
PAXOS Made Transparent
Heming Cui+*, Rui Gu*, Cheng Liu*, Tianyu Chenx, and Junfeng Yang*

+The University of Hong Kong *Columbia University
xTsinghua University

Abstract
State machine replication (SMR) leverages distributed consensus protocols such as PAXOS
to keep multiple replicas of a program consistent in face of replica failures or network
partitions. This fault tolerance is enticing on implementing a principled SMR system that
replicates general programs, especially server programs that demand high availability. Un-
fortunately, SMR assumes deterministic execution, but most server programs are multi-
threaded and thus nondeterministic. Moreover, existing SMR systems provide narrow state
machine interfaces to suit specific programs, and it can be quite strenuous and error-prone
to orchestrate a general program into these interfaces

This paper presents CRANE, an SMR system that transparently replicates general server
programs. CRANE achieves distributed consensus on the socket API, a common interface to
almost all server programs. It leverages deterministic multithreading (specifically, our prior
system PARROT) to make multithreaded replicas deterministic. It uses a new technique we
call time bubbling to efficiently tackle a difficult challenge of nondeterministic network
input timing. Evaluation on five widely used server programs (e.g., Apache, ClamAV, and
MySQL) shows that CRANE is easy to use, has moderate overhead, and is robust. CRANE’s
source code is at github.com/columbia/crane.

Categories and Subject Descriptors: D.4.5 [Operating Systems]: Threads, Reliability;
C.2.4 [Computer-communication Networks]: Distributed Systems;
General Terms: Algorithms, Design, Reliability, Performance
Keywords: State Machine Replication, Fault Tolerance, Stable and Deterministic Multithreading,
Software Reliability

1. Introduction
State machine replication (SMR) models a program as a deterministic state machine, where
the states are important program data and the transitions are deterministic executions of
program code under input requests. SMR runs replicas of the program and invokes a
distributed consensus protocol (typically PAXOS [42, 44, 65]) to ensure the same sequence
of input requests for replicas, as long as a quorum (typically a majority) of the replicas
agrees on the input request sequence. Under the deterministic execution assumption, this

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on
the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SOSP’15, October 4–7, 2015, Monterey, CA.
Copyright c© 2015 ACM 978-1-4503-3834-9/15/10. . . $15.00.
http://dx.doi.org/10.1145/2815400.2815427

github.com/columbia/crane

quorum of replicas must reach the same exact state despite replica failures or network
partitions. SMR is proven safe in theory and provides high availability in practice [19, 21,
23, 33, 37, 51, 52, 61].

The fault-tolerant benefit of SMR makes it particularly attractive on implementing a
principled replication system for general programs, especially server programs that require
high availability. Unfortunately, doing so remains quite challenging; the core difficulty lies
in the deterministic state machine abstraction required by SMR, elaborated below.

First, the deterministic execution assumption breaks down in today’s server programs
because they are almost universally multithreaded. Even on the same exact sequence
of input requests, different executions of the same exact multithreaded program may
run into different thread interleavings, or schedules, depending on such factors as OS
scheduling and physical arrival times of requests. Thus, they can easily exercise different
schedules and reach divergent execution states – a difficult problem well recognized by the
community [14, 33, 34, 37]. To tackle this problem, one prior approach, execute-verify [37],
detects divergence of execution states and retries, but it relies on developers to manually
annotate states, a strenuous and error-prone process.

Second, to leverage existing SMR systems such as ZooKeeper [6], developers often have
to shoehorn their programs into the narrowly defined state machine interfaces provided by
these SMR systems. Ideally, experts – those with intimate knowledge of the arcane (think
how many papers [23, 42, 44, 52, 65] are needed to explain PAXOS), under-specified [52]
SMR protocols and subtle failure scenarios in distributed systems – should build a solid
SMR system, which all other developers then leverage. However, an SMR system often
has to settle for a specific state and transitional interface because it cannot anticipate
all possibilities in which developers structure their programs. For example, Chubby [21]
defines a lock server interface, and ZooKeeper a pseudo file system interface. Orchestrating
a sever program into such a narrow interface not only requires intrusive and error-prone
modifications to the program’s structure and code, but also disrupts the SMR system itself
at times. For instance, developers abused Chubby for storage [21], causing the Chubby
developers to add quota support.

This paper presents CRANE1, an SMR system that transparently replicates server pro-
grams for high availability. With CRANE, a developer focuses on implementing her pro-
gram’s intended functionality, not replication. When she is ready to replicate her program
for availability, she simply runs CRANE with her program on multiple replicas. Within
each replica, CRANE interposes on the socket and the thread synchronization interfaces to
keep replicas in sync. Specifically, it considers each incoming socket call (e.g., accept()
a client’s connection or recv() a client’s data) an input request, and runs a PAXOS con-
sensus protocol [52] to ensure that a quorum of the replicas sees the same exact sequence
of the incoming socket calls.

CRANE schedules synchronizations using deterministic multithreading (DMT) [13–
15, 18, 31, 34, 56]. This technique typically maintains a logical time2 that advances de-
terministically on each thread’s synchronization. By serializing thread synchronizations,
DMT practically makes an entire multithreaded execution deterministic. The overhead of
DMT is typically moderate because most code is not synchronization and can still run in
parallel. Specifically, CRANE leverages our prior DMT system PARROT [29], which incurs

1 CRANE stands for Correctly ReplicAting Nondeterministic Executions. It is also our hope that our system is as
elegant as the identically named bird.
2 Though related, the logical time in DMT is not to be confused with the logical time in distributed systems [43].

on average 12.7% overhead on a wide range of 108 popular multithreaded programs on
24-core machines.

A key challenge on realizing SMR for multithreaded executions is that, simply combin-
ing PAXOS and DMT is not sufficient to keep replicas in sync, because the physical time
that each request arrives at different replicas may still be different, easily leading to diver-
gence of execution states and outputs. (We illustrate this problem using an example in §2.2
and experimental results in §7.2.)

Two prior approaches attempted to tackle this challenge. Execute-agree-follow [33]
records a partially ordered schedule of Pthreads synchronizations on one replica and
replays it on the other replicas, which may incur high network bandwidth consumption
and performance overhead. dOS [14] also leverages DMT for replication, but it determines
the logical admission time for each request using two-phase commit. Aside from two-phase
commit’s known intolerance of primary failures, per-request commit is also costly.

One may consider solving this challenge by leveraging the underlying distributed con-
sensus protocol to determine the logical admission time for each request. Specifically, when
running the consensus protocol to decide each request’s position in the request sequence,
a predicted logical admission time can be carried as part of the decision as well. Unfortu-
nately, predicting a logical admission time for each request accurately is quite challenging
because typical server programs have background threads which may frequently tick logi-
cal clocks. A too-small predication leads to replica divergence if another replica has already
run past the predicted logical time. A too-large predication blocks the system unnecessarily
because replicas cannot admit the request before reaching the predicted time.

Our key insight is that many requests need no admission time consensus because their
admission times are already deterministic. Hypothetically, if the requests arrive faster than
they are admitted at each replica, each request’s admission time is fully deterministic
because each replica simply admits requests as fast as it can. In practice, requests do not
arrive this fast. However, there are still frequent bursts of requests that arrive together.
Among replicas, as long as the first request of a burst is admitted at a deterministic logical
time, all the other requests in the burst are admitted at deterministic logical times without
requiring consensus.

Leveraging this insight, we created an technique called time bubbling to enforce deter-
ministic logical times efficiently. It ensures that the first request in a burst is admitted at
each replica deterministically by inserting a deterministic wait after the previous burst of
requests are all admitted. During this wait, each replica only processes already admitted re-
quests, and does not admit new requests. CRANE negotiates a consistent duration of the wait
via the underlying distributed consensus protocol, and enforces this wait at each replica via
DMT. These waits are like deterministic time bubbles between bursts of requests (hence
the name of the technique), creating the illusion that the requests arrive faster than they are
admitted.

In short, by converting per-request admission time consensus to per-burst, time bubbling
efficiently combines the input determinism of PAXOS and the execution determinism of
DMT. For busy servers, requests in bursts greatly outnumber the other requests. (We
observed that 66.65% to 93.88% of requests are in bursts; see §7.3.) They rarely need
to invoke time consensus, enjoying good performance. For idle servers, time consensus
overhead does not matter much because the servers are idle anyway.

