses is

a write. The theory shows that if a candidate chopping gives

rise to an SC-cycle, then Circularity might arise during an ex-

ecution. Hence, a candidate chopping of a set of transactions

is considered safe (i.e., guarantees serializability) if (i) it is

rollback-safe and (ii) it contains no SC-cycles.

Unfortunately, in practice these two conditions tend to

produce choppings too conservative to result in much addi-

tional concurrency. To satisfy rollback safety, the first piece of

each transaction must be large enough to include all rollback

statements, limiting the opportunity for new interleavings.4

Relying on SC-cycles for safety has even more significant

performance implications. Applications typically contain so

many dependency cycles among their transactions that the

only safe choppings, if any, are very coarse. One might expect

grouping to help here, since it restricts the requirement of

being free of SC-cycles only to the transactions within each

group—and it does (§7), but only to a limited extent. We

find that SC-cycles tend to arise quite commonly among the

very performance-critical transactions that, if they could be

more finely chopped, would most benefit the application’s

performance. An extreme but quite common case of this

phenomenon occurs when a performance-critical transaction

cannot be aggressively chopped because multiple instances

of it may conflict with each other if executing concurrently.

Consider, for example, the new order transaction in TPC-

C. In first approximation, it roughly follows the access pattern

of Figure 3(a): first, it inserts rows into the order table, then

it inserts rows into the item table, and finally it updates the

order line table. As Figure 3(a) shows, SC-cycle analysis

would conclude that it is not possible to split this transaction

into subtransactions, as any two instances of the new order
transaction have three dependency edges (C-edges) between

them.

Enter MCC These limitations motivate us to explore how to

leverage the modularity of MCC to move beyond the oppor-

tunities for concurrency offered by the current theory of safe

4This problem could be solved by asking application developers to rewrite
their transactions to explicitly account for rollbacks at the application level.
Our goal, however, is to achieve high performance with no additional pro-
gramming effort.

284

��(
)

"

��* ��"
)

��(
)

��* ��"
)

" "

(a) SC-cycle analysis cannot chop

��(
)

"

��* ��"
)

��(
)

��* ��"
)

" "

(b) Runtime Pipelining

Fig. 3: Runtime Pipelining for create order transaction in TPC-C.

A=order table, B=item table, C=order line table

transaction chopping. To that end, Callas introduces Runtime
Pipelining, a new in-group mechanism whose aggressive ap-

proach to concurrency control proves particularly effective

within small groups. Runtime Pipelining relies on two new

techniques: it leverages at execution time a refinement of the

static analysis approach used by traditional transaction chop-

ping to allow concurrency when SC-cycles would prevent it;

and it prevents Aborted Reads and guarantees atomicity while

avoiding, whenever possible, the performance downsides of

enforcing rollback safety.

Similar to transaction chains [35], Runtime Pipelining

assumes that the tables (though not necessarily the rows) ac-

cessed by each transaction are known prior to execution. The

scope of this assumption, however, is much weaker than in

transaction chains, since it applies only to the transactions in

the target group. In practice, this assumption needs only to

hold for the few transactions that, being performance criti-

cal, can most take advantage of a more aggressive in-group

concurrency control mechanism.

5.1 Runtime Pipelining

Shasha et al. prove [29] that their static analysis technique

produces the finest transaction chopping guaranteed to be

safe: any more refined chopping has the potential to create

Circularity and violate serializability. This sobering fact, how-

ever, does not imply that renouncing any further concurrency

need be the price of safety. The key insight behind Run-

time Pipelining is that, rather than preemptively inhibiting

the possibility of Circularity, it may be feasible in some cir-

cumstances to allow for that possibility, relying instead on

run-time techniques to prevent it from becoming an actuality.

Figure 3(a) illustrates the opportunity that Runtime

Pipelining targets. Note how, as long as one can ensure that,

during the execution, the top transaction accesses each table

before the bottom one does, all C-edges acquire the same

direction: all cycles are broken, and the transactions can be

safely chopped in three pieces (Figure 3(b)). This finer chop-

ping enables a form of pipelining: while the top transaction

accesses the item table, the bottom one can concurrently ac-

cess the order table and so forth.

The example suggests a way forward to safely extract

greater concurrency from transaction chopping: rather than

eliminating all SC-cycles, allow, intuitively, those where C-

edges do not cross, since they can be neutralized at run time

by controlling the order of execution of conflicting transaction

pieces. To carry out this plan, we use a combination of static

analysis and run-time mechanisms.

A new static analysis algorithm What prevents C-edges to

cross and makes it safe to chop more aggressively in the exam-

ple of Figure 3(b) is that both transactions access read-write

tables in the same order. Generalizing from that example,

assume that there exists a total ranking of each of the read-

write tables accessed by the transactions in a group.5 Then,

the goal of our new static analysis algorithm is to produce

choppings that satisfy the following two golden rules.

GR1: Operations within a transaction piece are only al-
lowed to access read-write tables of the same rank (read-

only tables, which by definition have no rank, can be also

accessed).

GR2: For any pair of pieces p1 and p2 of a given trans-
action that access read-write tables, if p1 is executed before
p2, then p1 must access tables of smaller rank than p2 (as in

GR1, read-only tables can be also accessed).

Then, by construction, the only C-edges that remain are

those that connect pieces of different transactions that access

tables of the same rank.

The two-step algorithm that achieves this goal and an ex-

ample that illustrates its unfolding are shown in Figure 4. The

first step totally ranks the read-write tables accessed by any of

the transactions, and, within each transaction, groups together

in a single piece all operations that access tables of the same

rank. At the end of this step, the relative order of execution

of the operations that, in each transaction, access read-write

tables, is set. The second step then determines the execution

order of the read-only operations of each transaction.

Step 1: Ranking read-write tables. Under the aggressive as-

sumption that all operations in a transaction can be safely

reordered, there is no constraint on the rank of read-write

tables, and finding the finest chopping that does not have

crossing C-edges is simple: we can assign a unique rank to

each read-write table, sort operations in each transaction ac-

cording to the rank of the table they access (operations that

access read-only tables can be placed anywhere), and merge

in the same piece those operations that access the same table.

One can easily prove this chopping satisfies our two golden

rules.