We implemented CRANE by interposing on the POSIX socket and the Pthreads synchro-
nization interfaces. It intercepts operations along these interfaces by hijacking dynamically
linked library calls for transparency. It implements the PAXOS protocol atop libevent [47]

for distributed consensus, and leverages our PARROT system for deterministic multithread-
ing. Unlike prior SMR systems with narrow interfaces, CRANE’s checkpoint and recovery
must work with general programs. To this end, it leverages CRIU [28] to checkpoint and
restore process states, and LXC [2] for file system states. An additional benefit of using the
LXC container is that CRANE isolates the replicated server program from the environment,
avoiding nondeterministic systems resource contentions (§5.2).

We evaluated CRANE on five widely used server programs, including HTTP servers
Apache and Mongoose, an anti-virus server ClamAV, a uPnP multimedia server
MediaTomb, and a database server MySQL. Our results on popular performance benchmarks
show that CRANE works with all the servers easily (three servers require no modification,
and the other two servers each require only two lines of PARROT hints [29] to improve per-
formance); that CRANE’s performance overhead is moderate (an average of 34.19% over-
head at the servers’ peak performance setups on our 24-core machines); and that CRANE is
robust on replica failures.

Our key conceptual contribution is the idea of transparent SMR for general programs,
which has the potential to expand SMR’s adoption and improve availability of many
systems. This idea also applies to other replication concepts (e.g., byzantine fault toler-
ance [22, 38]). This idea has other broad applications as well (§6.2). Our engineering con-
tributions include the CRANE system and our evaluation on diverse server programs.

In the remainder of this paper, §2 introduces CRANE’s architecture and an example. §3
describes how CRANE enforces order for synchronizations in a server. §4 illustrates the
work flow of the time bubbling technique. §5 describes implementation details. §6 discusses
the limitations and applications of CRANE. §7 presents evaluation results. §8 discusses
related work, and §9 concludes.

2. CRANE Overview
CRANE is deployed as a typical SMR system. A set of three or five replicas is set up within a
LAN, and each replica runs an CRANE instance containing the same server program. On the
CRANE system starts, one replica becomes the primary (or leader) replica which proposes
the order of requests to execute, and the others become backup replicas which follow the
primary’s proposals. A number of clients in LAN or WAN send network requests to the
primary and get responses. If the primary machine fails, the other replicas run a leader
election (§5.1) to elect a new primary.

This section first presents CRANE’s architecture, including its consensus interface and a
CRANE instance’s main components, and then uses an example to show how CRANE works
with server programs.

2.1 Architecture

To support general server programs transparently, CRANE chooses the POSIX socket API
as its consensus interface. CRANE enforces two kinds of orders for socket calls. First, for
client programs’ out going socket calls (e.g., connect() and send()), CRANE enforces
that all replicas see the same sequence of client socket calls with PAXOS. CRANE does not
need to order the clients’ blocking socket calls because CRANE is not designed to replicate
clients. Second, for a server program’s blocking socket calls (e.g., poll(), accept(), and
recv()), CRANE enforces that these calls are scheduled and returned in the same sequence
of logical times across replicas. CRANE responses to the clients only using the server
program on the primary, and it drops the responses of the server programs on backups.

Checkpoint component

A server program

recv()
lock()

poll()
accept()

DMT scheduler

lock()

Proxy

Paxos
consensus

...

Client 1

Client 2

Client N

C
T

S

CS

Time
bubble

Insert
Request

consensus
Consensus

decision

Consensus with the other nodesCconnect()

Ssend()

Ta time bubble

C

Figure 1: The CRANE Architecture. CRANE components are shaded (and in green).

For a server program’s outgoing socket calls (e.g., send()), CRANE simply schedules
them using DMT and does not invoke consensus. The reason is that these calls readily have
consistent contents via enforcing the same logical admission times of input requests and
the same thread schedules for server programs across replicas.

Figure 1 shows a CRANE instance running on the primary. The instance contains five
main components, the proxy, the PAXOS consensus, the DMT scheduler, the time bub-
bling component that enforces the same logical clocks for servers’ blocking socket calls
across replicas via inserting time bubbles, and the checkpoint component that periodically
checkpoints the server program. A server program runs transparently in a CRANE instance
without being aware of CRANE’s components. A backup replica runs the same CRANE in-
stance except that its proxy does not accept connections from clients and does not invoke
consensus.

The proxy component is a CRANE instance’s gateway. It accepts socket requests from
clients and forwards the requests to the server program on its own replica. It accepts
responses from the server program and forwards the responses to the clients. Once the
proxy receives a client socket request, it invokes the PAXOS consensus component running
on its own replica for this request. The proxy does not block-wait for this decision which
may take a while to reach. Once the proxy is notified by the PAXOS component that
some requests’ decisions are made, it forwards the requests in decision order to the server
program.

The PAXOS consensus component is a PAXOS protocol that receives a client socket re-
quest from its own proxy and invokes a consensus process on this request. This component
is also the only CRANE component that communicates among different replicas. CRANE’s
PAXOS implementation is based on a well-known and concise protocol [52]. More details
on our PAXOS implementation are given in §5.1. After CRANE’s PAXOS components reach
consensus on a client socket call, each PAXOS component notifies its own proxy to forward
this call to its server program.

The DMT component runs within the server program’s process. CRANE leverages
PARROT [29] as the DMT scheduler because PARROT runs fast on a wide range
of 108 popular multithreaded programs. Specifically, PARROT uses a runtime tech-
nique called LD PRELOAD to dynamically intercept Pthreads synchronizations (e.g.,
pthread mutex lock()) issued by an executable and enforces a well-define, round-robin
schedule on these synchronization operations for all threads, practically eliminating non-
determinism in thread synchronizations.

Although PARROT is not designed to resolve data races deterministically, CRANE’s
replication tolerates data races that have fail-stop consequences, and can further catch the
other data races by running a race detector on a backup replica (see §6.1). CRANE augments
the DMT component to schedule the return points of socket calls in server replicas, too, to
ensure that requests are admitted at consistent logical times across replicas.

The time bubbling component sits between the proxy and the DMT’s processes, and it
is invoked on two conditions. First, on a server’s bootstraps, CRANE invokes time bubble
insertions to make sure that the server programs across replicas reach the same initial state

and wait for the first input request. Second, if the DMT component has not received any
input request from the proxy for a physical duration Wtimeout , a time bubble insertion is
invoked as the boundary of two request bursts. To ensure the same sequence of inserted
time bubbles across replicas, the same PAXOS consensus as that for client socket calls is
invoked. For each time bubble, each replica’s DMT scheduler promises to run a number of
Nclock synchronizations and not to admit any client socket call.

If the DMT scheduler exhausts the logical clocks in a time bubble, it either admits new
client socket call (if any) or inserts another time bubble. If the scheduler does not exhaust
the logical clocks after serving current requests, PARROT has a mechanism to exhaust them
rapidly (§3.1). More details on the time bubbling technique are given in §4, and discussions
on the values of the two parameters Wtimeout and Nclock are given in §7.5.

To recover from replica failures or add new replicas, the checkpoint component is
invoked every minute on a backup replica. It checkpoints the server process running with
DMT. While one can always start a server replica from scratch and replay the entire
sequence of socket calls, this replay can be extremely time-consuming for long-running
servers. Prior SMR systems rely on narrow state machine interfaces for checkpoint and
recovery, which does not work for general server programs. Instead, CRANE leverages
two popular open source tools: CRIU, to checkpoint process state such as CPU registers
and memory; and LXC, to checkpoint the file system state of a server program’s current
working directory and installation directory.

Each checkpoint in CRANE is associated with a global index in PAXOS’s consensus order,
so if one replica needs recovery, CRANE ships the latest checkpoint from a backup replica,
restores the process running DMT and the server program, and re-executes socket calls
starting from this index. The proxy and consensus components do not require checkpoints
because we explicitly designed their execution states independent to the server’s process
(§5.2).

2.2 Example

Figure 2 shows an example based on the Apache HTTP server. For clarity, the example uses
worklist synchronization, and the actual servers use Pthreads mutex locks and conditional
variables which CRANE readily handles. The main thread creates a listener thread to accept
client requests and a number of worker threads to process client requests in parallel. The
listener listens on a port with poll(). When a new client connection comes, the listener
calls accept() and appends the accepted socket descriptor to a worklist. Each worker
thread blocks on a worklist.get() function until the worklist is not empty. It then
dequeues an accepted socket, processes the request with a mutex lock acquired, and then
sends a response. Figure 3 shows an example based on client programs such as curl. This
client connects to the server, sends one HTTP request, waits for the server’s response, and
then closes the connection.