In practice, however, there often exist data or control de-

pendencies that compel the ordering of operations within a

transaction and constrain the ranking of tables. In Figure 4, for

example, R(A) must happen before W(B) in T1, which forces

rank(A)≤ rank(B) (GR2), while for T2, R(B) must happen

before W(A), implying rank(B)≤ rank(A). This means we

must assign the same rank to tables A and B and merge all

operations that touch them into a single piece.

Concretely, we achieve this result with the help of a

table-dependency graph. The graph’s nodes are read-write

5If a table is read-only, accessing it does not create C-edges

285

+�(� ��*�+�*� ��"�

��"� +�*� ��(�

(*

"

+���

��

��

��

��

"
� ����
",����

����(��-�
����*��-��
����"��-��

.������
�� ������ �/��'�����������
��#�
������

�0���*����������������������
�'�	

���'�
���,/
����������� �����
�������	
����	
����
�� ����������
������	
������������������,1���	��������
��������	
������������
������
��
���,/
���
������
���	��	���	
�����,1����
����

�0���)�
���
�'���
���� �����
���������

���	�������� �
������������������������ ��)"" �
�	��	����'�)""�������� ��������
���
�	�
��	��	�����/����)""
��������
���������
� ��������
�'
�
����	���	������
���������
��
��#�)""��'������������

(�����*

"

�0���.�����'��
�� ������2��������
����� ����
�'������� ������ ��#��'�� ����
�������

������� �������
�����������

+�(� ��*�+�*� ��"�

��"�+�*� ��(�

��

��

+�(� ��*�+�*� ��"�

+�*� ��(�

�0���*�������
�����������������
�'

����	
����
�� ����������
�����'�
������������#������ �����
���
�����'�
���,�������
�������������� �����
���
��
����
���#
�����/� �����'��'� ��
����������
������	
�����
��#���
���� ���������3
�������3������ ������
������
���	��	����,1��3

������)�������
���,�������
������

��"�

+�*� ��(�

�� ��"�+���

�0���4�
����'����2� �
����
���� �����
��
�����������
���� ��� ����)����0��

5
��
���
����� �/��'������'�������#�����
����
���������'��
��
��������
��
�������

+�(� ��*�+�*� ��"��� +�(� ��*�+�*� ��"�

��"�+�*� ��(��� +�*� ��(� ��"�+���

$���
� ����
",����

)
��

�
��

�+
��

��
��

�
�
��

,/

��

��
��

��
�

)
��

�
��

�5

�

�

��

��
�

�

��

��
�

��'
��

�
��

��

�
�
��

,�
��

��
��

��
�

Fig. 4: Pseudocode of Callas’ transaction chopping algorithm (left) and its effects on a simple example (right).

tables: we consider operations that access read-only tables

in the next step. To add edges to the graph, we proceed

as follows. For every transaction in the group, if there ex-

ists a data or control dependency between two operations

op1 and op2 of the transaction, we add a directed edge be-

tween the tables they access (Figure 4, Step 1.a), indicating

rank(Tableop1
) ≤ rank(Tableop2

); we then assign the same

rank to all the tables in the same strongly connected compo-

nent, and assign ranks to all read-write tables according to

their topological order in the resulting graph (Figure 4, Step

1.b). Within each transaction, operations that access tables

with the same rank are merged into a single piece (Figure 4,

Step 1.c).

Step 2: Ordering operations that access read-only tables.
Transactions that access read-only tables contain operations

that have not yet been ordered. To do so, we create a new

graph for each transaction T , adding a vertex for each of

the ranked pieces of T produced by Step 1 (such vertices

acquire the rank of their corresponding piece) and a vertex,

with no assigned rank, for each operation of T that accesses

read-only tables. To encode the outcome of Step 1, we create

a path that connects ranked vertices, from the least to the

highest ranked; in addition, we add a directed edge between

two vertices if there exists a data or control flow dependency

between them (Figure 4, Step 2.a). Next, we proceed as we

did in Step 1.b of Figure 4: we evolve the graph so that

each strongly connected component is represented as a single

new vertex, joining in parallel the corresponding transaction

pieces, and topologically sort the resulting graph to obtain

the definitive order of execution of the pieces that comprise

each transaction. Within each piece, operations are executed

in the order in which they appeared in their transaction, prior

to its chopping (Figure 4, Step 2.b).

Enforcing safety at run time Once static analysis produces

choppings that satisfy our golden rules, neutralizing the re-

maining SC-cycles at run time is easy. Consider a piece of

transaction Ti that accesses a table that involves a C-edge. If

in so doing Ti becomes (anti-)dependent on some uncommit-

ted transaction Tj that has already accessed that table, then

that C-edge and every subsequent C-edge between Ti and Tj
become (logically) directed: thenceforth, Ti cannot commit

until Tj does, and every piece of Ti that accesses tables with

ranking r must wait until Tj either has executed a piece that

accesses tables with ranking at least r, or commits.

286

In practice, Runtime Pipelining is even more aggressive

in pursuing opportunities for concurrency. It only declares a

dependency between Ti and Tj if they access the same row at

run time (this is easy for Ti to verify in Callas by checking

if Tj has acquired a nexus lock on the row). If not, Runtime

Pipelining imposes no restrictions on execution ordering.

Although our discussion has focused on enforcing serial-

izability, Runtime Pipelining can be easily applied to other

notions of isolation by simply weakening the conditions un-

der which it declares a dependency. For example, were Run-

time Pipelining tuned to enforce read committed isolation,

anti-dependencies would not trigger ordered execution.

Beyond rollback safety Runtime Pipelining takes an equally

aggressive approach when it comes to avoiding the Aborted

Reads and Atomicity violations that chopping introduces.

Rather than settling for either the loss of concurrency or pro-

gramming effort that rollback safety may cause, Runtime

Pipelining adopts an optimistic approach: it allows a transac-

tion T1 to read uncommitted states from T2, but it does not

allow T1 to commit until T2 commits. If T2 is rolled back,

then T1 must also roll back.

While optimism pays off in finer chopping, no program-

ming effort, and greater performance in groups when aborts

and rollbacks are rare, it raises the possibility of performance

loss in the presence of cascading rollbacks.

To avoid this danger, Runtime Pipelining takes two steps.