Let’s say a CRANE system with three replicas is set up, and each replica runs this server;
two clients start simultaneously, and each sends a HTTP PUT and GET request respectively
on the same URL “a.php” to the primary.

This server has three major sources of nondeterminism, which can easily cause its execu-
tion states across replicas to diverge. The first source (for short, S1) is that clients’ requests
may arrive at different replicas with different orders, easily causing the server’s execution
states to diverge. Second (S2), within the server, the nondeterministic Pthreads synchro-
nizations may easily lead to different schedules. For instance, the worklist.add() called
by the listener may wake up any worker blocking on worklist.get().

1 : void main(int argc, char *argv[]) {
2 : int done = 0; // Be 1 when receives a kill signal.
3 : int nworkers = atoi(argv[1]);
4 : pthread create(. . ., NULL, listener, NULL);
5 : for (i = 0; i < nworkers; ++i)
6 : pthread create(. . ., NULL, worker, NULL);
7 : . . .; // Wait for threads to exit.
8 : }
9 : void *listener(void *arg) {
10: . . .; // Call bind() and listen().
11: while (!done && poll(. . .)) {
12: int sock = accept(. . .);
13: worklist.add(sock);
14: }
15: }
16: void *worker(void *arg) {
17: while(!done && int sock = worklist.get()) {
18: recv(sock, buf, . . .);
19: lock(m);
20: ret = process req(buf);
21: unlock(m);
22: send(sock, ret, . . .);
23: . . .;
24: }
25: }

Figure 2: A server example based on Apache.

1: void main(argc, char *argv) {
2: . . .; // Get server IP:port from argv[].
3: int sock = socket(. . .);
4: connect(sock, . . .); // Connect to IP:port.
5: send(sock, . . .); // Send a http request.
6: recv(sock, . . .); // Wait for server’s response.
7: close(sock);
8: }

Figure 3: A client example based on curl.

Third (S3), even if clients’ requests arrive at different replicas with the same order,
the physical time interval of each two consecutive requests can still be largely different
across replicas depending on each request’s physical arrival time. This variant interval can
easily cause client socket calls to be admitted at inconsistent logical clocks across replica
and divergent execution states. For instance, Figure 4 and Figure 5 show two schedules
collected on two replicas. Although the PUT and GET requests arrive at these two replicas
with the same order, the time interval of these requests on the first replica is much larger
than that on the second replica, causing the first replica to return a valid page and the second
replica to return no page.

CRANE works as follows. First, depending on the order the primary’s proxy receives
these requests, CRANE eliminates S1 with PAXOS and ensures the same request sequence
for all replicas. Second, CRANE’s DMT scheduler eliminates S2 by ensuring a deterministic
order of Pthreads synchronizations.

Third, depending on the time intervals of client socket calls observed by the primary,
CRANE divides this sequence of calls into bursts with time bubbles. Figure 6 shows a

// worker 1 worker 2
1: recv("PUT a.php");
2: lock(m);
3: ret = process req();
4: unlock(m);
5: send(ret);
6: recv("GET a.php");
7: lock(m);
8: ret = process req();
9: unlock(m);
10: send(ret); //200 ok

Figure 4: HTTP GET request got the valid page due to the two requests’ large arrival interval.

// worker 1 worker 2
1: recv("PUT a.php");
2: recv("GET a.php");
3: lock(m);
4: ret = process req();
5: unlock(m);
6: lock(m);
7: ret = process req();
8: unlock(m);
9: send(ret);
10: send(ret); //404 not found

Figure 5: HTTP GET request didn’t get the page due to the two requests’ small arrival interval.

// The paxos request queue between proxy and server
1: connect();
2: connect();
3: send("PUT a.php");
4: send("GET a.php");
5: a time bubble;
6: close();
7: close();

Figure 6: A sequence of client socket calls enforced by CRANE.
sequence for the server example. Let’s say the primary observes that the intervals of the
connect() and send() calls are all smaller than Wtimeout , and the interval between the
send() at Line 4 and the close() at Line 6 is larger than Wtimeout , then CRANE inserts a
time bubble at Line 5 and divides the sequence into two bursts. Then, for the connect()

and send() calls in the first burst, all replicas admit them as is using DMT no matter
how large their intervals are on the other replicas, consistently maintaining the logical
admission times for these calls. For each time bubble, all replicas’ DMT schedulers promise
to tick Nclock Pthreads synchronizations and not to admit any client socket call before
then, consistently maintaining the logical admission times for the close() calls. Given
this sequence, Figure 7 shows CRANE’s consistent schedule across replicas.

In addition to addressing the consistency challenge, the time bubbling technique is also
efficient because it does per-burst consensus instead of per-request consensus. In this
example, if more client connect() calls come simultaneously and each connection does
more send() calls, the ratio of inserted time bubbles versus the total number of socket calls
in the sequence may be even lower, then CRANE may become more efficient. Evaluation
on popular servers and workloads confirmed that this ratio is often low (§7.3).

// Listener worker 1 worker 2
1: poll();
2: accept();
3: worklist.add();
4: worklist.get();
5: poll();
6: accept();
7: worklist.add();
8: worklist.get();
9: recv("PUT a.php");
10: recv("GET a.php");
11: lock(m);
12: ret = process req();
13: unlock(m);
14: lock(m);
15: ret = process req();
16: unlock(m);
17: send(ret);
18: send(ret); //404 not found

Figure 7: A schedule of the server example enforced by CRANE across replicas.

void get turn();
void put turn();
void wait(opaque obj);
void signal(opaque obj);

Figure 8: The PARROT DMT runtime’s scheduler primitives.

3. CRANE’s Synchronization Wrappers for a Server
This section describes how CRANE handles a server program’s synchronizations, including
Pthreads synchronizations and blocking socket calls. Because how to handle these synchro-
nizations is tightly relevant to the PARROT DMT scheduler we leverage, in this section, we
first introduce some background on the PARROT scheduler, including its primitives and
wrappers. And then we describe how CRANE leverages PARROT’s primitives and wrappers
to implement its own synchronization wrappers.

3.1 Background: the PARROT Scheduler

PARROT [29] is a DMT system that uses the LD PRELOAD trick to intercept Pthreads syn-
chronizations at runtime and enforces a well-define, round-robin order for these operations.
In this round-robin manner, PARROT first lets one runnable thread do one synchronization
operation; and then, for the left runnable threads, PARROT lets the next thread do one syn-
chronization operation; and then the next runnable thread, until all runnable threads hav-
ing done one synchronization operation. Then PARROT repeats. To enforce this schedule,
PARROT maintains a queue of runnable threads (run queue) and another queue of waiting
threads (wait queue), like a Linux OS scheduler.

PARROT enforces an important invariant: only the thread at the head of the run queue
can do one actual synchronization operation and manipulate the run queue and wait queue.
After the head thread does one operation, it rotates itself to the tail of the run queue and
wakes up the new head thread of the run queue. Conceptually, threads within PARROT pass
a global token (the run queue head) around. A thread will be put into the wait queue if the

1: int pthread mutex lock wrapper(mu) {
2: DMT.get turn();
3: check add timebubble(); // NOP in Parrot. Called in Crane.
4: while (pthread mutex trylock(mu))
5: DMT.wait(mu);
6: DMT.put turn();
7: return 0; // Error handling code ommitted for clarity.
8: }

Figure 9: PARROT’s wrapper for pthread mutex lock().

synchronization object it requires is not available, and it will be put back to the run queue
when this object becomes available.

To implement this round-robin schedule in a compact way, PARROT provides a monitor-
like internal interface, shown in Figure 8. The get turn() function waits until the calling
thread becomes the head of the run queue. The put turn() function rotates the calling
thread to the tail of the run queue and wakes up the next thread which now is the head of
the run queue. The wait() function puts the calling thread from run queue to wait queue
and blocks on a opaque object (e.g., a mutex or a socket descriptor), until another thread
makes this object available and calls a signal() on this object. When a thread returns
from a wait() function, it becomes the head of the run queue. Both the wait() and the
signal() functions require getting the global turn.

These set of primitives are highly optimized for multi-core. Each thread has an integer
flag and condition variable. The get turn() function spin-waits on the current thread’s
flag for a while before blocking on the condition variable. The wait() function needs to
get the turn before it returns, so it uses the same combined spin- and block- wait strategy as
the get turn() function. The get turn() and signal() functions signal both the flag
and the conditional variable of the next thread. In common case, these operations acquire
no lock and do not block-wait, thus the number of synchronization context switches in
PARROT is much smaller than that in traditional Pthreads synchronizations, yielding faster
performance in PARROT than in the Pthreads runtime for some programs [29].

Figure 9 shows the pthread mutex lock() wrapper in PARROT. This wrapper uses
try-lock to avoid deadlock: if the head of the run queue is blocked waiting for a lock before
giving up the turn, no other thread can get the turn.

When all threads of a program block, which is common case in a server program,
PARROT puts an internal idle thread to the run queue, which simply does repetitive
get turn() and put turn() operations. This idle thread ensures that PARROT’s run
queue always has threads and that PARROT’s logical clock keeps ticking.

PARROT’s blocking socket calls are nondeterministic because it is a DMT system for
eliminating nondeterminism in Pthreads synchronizations. A blocking socket call’s wrap-
per in PARROT works as follows. When a thread calls a blocking socket call, the thread
calls get turn(), passes the global token to the next thread in the run queue, removes
itself from the run queue, and then calls into the actual socket call. When the thread returns
from the actual call, it appends itself to a socket queue. Each thread at the run queue head
moves the threads in this socket queue back to the run queue. This move-back is nondeter-
ministic because threads may return from blocking socket calls nondeterministically and
thus may be added to the socket queue in various orders.

1: void check add timebubble(mu) {
2: while (paxos seq.empty()) {
3: usleep(. . .);
4: request time bubble();
5: }
6: if (paxos seq.head().type == TIME BUBBLE)
7: paxos seq.head().decrease();
8: else
9: DMT.signal(paxos seq.head());
10: }

Figure 10: CRANE’s check add timebubble() function.

1: int recv wrapper(sockfd, . . .) {
2: DMT.get turn();
3: DMT.wait(sockfd);
4: int nbytes = recv(sockfd, . . .);
5: paxos seq.dequeue(nbytes);
6: DMT.put turn();
7: return nbytes;
8: }

Figure 11: CRANE’s wrapper for recv().

3.2 CRANE’ Synchronization Wrappers for a Server

CRANE wraps a rich set of common blocking socket operations, including select(),
poll(), epoll wait(), accept(), and recv(). CRANE also modifies the wrappers of
Pthreads synchronizations. These wrappers are sufficient for the server programs in our
evaluation.

CRANE needs to modify the pthread mutex lock() wrapper in Figure 9 to do three
things. First, if the PAXOS request sequence has been empty for a physical duration
Wtimeout , CRANE requests a time bubble with Nclock logical clocks. Second, if the head
of the PAXOS sequence is a time bubble, CRANE decreases the logical clock in the time
bubble by one, or it removes this bubble if zero clock is left. Third, CRANE signals a
thread that blocks on a socket operation (e.g., recv()) if there is a matching client socket
call (e.g., send()) at the head of the PAXOS sequence. To do these three things, CRANE
calls the check add timebubble() function (defined in Figure 10) at Line 3 of the
pthread mutex lock() wrapper in Figure 9.

An important data structure in CRANE’s wrapper is the PAXOS sequence which contains
clients’ socket calls and inserted time bubbles. This sequence sits between the proxy and
the server’s processes, and it is implemented with Boost [1] shared memory. CRANE uses
lockf() to ensure mutual exclusion on this sequence because the two processes may
concurrently manipulate this sequence. For clarity, these lock and unlock operations are
omitted in the pseudo code.

CRANE also needs to modify PARROT’s idle thread mechanism because sometimes this
thread is the only thread in the run queue, and CRANE needs to frequently check whether a
new client socket call comes or a time bubble insertion is needed. To do so, CRANE replaces
PARROT’s get turn() and put turn() primitives within the idle thread to be mutex lock
and unlock operations, then the idle thread also runs the function defined in Figure 10 to
check and insert time bubbles.

1st request
burst start

Primary

Backup 1

Backup 2

Time

Requests

1st request
burst end

2nd request
burst start

2nd request
burst end

3rd request
burst start

…

Time bubbles

Figure 12: The request and time bubble flow.

Checkpointer

A server program

recv()
lock()

poll()
accept()

DMT Scheduler

lock()

(1) Request
bubbles(2) Am I

primary?
Proxy

(3) Invoke bubble
consensus

Paxos
consensus

(4) Insert bubbules

Yes

NoDrop

Figure 13: The work flow of inserting a time bubble.

Figure 11 shows CRANE’s wrapper for the recv() call. This wrapper ensures that the
recv() calls of server programs across replicas return at consistent logical times. The other
blocking socket calls’ wrappers are similar. A thread calling recv() in CRANE simply calls
get turn() and blocks on the socket descriptor using PARROT’s wait() primitive. When
a client send() call that matches this recv() becomes the head of the PAXOS sequence,
the pthread mutex lock() wrappers wakes up the server thread blocking on recv()

with the signal() call at Line 9 in Figure 10. The waken up thread dequeues a number of
matching send() calls from the PAXOS sequence according to the actual bytes received.
Also, for clarity, the lock and unlock operations for the PAXOS sequence are omitted in this
recv() wrapper.

4. The Time Bubbling Technique
Figure 12 shows the time bubbles inserted by the time bubbling technique. The technique
groups clients’ socket operations as bursts. A request burst can be a group of real socket
requests (rectangles), or can be a time bubble with a fixed number of logical clocks (circles).
In this figure, black requests are the first operation for each burst.

In a conceptual level, CRANE uses three rules to enforce the same sequence of logical
times for socket requests (rectangles) and thus the same schedules across different replicas.
First, CRANE uses PAXOS to ensure the same sequence of client socket calls as well
as inserted time bubbles as a “PAXOS request sequence” for each replica, as shown in
each horizontal arrow. Second, CRANE uses DMT to guarantee that it only ticks logical
clocks (i.e., schedules Pthreads synchronizations or socket operations) when this sequence
is not empty. Third, the time bubbling technique ensures that this sequence is not empty,
otherwise it inserts a time bubble.

Figure 13 shows the work flow of our time bubbling technique with four steps. Each
replica’s DMT just waits for a physical duration Wtimeout , if no further requests come, (1)
the DMT requests its own proxy to insert a time bubble. (2) The proxy then checks whether
it sees itself as the primary in the PAXOS protocol. If so, it asks (3) the consensus component
to invoke consensus on whether inserting this bubble; otherwise it drops this request. After
a consensus on this bubble insertion is reached, (4) each machine’s proxy simply inserts
the bubble into the PAXOS sequence, granting Nclock logical clocks to the DMT scheduler.

If a server has not exhausted the logical clocks in a time bubble after serving current
requests, PARROT’s idle thread mechanism (§3.1) exhausts these clocks rapidly. Then, the
server can continue to process further requests in time.

5. Implementation Details
5.1 The PAXOS Protocol

The PAXOS consensus component (§2.1) is a critical component to enforce a consistent
total order of socket calls from client programs. Although there are already a number of
open source PAXOS implementations [6, 26, 60], we re-implemented a PAXOS protocol in
order to incorporate our new socket-API consensus interface.

Our PAXOS implementation is based on a well-known and concise approach [52]. In
normal case, only the primary invokes consensus, thus this approach reaches consensus
efficiently. In exceptional cases such as primary restarts, a PAXOS leader election is invoked
to resolve conflicts. In CRANE, we implemented this election via making the primary send a
heart beat message to all the backups every second, and if backup replicas have not receive
any heart beat message for three seconds, these replicas start to elect a new leader. The
leader election contains three steps [52]: (1) backups proposing a new view, which is a
standard PAXOS two-phase consensus [42], (2) the proposer that wins the view proposing
itself as a primary candidate, another standard PAXOS two-phase consensus, and (3) the
new leader announcing itself as the new primary.

In our implementation, each socket call from the client is assigned a global, monoton-
ically increasing viewstamp (or global index) to associate with each checkpoint (§5.2).
Upon consensus on a socket call, each consensus component persistently stores the call
type, arguments, and global index into a Berkeley DB storage [17] on SSD.

Although our current PAXOS implementation focuses on supporting socket consensus
interface, this PAXOS protocol logic is independent of the types and arguments of socket
operations, so our PAXOS implementation can be applied to other types of consensus
interface as well.

5.2 Checkpoint and Restore

To recover or add a new replica, CRANE leverages two popular open source tools:
CRIU [28], to checkpoint process state such as CPU registers and memory; and LXC [2],
to checkpoint the file system state of a server program’s current working directory and
installation directory. These two directories are sufficient to capture files modified by the
server programs in our evaluation.