First, it leverages MCC to prevent rollbacks from propagating

outside of a group. Thus, misplaced optimism only affects

performance in groups that are guilty of it. Second, it dynam-

ically responds to an unexpected incidence of rollbacks by

becoming increasingly more conservative. When the rollback

rate crosses a threshold, Runtime Pipelining goes temporar-

ily back to enforcing rollback safety; since we expect high

rollback rates to be infrequent, however, it periodically tries

to revert to its original optimistic approach.

The option of enforcing rollback safety on demand allows

Runtime Pipelining to enjoy the full benefits of optimism

when the rollback rate is reasonably low and avoid long-term

damage from misplaced optimism.

Further, to ensure liveness in the face of rollbacks, Run-

time Pipelining limits the depth of dependency chains com-

posed of uncommitted transactions, and prevents a transaction

that has been rolled back from performing uncommitted reads

on retry.

6 Implementation

The current prototype of Callas is built upon the MySQL Clus-

ter distributed database [6]. To implement Runtime Pipelin-

ing, we detect conflicts at the MySQL Cluster locking module

and notify the transaction coordination module to enforce or-

dering between subtransactions, when necessary; to ensure

isolation across groups, we modify the locking module of

MySQL Cluster to support nexus locks and enforce their re-

lease order. Relying on MySQL Cluster, however, means that

the current prototype of Callas must use the read-committed
isolation level, the only one that MySQL Cluster supports.

To combine performance with simplicity, we developed

tools that automate the process of grouping transactions and

chopping them into subtransactions.

6.1 Automated chopping

The automated-chopping tool closely follows the Runtime

Pipelining algorithm (§5) to statically analyze the transaction

code and add markers to indicate the subtransaction bound-

aries to the run-time system, but introduces three additional

optimizations: (i) it performs static analysis over columns

rather than tables to produce finer choppings; (ii) it removes

unnecessary C-edges; and (iii) it identifies better performing

subtransaction orderings. We discuss the two latter optimiza-

tions in greater detail below.

Removing redundant C-edges Since commutative opera-

tions can be executed in any order without violating isolation,

our tool, like Lynx [35], removes C-edges between them.

Additionally, it searches for instances of runtime unique-
ness, where multiple transaction instances modify the same

table, but each is guaranteed to operate on a different row.

For example, in TPC-C, the new order transaction acquires a

unique order ID by incrementing a nextOrderID object, and

then proceeds to modify the corresponding row. Such oppor-

tunities are identifiable by searching for “monotonic” objects,

i.e., objects, such as counters, that all transactions modify

monotonically before using them as a key in a query. Run-

time uniqueness is yet another example of an optimization

whose effectiveness can be magnified by the modularity of

MCC, since runtime uniqueness is less likely to hold in large

groups of transactions. In TPC-C, for example, uniqueness

does not hold globally, as other transactions (e.g., delivery)

do not use nextOrderID and may therefore access the same

row as new order.

Identifying more performant orderings Given a transac-

tion T , any topological order of the pieces of T produced

by Step 2.b of the algorithm in Figure 4 yields a safe way

to execute T . We then have some freedom in choosing the

order in which T ’s pieces should execute. We leverage this

freedom by having the larger pieces—classified heuristically

by the number of queries they contain—execute as early as

possible. The rationale behind this optimization is that Run-

time Pipelining only enforces ordering between transactions

once a dependency manifests at run time. By executing large

subtransactions early, we decrease the chance that they will

be subject to ordering, thus increasing parallelism.

287

��
�����
�����
�����
�����

������
������
������
������
������

�� �	�� ����� ��	�� ����� ��	��

�
�
��

��
��
���
��

��
��
��

����������������

 !"!

#$%&'�!������

!(��(�

Fig. 5: Throughput of TPC-C

��

�����

�����

�����

�����

������

�� ��� ��� ��� ��� ����

��
��
��

��
�	
�
	
��
�
�
��

���������������	

�����������	

���������	��

� ��

Fig. 6: Throughput of Fusion Ticket

��
����
����
����
����

�����
�����

�� ��� ��� ��� ��� ����

��
��
��

��
�	
�
	
��
�
�
��

���������������	

����	����������	

�����������

������

Fig. 7: Throughput of Front Accounting

6.2 Automated grouping
The goal of our grouping tool is to identify groups of trans-

actions that contend heavily with each other. The user need

only provide her workload of choice; the tool analyzes the

performance of the workload using various groupings and

returns the grouping that yields the best performance. Our

current tool does not explore all possible groupings, but rather

uses heuristics to identify groupings that are more likely to

increase concurrency. Our evaluation suggests that this heuris-

tic approach is enough to provide significant performance

benefits (e.g., 8.2x speedup for TPC-C).

The tool works in iterations. In each iteration it runs the

workload and creates a profile for this iteration’s performance

measurements. Based on these measurements, it tries to iden-

tify the most prominent source of contention and suggests a

grouping that could alleviate it. It then runs our chopping tool

on this grouping, and proceeds to measure the performance

of this new configuration in the next iteration. This process

terminates if an iteration does not yield any performance

improvement.

To identify sources of contention, we use as a hint the

latency of individual operations. As the load on the system

grows, the latency of highly contending operations tends to

increase disproportionately. The corresponding transactions

are then our primary candidates for optimization. If there are

only few such transactions, our tool enumerates all possible

groupings; otherwise, it focuses on those that hold locks on

contended items for long intervals.

7 Evaluation
The goal of Callas is to provide unmodified database appli-

cations with the level of performance that was previously

only achievable by manually modifying all or part of the

application code. To assess whether Callas achieves this goal,

we evaluate the performance of Callas using various appli-

cations and workloads. In particular, our evaluation answers

the following questions:

• What is the performance gain of Callas over a traditional

ACID database? (§7.1)

• How does the performance of Callas compare against that

of other approaches that aim to improve database through-

put? (§7.1)

• How do various optimizations, groupings, and workload

parameters affect the performance of Callas? (§7.2, §7.3,

§7.5)

• What is the overhead of nexus locks? (§7.4)

• As the rate of rollbacks changes, how effective is it to opti-

mistically renounce rollback safety to extract performance?

(§7.6)

We answer these questions by measuring the performance

of Callas using microbenchmarks and three applications:

TPC-C [19], Fusion Ticket [3], and Front Accounting [2].