Incorporating LXC into CRANE has two extra practical benefits. First, the server process
is ran within an LXC, which provides the server the same and clean initial systems
state and mitigates contentions on systems resources (e.g., file descriptors) with other
processes. Second, LXC snapshots make CRANE easy to deploy on multiple replicas
without worrying about slight differences of the systems environments such as kernel and
library versions. We just built CRANE on one replica once, did a LXC snapshot, and then
copied the snapshot to other replicas.

A CRANE checkpoint operation contains three steps. First, CRANE uses CRIU to check-
point the server’s process running within the LXC container and dumps the checkpoint
to the process’s current working directory. CRIU needs to modify systems files (e.g., ns -
last pid), but LXC’s default isolation configuration does not permit these modifications,
so we configure LXC to run in “unconfined mode”. Second, CRANE stops the container,
uses “diff --text” to generate a patch of current working directory and the server’s in-
stallation directory against an LXC snapshot prepared before any server starts. This file
system checkpoint patch is incremental and thus efficient (§7.6). Third, CRANE restarts the
container, and restores the server process with CRIU.

Such a CRANE checkpoint operation is done every minute on one backup replica without
affecting the other replicas’ performance. We explicitly design CRANE’s proxy and consen-
sus component stateless and they do not require checkpoints. A CRANE restore operation
reverts these steps.

One main issue on checkpointing a server process is that it constantly accepts socket
connections, but checkpointing and restoring TCP stacks are notoriously difficult. Our trick
to avoid this difficulty is based on an observation: even busy server programs have some
idle moments. For instance, consider Apache, even running with its standard performance-
stress benchmark ApacheBench, we observed that in some moments the server has no alive
socket connections. Thus, during a checkpoint operation, CRANE simply checks whether
the server has alive connections. If so, CRANE backs off for a few seconds and then retries
until the server has no alive connections. Since checkpoint periods do not have to be precise,
this trick runs well (§7.6).

6. Discussions
This section first discusses CRANE’s limitations and then introduces its applications.

6.1 Limitation

CRANE leverages PARROT to make synchronizations deterministic. PARROT is explicitly
designed not to handle data races. However, in the context of CRANE, data races are less
harmful because, if they cause backups to crash, CRANE can still operate and recover as
long as a quorum of the replicas is still alive. Moreover, leveraging CRANE’s replication
architecture, one can deploy a race detector on a backup replica [30], achieving both good
CRANE performance and full determinism.

There are other sources of nondeterminism besides thread scheduling and request timing.
These other sources of nondeterminism may cause backups to diverge, too. For example,
backups may do different things based on their IP addresses, data read from /dev/random,
addresses returned by malloc, physical time observed via gettimeofday, or delivery time
of signals. Prior work has shown how to eliminate these sources of nondeterminism using
record-replay [40, 46] or OS-level techniques [14], which CRANE can leverage. Another
solution is to treat all these sources as inputs and leverage distributed consensus to let all
replicas observe the same input. We leave these ideas for future work. We inspected server
programs’ network outputs among replicas, and we found that these outputs were consistent
in CRANE except physical times (§7.2).

For a server program that spawns multiple processes which communicate via IPC,
CRANE currently does not make these IPC operations deterministic. We expect that it
should be easy to support deterministic IPC in CRANE because it already makes socket
API deterministic. In addition, dOS [14] and DDOS [34] have many effective techniques
for tackling this problem, which CRANE can leverage.

6.2 Applications

We envision three applications for CRANE. First, CRANE can be leveraged by other repli-
cation concepts (e.g., byzantine fault tolerance [22, 38]) and record-replay [39, 41, 46] be-
cause they also suffer from nondeterminism. Second, promising results in REPFRAME [30]
have shown that CRANE’s transparent replication architecture can enable multiple types
of program analysis tools within one execution, making a server program enjoy benefits
of multiple analyses. Third, CRANE’s determinism as well as its time bubbling technique
alone can be applied to mitigate timing channels [10, 11, 70].

7. Evaluation

Our evaluation was done on a set of three replica machines, with each having Linux 3.13.0,
1Gbps bandwidth LAN, 2.80 GHz dual-socket hex-core Intel Xeon with 24 hyper-threading
cores, 64GB memory, and 1TB SSD.

We evaluated CRANE on five widely used server programs, including HTTP servers
Apache [9] and Mongoose [54]; ClamAV [24], an anti-virus scanning server that scans
files in parallel and deletes malicious ones; MediaTomb [8], a uPnP multimedia server
that uploads, shares, and transcodes pictures and videos in parallel; and MySQL [3], an SQL
database. Although MySQL has a replication feature [4], this feature is mainly for improving
read performance, not for providing SMR fault tolerance.

SMR’s high availability and fault-tolerance are attractive to these servers programs, be-
cause these programs provide on-line service and contain important in-memory execution
states and storage (e.g., ClamAV’s security database, MediaTomb’s SQLite [5] database, and
MySQL).

For Apache and Mongoose, we used Apache’s own concurrency stress testing bench-
mark ApacheBench to invoke concurrent HTTP requests for a PHP page, which takes
about 70 ms for a PHP interpreter to generate the page contents. For ClamAV, we used
its own client utility clamdscan to request the server to scan ClamAV’s own source code
and installation directories in parallel. For MediaTomb, because it has a web interface, we
used ApacheBench to invoke concurrent requests which use mencoder [53] to transcode
a 15MB video from AVI to MP4. For MySQL, we used SysBench [7] to generate random
select queries. These workloads triggered 8∼12 threads in each server program to process
requests concurrently at peak performance on our machines. These popular benchmarks
and workloads cover CPU, network, and file-IO bounded operations.

CRANE has two parameters for the time bubbling technique. The first parameter, Wtimeout ,
is the physical duration that the primary’s DMT scheduler waits before it requests consen-
sus on a time bubble insertion. To prevent this parameter significantly deferring responses,
CRANE sets its default value 100us, two orders of magnitudes smaller than the workloads’
response times and wide-area network latencies.

The second parameter, Nclock, is the number of logical clocks within each time bubble.
CRANE sets its default value 1000, because we observed that the amounts of executed
Pthreads synchronizations to process each request in most of the evaluated servers are
closed to this scale. We used these default values in all evaluations unless explicitly
specified. A sensitivity evaluation on these two parameters showed that their default values
were reasonable choices (§7.5).

To mitigate network latency, benchmark clients were ran within the replicas’ LAN.
Larger latency will mask CRANE’s overhead. We measured each workload’s response time
as it has direct impact on users. For each data point, we ran 1K requests for 20 times and
then picked the median value.

The rest of this section focuses on these questions:
§7.1: Is CRANE easy to use?
§7.2: Compared to nondeterministic executions, does CRANE consistently enforce the same

sequence of network outputs among replicas?
§7.3: What is CRANE’s performance overhead compared to nondeterministic executions?
§7.4: When the default schedules enforced by the PARROT DMT scheduler are slow, how

much optimization can PARROT’s performance hints bring to CRANE?
§7.5: How sensitive are the two time bubbling parameters to CRANE’s performance?

§7.6: How fast are CRANE’s checkpoint and recovery components on handling replica fail-
ures?

7.1 Ease of Use

All five servers we evaluated were able to be transparently plugged and played in CRANE
without modification. For ClamAV, MediaTomb, and MySQL, we did not need to modify any
line of code and they already have moderate performance overhead compared to the un-
replicated nondeterministic executions. For Apache and Mongoose, the default schedules
serialized parallel computations. For each of the two servers, we added two lines of soft
barrier performance hints invented by PARROT [29] to line up parallel computations as
much as possible and compute efficient DMT schedules (cf §7.4).

7.2 Consistency of Network Outputs

To verify whether the server programs running in different replicas maintain the same exe-
cution states, we compared each server program’s network outputs logged in three replicas.
Network outputs imply a server’s execution states, including the outcomes of ad-hoc syn-
chronizations and data races, which synchronization schedules can not capture. We ran the
performance workloads and logged the order and contents of server programs’ outgoing
socket calls, including send(), sendto(), sendmsg(), write(), and pwrite(). These
calls are sufficient to capture all network outputs of the evaluated programs. We then used
diff to compare the logs across replicas.

We designed two experiment plans. In plan I, we ran CRANE with the programs. In
plan II, we disabled only the time bubbling component in CRANE for three reasons: (1)
we wanted to know whether time bubbling is needed to keep replicas in sync, (2) enabling
PAXOS made us easy to ship the same workload to replicas, and (3) enabling PARROT made
us easy to intercepted and logged network outputs.

Among the five programs, three server programs, Apache, MediaTomb, and Mongoose,
used ApacheBench to spawn workloads. In plan I, CRANE’s logs from all three replicas
had the same order and contents of outputs except physical times in the responded HTTP
headers. In plan II, despite that we disabled only the time bubbling component, the logs’
order of responded HTTP headers and contents across replicas were different. Two server
programs, ClamAV and MySQL, used specific benchmarks to spawn workloads. In plan I, the
logs showed that CRANE enforced the same network outputs. In plan II, the orders of the
outputs across replicas were different. These experiments suggest that simply combining
PAXOS and DMT is not sufficient to keep replicas in sync, and the time bubbling technique
is needed.

To diagnose consistency of network outputs more concisely, we wrote a micro-
benchmark for Apache. We used the curl utility to spawn two concurrent HTTP requests:
a PUT request of a PHP page and a GET request on this page, and then we inspected the
outcome of the GET request. We ran Apache in CRANE with this micro benchmark for
100 times and found that three replicas consistently reported the same GET result in each
run, either “200 OK” or “404 Not Found”, depending on the order of the PUT and GET
request arriving at the primary’s proxy. And then we ran Apache’s un-replicated execution
for 100 times on each replica, and three replicas reported “404 Not Found” for 6, 8, 11
times respectively.

7.3 Performance Overhead in Normal Case

To understand the performance impact of CRANE’s components, we divided CRANE’s
components into two major parts: the DMT part ran by PARROT; and the proxy (with

0

50

100

150

200

250

Apache Mongoose ClamAV MediaTomb MySQL

C
ra

ne
’s

 n
or

m
al

iz
ed

 p
er

fo
rm

an
ce

 (%
) w/ Parrot only

w/ Paxos only
Crane

Figure 14: CRANE’s performance normalized to un-replicated nondeterministic execution.

PAXOS) part which enforces the same sequence of client socket calls across replicas. Each
part ran independently without the other part. The proxy part represents the performance
overhead of invoking PAXOS consensus for client socket calls, and the DMT part represents
the PARROT DMT scheduler’s overhead.

Figure 14 shows the servers’ performance running in CRANE normalized by their un-
replicated nondeterministic executions. The mean overhead of CRANE for the five evalu-
ated programs is 34.19% due to two main reasons. First, except for MySQL, which does fine-
grained, per-table mutex and read-write locks frequently, the DMT schedules were efficient
on the other four servers. The reason is that PARROT’s scheduling primitives are already
highly optimized for multi-core (§3.1). The proxy-only part incurred 0.82%∼3.46% over-
head, which is not surprising, because the number of socket calls is much smaller than the
number of Pthreads synchronizations in these programs. In short, CRANE’s performance
mainly depends on the DMT schedules’ performance.
MediaTomb incurred modest speedup because its transcoder mencoder had significant

speedup with PARROT. We inspected MediaTomb’s micro performance counters with the
Intel VTune [66] profiling tool. When running in CRANE, MediaTomb only made 6.6K syn-
chronization context switches, while in the Pthreads runtime it made 0.9M synchronization
context switches. This saving caused MediaTomb running with PARROT a 12.76% speedup
compared to its nondeterministic execution. The PARROT evaluation [29] also observed a
49% speedup on the mencoder program.

The time bubbling technique saves most of needs on invoking consensus for the logical
times of clients’ socket operations, confirmed by the low frequency of inserted time bub-
bles in Table 1. Apache, MediaTomb, and Mongoose uses ApacheBench as its benchmark,
and each request contained a connect(), send(), and close() call. ClamAV uses its
own clamdscan benchmark, and each request contained 18 socket calls. MySQL’s bench-
mark contained 6∼7 socket calls for each query. The ratio of inserted bubbles is merely
6.12%∼33.35%. MediaTomb had the highest ratio of time bubbles because it took the
longest time (9,703ms) to process each request.

Note that the number of inserted time bubbles across replicas is the same within the
same run of CRANE. Within different runs of CRANE, this number can be different because
Wtimeout is a physical duration.

7.4 Optimization of PARROT’s Performance Hints

In general, a DMT schedule may be slow in some cases [29, 48], because this schedule
may serialize some major computations that can run in parallel in the Pthreads runtime. For
instance, when we ran CRANE’s DMT scheduler PARROT with Apache and Mongoose, we
observed that PARROT’s default schedules serialized the PHP interpreters.

100

500

700

Apache Mongoose

C
ra

ne
’s

 n
or

m
al

iz
ed

 p
er

fo
rm

an
ce

 (%
) Crane w/o hint

Crane w/ hint

Figure 15: Effects of PARROT’s soft barrier performance hints.

0

50

75

100

125

150

175

200

Apache ClamAV MediaTomb Mongoose MySQL

C
ra

ne
’s

 n
or

m
al

iz
ed

 p
er

fo
rm

an
ce

 (%
) 1

10
100 (default)

1000
10000

Figure 16: CRANE’s performance with different settings on Wtimeout (us). Normalized with the
default parameter.

Fortunately, PARROT creates a set of easy to use, intuitive soft barrier hints [29] which
tell the DMT runtime to switch to faster schedules. These hints are just “soft” barriers;
they timeout deterministically and can tolerate different number of concurrent incoming
requests. They just make a (deterministic) effort to line up computations that tend to run
in parallel. In addition, these hints can be safely ignored by the PARROT runtime without
affecting a program’s logic.

In our evaluation, we added two lines of hints for each of the Apache and Mongoose

servers’ source code, and the pattern was general: one line was added at the server’s main()
function to initialize the soft barrier, and the other before a PHP interpretation’s start to
tell the DMT scheduler “these are the major computations to line up”. The performance
optimization effects of these hints are shown in Figure 15. These hints reduces Apache’s
overhead from a 424% to 22.99%, and Mongoose’s from a 643% to 5.09%.

7.5 Sensitivity of Time Bubble Parameters

The two parameters Wtimeout and Nclock for time bubbling have trade-off on performance.
This trade-off also depends on each server program as well as its performance workload. A
smaller Wtimeout means the DMT scheduler can wait less time and then proceed with granted

Program # client socket calls # time bubbles %
Apache 3,000 450 13.04
ClamAV 18,000 1,173 6.12
MediaTomb 3,000 1,501 33.35
Mongoose 3,000 448 12.99
MySQL 6,750 573 7.82

Table 1: Ratio of time bubbles in all PAXOS consensus requests.

0

50

75

100

125

200

Apache ClamAV MediaTomb Mongoose MySQL

C
ra

ne
’s

 n
or

m
al

iz
ed

 p
er

fo
rm

an
ce

 (%
) 100

1000 (default)
10000

Figure 17: CRANE’s performance with different settings on Nclock. Normalized with the default
parameter.

logical clocks with inserted time bubbles, but it also means that more time bubbles and
thus more PAXOS consensus are involved. A smaller value also means time bubbling runs
similar to a per-request consensus approach. Figure 16 shows CRANE’s performance by
only adjusting this parameter. CRANE’s default setting got the best result for both Apache

and ClamAV, and it got the second best result for the other three programs.
The Nclock parameter also faces trade-off on performance. A smaller value means that

servers can exhaust clocks in a time bubble sooner, but if a server does lots of Pthreads
synchronizations to process a request, more time bubbles and thus more PAXOS consensus
are involved. Figure 17 shows CRANE’s performance by only adjusting this parameter.
CRANE’s default setting got the best result for ClamAV, MediaTomb, and Mongoose, and
the second best result for the other two programs.

7.6 Checkpoint and Recovery

To handle replica failures, CRANE periodically invokes a checkpoint operation on one
backup (§5.2). Each CRANE checkpoint operation contains four time consuming parts:
(1) using CRIU to dump the state of a server process (and its child processes, if any); (2)
stopping and restarting a LXC container; (3) doing an incremental checkpoint on a server’s
current working directory and installation directory between the LXC stop and start; and
(4) restoring a process’s state after the LXC restart.