TPC-C is a database benchmark that models online trans-

action processing. It contains three highly-contending read-

write transactions and two read-only transactions.

Fusion Ticket is an open source software solution for on-

line ticketing and advanced sales. To perform a fair com-

parison with Salt [33], we run the same workload used in

that paper, which includes several transactions critical to the

performance and functionality of an online shop.

Front Accounting is an open source accounting and Enter-

prise Resource Planning (ERP) program. It allows a company

to manage its sales, purchases, and stock levels. Our work-

load includes 17 transactions that simulate the workload of

a retail company: the company purchases goods from sup-

pliers at a low price and sells them to customers at a higher

price. It includes five read-write transactions: create-order,

payment, delivery, pay-supplier, and stock-adjustment, and

12 read-only transactions to query order information.

Experimental setup In TPC-C, we populate ten ware-

houses, and assign each warehouse to a separate partition.

Our Fusion Ticket setup mirrors that of Salt: there is one

event and two categories of tickets, with 10,000 seats in each

category. Finally, in Front Accounting, we configure the retail

company to operate on 100 different types of goods, and on

average to make a bulk purchase for every 1,000 sale orders.

For all experiments, we use ten database partitions, each

of which is three-way replicated. All our throughput numbers

were calculated while the system is saturated.

288

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

TPC-C FT

Th
ro

ug
hp

ut
 (t

xn
/s

ec
)

M
yS

Q
L

S
C

-c
yc

le

S
C

+G
ro

up
in

g

C
al

la
s

S
al

t

M
yS

Q
L

S
C

-c
yc

le

S
C

+G
ro

up
in

g

C
al

la
s

S
al

t

Fig. 8: Effect of different techniques

Our experiments are carried out on Dell PowerEdge R320

machines in CloudLab [1]. Each machine is equipped with a

Xeon E5-2450 processor, 16 GB of memory, four 7200 RPM

SATA disks, and 1 Gb Ethernet.

7.1 Callas’ performance

Our first set of experiments uses TPC-C, Fusion Ticket, and

Front Accounting to compare the throughput of Callas to that

of MySQL Cluster—the system from which Callas descends.

As shown in Figure 5, the performance of Callas on the

TPC-C benchmark is about 8.2x higher than that of the origi-

nal MySQL Cluster.

Callas’ performance improvement is partly due to the

ability of the automated grouping tool to identify highly con-

tending transactions and group them accordingly. In this case,

the tool placed the new order and payment transactions in

one group; the delivery transaction in a second group; and

the remaining transactions in a third group. This grouping re-

flects the contention pattern of these transactions: new order
and payment contend heavily for the warehouse and dis-
trict tables, but Runtime Pipelining is effective in allowing

them to release their locks early, after acquiring a unique

ID. Moreover, although both new order and payment update

the district table, they update different columns, which al-

lows our static analysis to remove the C-edge between them.

This makes them ideal candidates for belonging to the same

group: they contend for the same row lock, but do not have

any C-edges between them, and therefore can be grouped

together without introducing any SC-cycles. Callas uses Run-

time Pipelining to chop transactions in the first two groups,

while the third group is left unoptimized, as it does not con-

tain performance-critical transactions.

Figure 6 shows the performance of Callas and MySQL

Cluster for the Fusion Ticket application. Callas outperforms

MySQL Cluster by a factor of 5.7x. For this application, our

tool generates two groups: the first contains the checkout
transaction and uses Runtime Pipelining for chopping, while

MySQL Callas
Latency(ms) Quantile Quantile

50th 99th 50th 99th

new order (TPC-C) 26 51 28 50.5
checkout (FT) 12 25.3 12 25

delivery (FA) 36.3 69 36.6 66

Table 1: Latency under low throughput.

the second contains the remaining transactions and is left

unoptimized.

As shown in Figure 7, when running the Front Accounting

application, Callas outperforms MySQL Cluster by a factor

of 6.7x. For this application, our tool generated four groups:

transactions create-order, delivery, and payment are each

placed in their own groups and use Runtime Pipelining for

chopping, while the rest of the transactions are placed in a

fourth, unoptimized, group.

Comparison with other techniques The next experiment

compares the performance of Callas for TPC-C and Fusion

Ticket6 with that of other techniques. We first consider ap-

plying the SC-cycle static analysis of traditional transaction

chopping to the entire application (i.e., without grouping).

This step boosts the performance of TPC-C to 3.5x of the

MySQL baseline, but does not help Fusion Ticket at all,

since traditional transaction chopping cannot safely chop

the performance-critical transaction of Fusion Ticket. Next,

we combine traditional transaction chopping with our group-

ing mechanism: we split transactions into groups and use

SC-cycle analysis to chop transactions within each group.

This approach further improves the throughput of TPC-C

by 35%, and raises the throughput of Fusion Ticket to 2.6x

of the baseline. Callas, using Runtime Pipelining instead of

standard SC-cycle analysis, achieves a further 74% and 120%

throughput boost, respectively. Remarkably, the performance

of Callas is within 5% of that of Salt [33]. We find it encour-

aging that, despite staying true to the ACID paradigm, Callas

can achieve performance similar to approaches that require

manual modification of the application code.

Latency Table 1 presents the request latency for our three

applications, when the system is under low load. In all cases,

the latency of Callas is similar to that of the unmodified

MySQL Cluster.

7.2 Performance impact of various optimiza-
tions

Figure 9 breaks down the contribution of each optimization

to the performance of Callas (using the grouping produced

by our heuristic algorithm) for TPC-C and Fusion Ticket.

The effectiveness of the different optimizations is

application-dependent. In Fusion Ticket, Runtime Pipelin-

ing alone, even naively applied at the granularity of tables,

6These were the applications used to evaluate Salt [33].