Table 2 shows time costs for each process and file system checkpoint operation, and all
are median values with 20 runs. In sum, a process checkpoint or restore took at most 415ms,
and a file system checkpoint or restore took less than 7s except MySQL. MySQL took about
one minute to checkpoint its file system because SysBench generated a large database
in MySQL’s installation directory. For each program, a file system restore operation took
much less time than its checkpoint operation because a restore operation patches only files
modified by the server program. A common LXC stop and restart operation took 2∼5s
depending on the daemon processes’ bootstrap progress within the container. Although

Program C p (ms) R p (ms) C fs (ms) R fs (ms)
Apache 33 48 3,069 237
ClamAV 415 353 6,963 6,128
MediaTomb 17 27 2,852 213
Mongoose 15 31 1,294 169
MySQL 88 81 53,473 712

Table 2: Average time cost for CRANE’s checkpoint and restoring component. “C p” means
“Checkpoint process”, “R p” means “Restore process”, “C fs” means “Checkpoint file system”,
and “R fs” means “Restore file system”.

each of these four steps in a CRANE checkpoint operation costs time, such a checkpoint is
done on only one backup replica, its performance impact was negligible in our evaluation
(the other replicas formed a quorum).

To evaluate the speed of CRANE’s PAXOS protocol on replica failure and recovery, we
manually restarted the primary replica running a Mongoose server. The other two backups
in the system then invoked a leader election with three steps (§5.1), which took 1.97ms.
After the old primary’s machine restarted, CRANE restarted the proxy and the consensus
component, extracted the latest Mongoose checkpoint on the local machine and restored
the Mongoose process and its file system. On the full restore of this CRANE instance, it
received the new primary’s heart beat message in 0.36s and downgraded itself to a backup.
Overall, both the PAXOS leader election and the restarted old primary’s self-downgrading
took sub-seconds.

8. Related Work
State machine replication (SMR). SMR has been studied by the literature for decades, and
it is recognized by both industry and academia as a powerful fault-tolerance technique in
clouds and distributed systems [43, 63]. As a common practice, SMR uses PAXOS [42,
44, 65] and its popular engineering approaches [23, 52] as the consensus protocol to
ensure that all replicas see the same input request sequence. Since consensus protocols
are the core of SMR, a variety of study improve different aspects of consensus protocols,
including performance [45, 55] and understandability [57]. Although CRANE’s current
implementation takes a popular engineering approach [52] for practicality, it can also
leverage other consensus protocols and approaches.

At a system implementation level, SMR typically takes the “agree-execute” approach:
replicas first “agree” on a total order of input request as a input sequence, and then
“execute” the requests that have reached this consensus. Such typical systems include
Chubby [21], ZooKeeper [6], and the Microsoft PAXOS [44] implementation, and they
have been widely used to maintain critical distributed systems configurations (e.g., group
leaders, distributed locks, and storage meta data). SMR has also been applied broadly
to build various highly available services, including storage [19, 27, 61] and wide-area
network [51]. Hypervisor-based Fault Tolerance [20] leverages a hypervisor to build a
primary-back system for single-core machines. Unlike CRANE, these systems are not
designed to transparently replicate general multithreaded server programs. Nevertheless,
CRANE takes the typical “agree-execute” approach.

In order to support multi-threading in SMR, Eve [37] introduces a new “execute-verify”
approach: it first executes a batch of requests speculatively, and then verifies whether
these requests have conflicts that cause execution state divergence. If so, Eve rolls back
the program to a state before executing these requests and re-execute these requests
sequentially. Both Eve’s execution divergence verification and rollbacks require developers
to manually annotate all shared states, which is time consuming and error-prone.

Rex [33] addresses the thread interleaving divergence problem with a “execute-agree-
follow” approach: it first records thread interleavings on the primary by executing requests,
and then replays these interleavings on the other backups. If the executed interleavings in
the primary may not be agreed on the other replicas, then Rex rollbacks the primary’s states.
These rollbacks/checkpoints also require developers’ manual efforts for every program.
Furthermore, Rex requires frequently shipping thread interleavings across replicas, which
may be slow. Unlike CRANE’s transparent checkpoint-restore mechanism, Rex requires
program developers to implement the checkpoint-restore logic.

To improve performance, some SMR systems [6, 22, 25, 37, 38] perform read-only
optimization on request interface and allow these requests to be processed rapidly without
consensus. CRANE currently does not explore this direction mainly for two reasons. First,
CRANE’s performance overhead is already moderate in our evaluation. Second, some read
requests may still modify programs’ internal execution states (e.g., Apache’s internal HTTP
cache) and affect outputs. Thus, ensuring whether a request is indeed read-only for a general
server program may require understanding or crafting the program significantly, which may
trade off transparency. However, exploring the trade-off between CRANE’s transparency
and performance is an interesting direction.
DMT and StableMT systems. In order to make multi-threading easier to understand,
test, analyze, and replicate, researchers have built two types of reliable multi-threading
systems: (1) stable multi-threading systems (or StableMT) [12, 16, 48] that aim to reduce
the number of possible thread interleavings for program all inputs, and (2) deterministic
multi-threading systems (or DMT) [13–15, 18, 31, 34, 56] that aim to reduce the number
of possible thread interleavings on each program input. Typically, these systems use
deterministic logical clocks instead of nondeterministic physical clocks to make sure inter-
thread communications (e.g., pthread mutex lock() and accesses to global variables)
can only happen at some specific logical clocks. Therefore, given the same or similar
inputs, these systems can enforce the same thread interleavings and eventually the same
executions. These systems have shown to greatly improve software reliability, including
coverage of testing inputs [15] and speed of recording executions[14] for debugging.

Typical DMT systems, including Kendo [56], COREDET [13], and COREDET-related
systems [14, 34], improve performance by balancing each thread’s load with low-level
instruction counts, so they are unstable to input perturbations. DDOS [34] demonstrates
that a distributed system can be made deterministic. However, our CRANE approach is
more flexible, because we can choose to focus on replicating servers’ execution states only
and discard clients’ states, then CRANE has fewer scheduling constraints and can be more
efficient.
Concurrency. CRANE are mutually beneficial with much prior work on concurrency error
detection [32, 49, 50, 62, 69, 71], diagnosis [58, 59, 64], and correction [35, 36, 67, 68]. On
one hand, these techniques can be deployed in CRANE’s backups and help CRANE detect
data races. On the other hand, CRANE’s asynchronous replication architecture can mitigate
the performance overhead of these powerful analyses [30].

9. Conclusion

We have presented CRANE, a SMR system that transparently replicates general server
programs without requiring server developers’ intervention. It provides a new state machine
interface compatible to socket API, and it leverages deterministic multithreading to enforce
the same schedules for a multithreaded server program across replicas. CRANE creates a
time bubbling technique to efficiently enforce consistent logical times on admitting network
requests across replicas.

Evaluation on five widely used server programs shows that CRANE is easy to use, has
moderate overhead, and provides practical recovery support. CRANE has the potential to
expand the adoption of SMR and to provide transparent fault-tolerance support for general
server programs. CRANE’s source code is at github.com/columbia/crane.

github.com/columbia/crane

Acknowledgments
We thank Marcos K. Aguilera (our shepherd), Yinzhi Cao, Adrian Tang, David Williams-
King, and anonymous reviewers for their many helpful comments. This work was supported
in part by AFRL FA8650-11-C-7190 and FA8750-10-2-0253; ONR N00014-12-1-0166;
NSF CCF-1162021, CNS-1054906; an NSF CAREER award; an AFOSR YIP award; and
a Sloan Research Fellowship.

References
[1] Boost C++ Libraries. http://www.boost.org/.

[2] LXC. https://linuxcontainers.org/.

[3] MySQL. http://www.mysql.com/, .

[4] MySQL Replication. https://dev.mysql.com/doc/refman/5.0/en/
replication.html, .

[5] SQLite. https://www.sqlite.org/.

[6] ZooKeeper. https://zookeeper.apache.org/.

[7] SysBench: a system performance benchmark. http://sysbench.sourceforge.net,
2004.

[8] MediaTomb - Free UPnP MediaServer. http://mediatomb.cc/, 2014.

[9] Apache. Apache web server. http://www.apache.org, 2012.

[10] A. Askarov, D. Zhang, and A. C. Myers. Predictive black-box mitigation of timing channels.
In Proceedings of the 17th ACM conference on Computer and communications security (CCS
’10), Oct. 2010.

[11] A. Aviram, S. Hu, B. Ford, and R. Gummadi. Determinating timing channels in compute clouds.
In Proceedings of the 2010 ACM Workshop on Cloud Computing Security Workshop (CCSW
’10), Oct. 2010.

[12] A. Aviram, S.-C. Weng, S. Hu, and B. Ford. Efficient system-enforced deterministic parallelism.
In Proceedings of the Ninth Symposium on Operating Systems Design and Implementation
(OSDI ’10), Oct. 2010.