289

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 22000

TPC-C FT

Th
ro

ug
hp

ut
 (t

xn
/s

ec
)

M
yS

Q
L R

un
tim

e
pi

pe
lin

in
g

(T
ab

le
)

R
un

tim
e

pi
pe

lin
in

g
(C

ol
um

n)

+
co

m
m

ut
at

iv
ity

+
un

iq
ue

ne
ss

M
yS

Q
L

R
un

tim
e

pi
pe

lin
in

g
(T

ab
le

)

R
un

tim
e

pi
pe

lin
in

g
(C

ol
um

n)

+
co

m
m

ut
at

iv
ity

+
un

iq
ue

ne
ss

Fig. 9: Effect of different optimizations.

is enough to achieve almost all of Callas’ performance im-

provement. Not so in TPC-C, where Callas gets a significant

performance boost from performing static analysis at the

column—rather than the table—level by identifying several

columns that are accessed in read-only mode (even as the

table they belong to is accessed in read-write mode). This

allows Callas to remove conflict edges between transactions

and achieve finer-grained chopping. Leveraging commutativ-

ity yields only a minor performance improvement in TPC-C,

because it only applies to a few individual statements. Run-

time uniqueness instead provides another big boost in the

performance of TPC-C by removing several critical conflict

edges in the new order transaction, leading to finer-grained

chopping.

Note that, although it does not explicitly appear in Fig-

ure 9, MCC is essential to Callas’ performance gains, because

many of its optimizations would simply not be applicable

without MCC. Runtime uniqueness, for example, could not

be leveraged in TPC-C, since it does not hold for all TPC-

C’s transactions; and Runtime Pipelining itself would prove

virtually ineffective if applied across the entire set of Fusion

Ticket’s often-complex transactions.

7.3 Performance impact of different group-
ings

To demonstrate the importance of grouping transactions ap-

propriately, we measure Callas’ throughput when running

TPC-C using different transaction groupings. TPC-C has five

transactions: three are read-write transactions and two are

read-only. We first compare our heuristic grouping to two

naive groupings. The first puts all transactions in a single

group, while the second puts each of the five transactions in

a separate group. Our heuristic grouping—the result of run-

ning the heuristic algorithm of Section 6.2—consists of three

groups: new order and payment are in one group, delivery is

in a second, and the two read-only transactions in a third.

Figure 10 shows the results of this experiment. Even with

all transactions in the same group, Runtime Pipelining yields

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

TPC-C

Th
ro

ug
hp

ut
 (t

xn
/s

ec
)

M
yS

Q
L

1
gr

ou
p 5
gr

ou
ps

C
al

la
s

Fig. 10: Effect of choosing different groupings.

a significant performance benefit compared to a traditional

ACID implementation. Placing each transaction in a separate

group further improves performance by easing the bottleneck

caused by contending read-write transactions. In particular,

Runtime Pipelining can now apply optimizations, such as

runtime uniqueness, that were not applicable when all three

read-write transactions were grouped together.

Having each transaction in a separate group, however, is

not ideal. Since new-order and payment conflict frequently, it

is preferable to place them in the same group so that their con-

flicts can be regulated using a custom in-group mechanism,

instead of the coarse inter-group locks. Indeed, the grouping

returned by our heuristic algorithm outperforms this grouping

by at least 50%.

To get a sense of how the grouping produced by our algo-

rithm compares to an optimal grouping, we iterated over all

the possible grouping strategies: we found that, at least for

TPC-C, no other grouping achieved a higher throughput.

7.4 Overhead of nexus locks

Two factors contribute to the overhead of nexus locks: the

cost of maintaining an additional lock and that of correctly

enforcing the Nexus Lock Release Order rule (§4). The latter

cost is only incurred when transactions conflict, while the

former is always present. To measure separately their effect

on throughput, we designed two microbenchmarks, one with

no contention and one with high contention.

 0

 10000

 20000

 30000

 40000

No Contention

Th
ro

ug
hp

ut
 (t

xn
/s

ec
)

MySQL
Callas

 0

 200

 400

 600

 800

 1000

 1200

High Contention

Th
ro

ug
hp

ut
 (t

xn
/s

ec
)

MySQL
Callas

Fig. 11: Overhead of nexus locks

290

����

�����

������

�������

�� ���� ���� ���� ���� ���	

�
�
��

��
��
���
��

��
��
��

��������������������������
�

��	
��������

����

Fig. 12: Effect of execution frequency on performance.

To eliminate any benefit that may come from using Callas,

we run both microbenchmarks with each transaction instance

in a separate group, and enforce isolation within each group

using the default MySQL Cluster locking mechanism. We run

both experiments with two shards, each three-way replicated.

In the no-contention experiment, each transaction has exclu-

sive access to five rows. In the high-contention experiment,

all transactions touch the same two rows, with each row in

one shard.

As shown in Figure 11, in the no-contention experiment,

MySQL Cluster outperforms Callas by about 19%. Our pro-

filing shows the bottleneck lies in the additional demands on

the CPU to acquire, maintain, and release nexus locks. In

the high-contention experiment, the throughput of MySQL

Cluster is about 13.6% higher than that of Callas.

The CPU overhead of nexus locks is of course still there,

but it becomes relatively less prominent because contention

increases the execution time of transactions. Instead, the ad-

ditional message exchanges Callas requires to enforce the

Nexus Lock Release Order rule become the dominant factor.

7.5 Effect of contention rate on performance
The design of Callas focuses on optimizing in-group con-

tention while being conservative about contention between

transactions in different groups. While our experience with

real applications suggests that it is typically possible to parti-

tion transactions, so that inter-group contention is minimized,

we would like to understand how robust the performance

of Callas is to increased levels of inter-group contention.

We design two microbenchmarks, each exploring a different

factor of inter-group contention: execution frequency and

contention rate. Both microbenchmarks start by executing op-

erations that cause conflicts (across groups or inside a group)

and end with a sequence of operations that cause no con-

flicts. Unlike MySQL Cluster, Callas can chop contending

and non-contending operations in separate pieces and release

contending locks early: hence, the longer the sequence of

non-conflicting operations at the end of a transaction, the

greater the performance benefits that Callas can bring. To

separate sufficiently the performance of Callas and that of

MySQL Cluster, in order for us to study the effects of inter-

����

�����

������

�������

������� ������ ����� ���� ��

��
��
��
��
��
���
��
��
��
��

 ������!������"#"!$!�������������	
������

��������	����

������

Fig. 13: Effect of contention probability across groups.

group contention on the former, both our microbenchmarks

use a sequence of five non-conflicting operations.

The first microbenchmark explores the performance reper-

cussions of having two frequently executing transactions in

different groups. The microbenchmark includes two types of

transactions, T1 and T2. Each transaction contains six (1+5)

operations: the first operation updates one row, randomly cho-

sen out of ten rows, thus fixing the contention rate between

T1 and T2 at 10%. The remaining five operations update non-

conflicting rows (i.e., rows that are private to each transaction

instance). We place T1 and T2 in separate groups that use

Runtime Pipelining for chopping, and we tune the relative

execution frequency of these two transactions.

The second microbenchmark explores the effect of inter-

group contention rate on the performance of Callas. This

microbenchmark is similar to the first: we use two types of

transactions, T1 and T2, each in its own group, only this time

they have the same execution frequency. Each transaction

contains seven (2+5) operations: the first operation updates

one row at random, chosen out of N rows, where N is a param-

eter that controls the inter-group contention rate. The second

operation modifies a random row, chosen out of ten rows,

from a table private to each transaction type, thus introducing

a 10% in-group contention rate. The remaining five opera-

tions update non-conflicting rows (private to each transaction

instance).

Figures 12 and 13 show the results for these two mi-

crobenchmarks. Both experiments show the same trend: when

the inter-group contention is low, the performance of Callas

far exceeds that of a traditional ACID database. For exam-

ple, when the execution frequency ratio of T1 to T2 is 100:1

(Figure 12), the throughput of Callas is 20.2x that of MySQL

Cluster. Similarly, when T1 and T2 have a low conflict rate of

0.01% (Figure 13), the throughput of Callas is 16.6x that of

MySQL.

As the inter-group contention rate increases—because

both transactions run frequently or contend heavily— the

benefit of Callas decreases. This is to be expected, as Callas

is effectively attempting to regulate heavy contention using

traditional locking.

Note, however, that even when the inter-group contention

is as high as the in-group contention, the performance benefit

291

��

�����

�����

�����

�����

�!���

�����

�� ���� ���� ���� ���� ���!

��
��
��
��
�	
�
	
��
�
�
��

�������	���������������	�

���������	��

�����

����������)����������

��*���������+����������

Fig. 14: Effect of application rollback rate on performance.

of Callas is still substantial. In Figure 12, even when T1 and

T2 are executed with the same frequency, Callas’ throughput

is more than twice that of MySQL’s; in Figure 13, when N=1

(i.e., contention is at 100%), Callas achieves a 60% through-

put gain. The reason behind this performance increase is that,

even when the workload is uniform (e.g., both transactions

have the same frequency), this does not mean that a T1 is

always followed by a T2 (and vice versa). As long as two T1s

(or T2s) are executed consecutively, Runtime Pipelining can

optimize their execution. Interestingly, increasing in-group

concurrency implicitly increases inter-group concurrency as

well, since transactions hold their locks for shorter times.

7.6 Beyond rollback safety

Our final set of experiments measure the performance of Run-

time Pipelining’s adaptive approach for preventing Aborted

Reads and Atomicity violations.

We design a microbenchmark that can trigger cascading

rollbacks in a controlled manner. It uses three tables—A, B,

and C—with ten rows each, and contains one transaction with

11 operations. The first operation picks a number i at random

between 1 and 10, and checks a condition on the ith row

in table A and the second operation updates that row if the

check succeeds. The third and fourth operation do the same

for the ith row of table B; and the fifth and sixth do the same

for the ith row of table C. The last five operations update

non-conflicting rows (private to that transaction instance).

Runtime Pipelining splits this transaction into the following

eight subtransactions: 〈1,2〉 〈3,4〉 〈5,6〉 〈7〉 〈8〉 〈9〉 〈10〉 〈11〉,
the first subtransaction containing the first two operations,

etc. The check of the fifth operation has a probability to fail

and cause a rollback, triggering a cascading rollback if other

transactions already depend on this transaction.

In our first experiment, we tune the probability of the third

subtransaction triggering a rollback. As shown in Figure 14,

the throughput of both Callas and MySQL Cluster decreases

as the rollback rate increases. The throughput of Callas is

always higher than that of MySQL Cluster, but the improve-

ment decreases from 2.9x to 60%. When the rollback rate is

��

� ��

�!���

�! ��

�"���

�#� �$� �!"� �!%� �"��

�
�
��

��
��
���
��

��
��
��

����������������

������ ������

 !��!�

"�#!��&!�������'���������

Fig. 15: Effect of Callas adaptive response to high rollback rates.

low, Callas can execute all eight subtransactions in a pipeline,

but when the rollback probability increases, Callas’ adaptive

control mechanism falls back to “safe mode” by merging the

first three subtransactions—thus placing the rollback state-

ment in the first subtransaction. Even in safe mode, however,

Callas can still parallelize the execution of the last five sub-

transactions. In Figure 14, the switch to safe mode happens

when the rollback rate is higher than 7%. For reference, we

also measured the throughput of Callas with safe mode al-

ways on, and with safe mode always off. In the former case

we lose parallelism when the rollback rate is low, whereas in

the latter we incur significant overhead when the rollback rate

is high. Thanks to Runtime Pipelining’s adaptive mechanism,

Callas comes close to the best of both worlds.

In practice, since real applications have low rollback rates

most of the time, we expect safe mode to be triggered only

infrequently; the rest of the time Callas would still be aggres-

sively optimizing transactions.

Figure 15 takes a closer look at the performance of Callas

under stress. We fix the rollback rate to a high value (50%)

and increase the load of the system until we reach saturation.

We observe that under low load, it is not critical for Runtime

Pipelining to adaptively fall back to safe mode; in fact, an

always-aggressive version of Callas performs slightly better.

As the load—and, hence, parallelism—increases, however,

the adaptivity of Runtime Pipelining prevents cascading roll-

backs from causing a performance collapse, while allowing

Callas to continue leveraging some parallelism.

8 Related work
The ACID paradigm has been adopted by most academic

and commercial databases [4–9, 28], mainly because of the

simplicity of its abstraction. Frustrated by its performance,

however, researchers have tried several approaches to im-

prove the performance of ACID databases.

Optimizing certain transaction types Read-only trans-

actions and partition-local transactions have been a popular

target for optimization [18, 20, 30, 31]. For example, Span-

ner [18] can avoid the two-phase commit (2PC) protocol for

292

read-only transactions, assuming clocks are well synchro-

nized. Similarly, H-Store [31] avoids 2PC for partition-local

transactions.

Optimizing under certain conditions Another approach

is to optimize transactions when certain conditions hold for

the workload. For example, Sagas [24] lets developers chop

long-running transactions into pieces when such chopping

does not affect the application semantics. Transaction chop-

ping [29] and Lynx [35] use SC-cycles to identify transactions

eligible for chopping (§5).

Like Callas, Lynx observes that executing transaction

pieces in a well-defined order can avoid conflicts: its ori-
gin ordering technique ensures that if two transactions T1

and T2 start on the same server, and T1 starts before T2, then,

to guarantee safety, T1 pessimistically executes before T2 at

every server where they both execute. However, since it is

hard in practice to anticipate the specific servers where user

transactions will execute, origin ordering can only prevent

conflicts among the predictable internal transactions used

for updating secondary indexes and joint tables. In contrast,

Callas’ Runtime Pipelining is widely applicable, since it re-

lies on information (the order in which transactions access

tables) that can be easily established through static analysis,

and only enforces ordering if it detects an actual conflict

at run time, leaving significantly greater opportunities for

concurrency.

Rococo [27] relaxes Lynx’s eligibility condition by re-

ordering transaction operations and applying additional run-

time mechanisms. Calvin [32] avoids using 2PC by predefin-

ing an execution schedule for transactions, but again under

the assumption that the system can predict which server a

transaction will access when it is executed.

In general, such optimizations have the potential to yield

significant performance improvements, but the assumptions

on which they rely are usually hard to satisfy in real applica-

tions. MCC can help increase the applicability of these tech-

niques by requiring those assumptions to only hold within

each group, rather than globally.

To reduce the overhead of determining whether two trans-

actions may conflict at run time, SDD-1 [16] introduces the

notion of transaction classes, which bear an intriguing but

ultimately passing similarity to Callas’ transaction groups.

In SDD-1, each transaction class is defined statically by the

database administrator, and it is formally identified by a logi-

cal read and write set. A transaction T fits in any class whose

read and write set are a superset of the corresponding sets

for T : the class to which a specific instance of T is actu-

ally assigned is not decided until run time. SSD-1 simplifies

concurrency control by first using static analysis to identify

conflicts within classes (rather than transactions), and by

then leveraging the observation that transactions that are as-

signed at run time to different classes can conflict only if

their classes conflict. In Callas, transaction groups are instead

the key mechanism that enables the separation of concerns

that is at the core of MCC. By delimiting the scope of each

in-group concurrency control mechanism, they allow them to

aggressively seek opportunities for greater concurrency.

Weakening the abstraction or reducing its scope A

third line of work tries to increase performance by either

weakening the ACID abstraction, or by providing its guaran-

tees for a subset of transactions. For example, ElasTraS [21],

MegaStore [13], G-Store [22], and Microsoft’s Cloud SQL

Server [14] only provide ACID transactions within a sin-

gle partition or key group. For requests that touch multiple

partitions, these systems rely on the developers to ensure cor-

rectness, which is tedious and sometimes undesirable [18, 30].

Salt [33] alleviates this problem somewhat by requiring the

developers to optimize only a few performance-critical trans-

actions and guaranteeing that the other transactions don’t see

their intermediate states. Callas, instead, provides the ACID

abstraction uniformly to all transactions, without requiring

any effort from the developers.

9 Conclusions
Separating concerns and decoupling abstraction from mecha-

nism are basic tenets of sound system design—and for good

reasons. We confirm their benefits yet again, by applying

them to the long-standing problem of improving the perfor-

mance of ACID applications. Our initial experience is en-

couraging: the flexibility of the modular concurrency control

architecture at the core of Callas allows the applications we

have tested, to obtain, unmodified, the kind of performance

previously achievable only by manually rewriting all or part

of the applications’ code.

Acknowledgements
We had a dream shepherd in Petros Maniatis: demanding,

able to see both the forest and the tiniest leaf, and always

ready to help. This paper has benefitted from his prodding,

encouragement, and concrete suggestions in countless ways.

We are grateful to the anonymous reviewers for their insight-

ful comments and to Natacha Crooks, Marco Serafini, Spyros

Blanas, and Xiaodong Zhang for feedback on early drafts of

this paper. This work would simply not have been possible

without the patience and support of the amazing CloudLab

team [1] throughout our experimental evaluation. This mate-

rial is based in part upon work supported by a Google Faculty

Research Award and by the National Science Foundation

under Grant Number CNS-1409555.

References
[1] Cloud Lab. http://www.cloudlab.us/.

[2] Front Accounting. http://frontaccounting.com/.

[3] Fusion Ticket. http://www.fusionticket.org/.

293

[4] MemSQL. http://www.memsql.com/.

[5] Microsoft SQL Server. http://www.microsoft.com/sqlserver/.

[6] MySQL Cluster. http://www.mysql.com/products/cluster/.

[7] Oracle Database. http://www.oracle.com/database/.

[8] Postgres SQL. http://www.postgresql.org/.

[9] SAP Hana. http://www.saphana.com/.

[10] SimpleDB. http://aws.amazon.com/simpledb/.

[11] Atul Adya, Barbara Liskov, and Patrick O’Neil. Generalized Isolation
Level Definitions. In Proceedings of the IEEE 16th International
Conference on Data Engineering, pages 67–78, 2000.

[12] Peter Bailis, Alan Fekete, Michael J. Franklin, Ali Ghodsi, Joseph M.
Hellerstein, and Ion Stoica. Feral Concurrency Control: An Empirical
Investigation of Modern Application Integrity. In Proceedings of the
2015 ACM SIGMOD International Conference on Management of
Data, SIGMOD ’15, 2015.

[13] Jason Baker, Chris Bond, James C. Corbett, JJ Furman, Andrey Khor-
lin, James Larson, Jean-Michel Leon, Yawei Li, Alexander Lloyd, and
Vadim Yushprakh. Megastore: Providing Scalable, Highly Available
Storage for Interactive Services. In Proceedings of the Conference on
Innovative Data system Research (CIDR), pages 223–234, 2011.

[14] Philip A Bernstein, Istvan Cseri, Nishant Dani, Nigel Ellis, Ajay
Kalhan, Gopal Kakivaya, David B Lomet, Ramesh Manne, Lev Novik,
and Tomas Talius. Adapting Microsoft SQL Server for Cloud Com-
puting. In Data Engineering (ICDE), 2011 IEEE 27th International
Conference on, pages 1255–1263, 2011.

[15] Philip A Bernstein and Nathan Goodman. Multiversion concurrency
control-theory and algorithms. ACM Transactions on Database Sys-
tems (TODS), 8(4):465–483, 1983.

[16] Philip A Bernstein, David W Shipman, and James B Rothnie Jr. Con-
currency Control in a System for Distributed Databases (SDD-1). ACM
Transactions on Database Systems (TODS), 5(1):18–51, 1980.

[17] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Debo-
rah A. Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, and
Robert E. Gruber. Bigtable: a Distributed Storage System for Struc-
tured Data. In Proceedings of the 7th USENIX Symposium on Op-
erating Systems Design and Implementation - Volume 7, OSDI ’06,
2006.

[18] James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes,
Christopher Frost, J. J. Furman, Sanjay Ghemawat, Andrey Gubarev,
Christopher Heiser, Peter Hochschild, Wilson Hsieh, Sebastian Kan-
thak, Eugene Kogan, Hongyi Li, Alexander Lloyd, Sergey Melnik,
David Mwaura, David Nagle, Sean Quinlan, Rajesh Rao, Lindsay
Rolig, Yasushi Saito, Michal Szymaniak, Christopher Taylor, Ruth
Wang, and Dale Woodford. Spanner: Google’s Globally-Distributed
Database. In Proceedings of the 10th USENIX Conference on Oper-
ating Systems Design and Implementation, OSDI’12, pages 251–264,
2012.

[19] Transaction Processing Performance Council. TPC Benchmark C,
Standard Specification Version 5.11, 2010.

[20] James Cowling and Barbara Liskov. Granola: Low-Overhead Dis-
tributed Transaction Coordination. In Proceedings of the 2012 USENIX
Annual Technical Conference, Boston, MA, USA, June 2012.

[21] Sudipto Das, Divyakant Agrawal, and Amr El Abbadi. ElasTraS:
an Elastic Transactional Data Store in the Cloud. In Proceedings of
the 2009 USENIX Conference on Hot Topics in Cloud Computing,
HotCloud’09, 2009.

[22] Sudipto Das, Divyakant Agrawal, and Amr El Abbadi. G-Store: A
Scalable Data Store for Transactional Multi Key Access in the Cloud.
In Proceedings of the 1st ACM Symposium on Cloud Computing, pages
163–174, 2010.

[23] Giuseppe De Candia, Deniz Hastorun, Madan Jampani, Gunavardhan
Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasub-
ramanian, Peter Vosshall, and Werner Vogels. Dynamo: Amazon’s
Highly Available Key-Value Store. In Proceedings of twenty-first ACM
SIGOPS Symposium on Operating systems principles, SOSP ’07, pages
205–220, 2007.

[24] Hector Garcia-Molina and Kenneth Salem. Sagas. In SIGMOD, 1987.

[25] Hsiang-Tsung Kung and John T. Robinson. On Optimistic Methods
for Concurrency Control. ACM Transactions on Database Systems
(TODS), 6(2):213–226, 1981.

[26] Avinash Lakshman and Prashant Malik. Cassandra: A Decentralized
Structured Storage System. ACM SIGOPS Operating Systems Review,
44:35–40, April 2010.

[27] Shuai Mu, Yang Cui, Yang Zhang, Wyatt Lloyd, and Jinyang Li. Ex-
tracting More Concurrency from Distributed Transactions. In 11th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 14), pages 479–494, Broomfield, CO, October 2014.

[28] Michael A Olson, Keith Bostic, and Margo I Seltzer. Berkeley DB.
In USENIX Annual Technical Conference, FREENIX Track, pages
183–191, 1999.

[29] Dennis Shasha, François Llirbat, Eric Simon, and Patrick Valduriez.
Transaction Chopping: Algorithms and Performance Studies. ACM
Transactions on Database Systems (TODS), 20(3):325–363, 1995.

[30] Jeff Shute, Mircea Oancea, Stephan Ellner, Ben Handy, Eric Rollins,
Bart Samwel, Radek Vingralek, Chad Whipkey, Xin Chen, Beat
Jegerlehner, Kyle Littleeld, and Phoenix Tong. F1 - The Fault-Tolerant
Distributed RDBMS Supporting Google’s Ad Business. In Proceedings
of the 2012 ACM SIGMOD International Conference on Management
of Data, pages 777–778, 2012.

[31] Michael Stonebraker, Samuel Madden, Daniel J. Abadi, Stavros Hari-
zopoulos, Nabil Hachem, and Pat Helland. The End of an Architectural
Era (It’s Time for a Complete Rewrite). In Proceedings of the 33rd
international Conference on Very Large Data Bases, VLDB ’07, pages
1150–1160, 2007.

[32] Alexander Thomson, Thaddeus Diamond, Shu-Chun Weng, Kun Ren,
Philip Shao, and Daniel J. Abadi. Calvin: Fast Distributed Transactions
for Partitioned Database Systems. In Proceedings of the 2012 ACM
SIGMOD International Conference on Management of Data, SIGMOD
’12, pages 1–12, 2012.

[33] Chao Xie, Chunzhi Su, Manos Kapritsos, Yang Wang, Navid Yagh-
mazadeh, Lorenzo Alvisi, and Prince Mahajan. Salt: Combining ACID
and BASE in a Distributed Database. In 11th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 14), pages
495–509, Broomfield, CO, October 2014.

[34] Chao Xie, Chunzhi Su, Cody Littley, Lorenzo Alvisi, Manos Kapritsos,
and Yang Wang. High-Performance ACID via Modular Concurrency
Control (extended version). Technical Report TR-15-08, Department
of Computer Science, The University of Texas at Austin, September
2015.

[35] Yang Zhang, Russell Power, Siyuan Zhou, Yair Sovran, Marcos K
Aguilera, and Jinyang Li. Transaction Chains: Achieving Serializ-
ability with Low Latency in Geo-Distributed Storage Systems. In
Proceedings of the Twenty-Fourth ACM Symposium on Operating Sys-
tems Principles, pages 276–291, 2013.

294