[13] T. Bergan, O. Anderson, J. Devietti, L. Ceze, and D. Grossman. CoreDet: a compiler and runtime
system for deterministic multithreaded execution. In Fifteenth International Conference on
Architecture Support for Programming Languages and Operating Systems (ASPLOS ’10), pages
53–64, Mar. 2010.

[14] T. Bergan, N. Hunt, L. Ceze, and S. D. Gribble. Deterministic process groups in dOS. In
Proceedings of the Ninth Symposium on Operating Systems Design and Implementation (OSDI
’10), Oct. 2010.

[15] T. Bergan, L. Ceze, and D. Grossman. Input-covering schedules for multithreaded programs. In
Proceedings of the 2013 ACM SIGPLAN international conference on Object oriented program-
ming systems languages & applications, pages 677–692. ACM, 2013.

[16] E. Berger, T. Yang, T. Liu, D. Krishnan, and A. Novark. Grace: safe and efficient concurrent
programming. In Conference on Object-Oriented Programming Systems, Languages, and
Applications (OOPSLA ’09), pages 81–96, Oct. 2009.

[17] Berkeley DB. http://www.sleepycat.com.

[18] R. L. Bocchino, Jr., V. S. Adve, D. Dig, S. V. Adve, S. Heumann, R. Komuravelli, J. Overbey,
P. Simmons, H. Sung, and M. Vakilian. A type and effect system for deterministic parallel
java. In Conference on Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA ’09), pages 97–116, Oct. 2009.

http://www.boost.org/
https://linuxcontainers.org/
http://www.mysql.com/
https://dev.mysql.com/doc/refman/5.0/en/replication.html
https://dev.mysql.com/doc/refman/5.0/en/replication.html
https://www.sqlite.org/
https://zookeeper.apache.org/
http://sysbench.sourceforge.net
http://mediatomb.cc/
http://www.apache.org
http://www.sleepycat.com

[19] W. J. Bolosky, D. Bradshaw, R. B. Haagens, N. P. Kusters, and P. Li. Paxos replicated state
machines as the basis of a high-performance data store. In Proceedings of the 8th USENIX
Conference on Networked Systems Design and Implementation, NSDI’11, Berkeley, CA, USA,
2011. USENIX Association.

[20] T. C. Bressoud and F. B. Schneider. Hypervisor-based fault tolerance. In Proceedings of the
15th ACM Symposium on Operating Systems Principles (SOSP ’95), Dec. 1995.

[21] M. Burrows. The chubby lock service for loosely-coupled distributed systems. In Proceedings
of the Seventh Symposium on Operating Systems Design and Implementation (OSDI ’06), pages
335–350, 2006.

[22] M. Castro and B. Liskov. Practical byzantine fault tolerance. In Proceedings of the Third
Symposium on Operating Systems Design and Implementation (OSDI ’99), Oct. 1999.

[23] T. D. Chandra, R. Griesemer, and J. Redstone. Paxos made live: An engineering perspective.
In Proceedings of the Twenty-sixth Annual ACM Symposium on Principles of Distributed
Computing (PODC ’07), Aug. 2007.

[24] Clam AntiVirus. http://www.clamav.net/.

[25] A. Clement, M. Kapritsos, S. Lee, Y. Wang, L. Alvisi, M. Dahlin, and T. Riche. Upright cluster
services. In Proceedings of the 22nd ACM Symposium on Operating Systems Principles (SOSP
’09), Oct. 2009.

[26] concoord. Openreplica. http://openreplica.org/download/, 2015.

[27] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman, S. Ghemawat, A. Gubarev,
C. Heiser, P. Hochschild, W. Hsieh, S. Kanthak, E. Kogan, H. Li, A. Lloyd, S. Melnik,
D. Mwaura, D. Nagle, S. Quinlan, R. Rao, L. Rolig, Y. Saito, M. Szymaniak, C. Taylor, R. Wang,
and D. Woodford. Spanner: Google’s globally-distributed database. Oct. 2012.

[28] criu. Criu. http://criu.org, 2015.

[29] H. Cui, J. Simsa, Y.-H. Lin, H. Li, B. Blum, X. Xu, J. Yang, G. A. Gibson, and R. E. Bryant.
Parrot: a practical runtime for deterministic, stable, and reliable threads. In Proceedings of the
24th ACM Symposium on Operating Systems Principles (SOSP ’13), Nov. 2013.

[30] H. Cui, R. Gu, C. Liu, and J. Yang. Repframe: An efficient and transparent framework for
dynamic program analysis. In Proceedings of 6th Asia-Pacific Workshop on Systems (APSys
’15), July 2015.

[31] J. Devietti, B. Lucia, L. Ceze, and M. Oskin. DMP: deterministic shared memory multiprocess-
ing. In Fourteenth International Conference on Architecture Support for Programming Lan-
guages and Operating Systems (ASPLOS ’09), pages 85–96, Mar. 2009.

[32] D. Engler and K. Ashcraft. RacerX: effective, static detection of race conditions and deadlocks.
In Proceedings of the 19th ACM Symposium on Operating Systems Principles (SOSP ’03), pages
237–252, Oct. 2003.

[33] Z. Guo, C. Hong, M. Yang, D. Zhou, L. Zhou, and L. Zhuang. Rex: Replication at the speed
of multi-core. In Proceedings of the 2014 ACM European Conference on Computer Systems
(EUROSYS ’14), page 11. ACM, 2014.

[34] N. Hunt, T. Bergan, , L. Ceze, and S. Gribble. DDOS: Taming nondeterminism in distributed
systems. In Eighteenth International Conference on Architecture Support for Programming
Languages and Operating Systems (ASPLOS ’13), pages 499–508, 2013.

[35] G. Jin, W. Zhang, D. Deng, B. Liblit, and S. Lu. Automated concurrency-bug fixing. In
Proceedings of the Tenth Symposium on Operating Systems Design and Implementation (OSDI
’12), pages 221–236, 2012.

[36] H. Jula, D. Tralamazza, Z. Cristian, and C. George. Deadlock immunity: Enabling systems
to defend against deadlocks. In Proceedings of the Eighth Symposium on Operating Systems
Design and Implementation (OSDI ’08), pages 295–308, Dec. 2008.

http://www.clamav.net/
http://openreplica.org/download/
http://criu.org

[37] M. Kapritsos, Y. Wang, V. Quema, A. Clement, L. Alvisi, M. Dahlin, et al. All about eve:
Execute-verify replication for multi-core servers. In Proceedings of the Tenth Symposium on
Operating Systems Design and Implementation (OSDI ’12), volume 12, pages 237–250, 2012.

[38] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong. Zyzzyva: Speculative byzantine fault
tolerance. In Proceedings of the 21st ACM Symposium on Operating Systems Principles (SOSP
’07), Oct. 2007.

[39] O. Laadan, N. Viennot, and J. Nieh. Transparent, lightweight application execution replay
on commodity multiprocessor operating systems. In Proceedings of the ACM SIGMETRICS
Conference on Measurement and Modeling of Computer Systems (SIGMETRICS ’10), pages
155–166, June 2010.

[40] O. Laadan, N. Viennot, and J. Nieh. Transparent, lightweight application execution replay on
commodity multiprocessor operating systems. In ACM SIGMETRICS Performance Evaluation
Review, volume 38, pages 155–166, 2010.

[41] O. Laadan, N. Viennot, C. che Tsai, C. Blinn, J. Yang, and J. Nieh. Pervasive detection of
process races in deployed systems. In Proceedings of the 23rd ACM Symposium on Operating
Systems Principles (SOSP ’11), Oct. 2011.

[42] L. Lamport. Paxos made simple. http://research.microsoft.com/en-us/um/
people/lamport/pubs/paxos-simple.pdf.

[43] L. Lamport. Time, clocks, and the ordering of events in a distributed system. Comm. ACM, 21
(7):558–565, 1978.

[44] L. Lamport. The part-time parliament. ACM Trans. Comput. Syst., 16(2):133–169, 1998.

[45] L. Lamport. Fast paxos. Fast Paxos, Aug. 2006.

[46] D. Lee, B. Wester, K. Veeraraghavan, S. Narayanasamy, P. M. Chen, and J. Flinn. Respec:
efficient online multiprocessor replayvia speculation and external determinism. In Fifteenth
International Conference on Architecture Support for Programming Languages and Operating
Systems (ASPLOS ’10), pages 77–90, Mar. 2010.

[47] libevent. libevent. libevent.org/, 2015.

[48] T. Liu, C. Curtsinger, and E. D. Berger. DTHREADS: efficient deterministic multithreading. In
Proceedings of the 23rd ACM Symposium on Operating Systems Principles (SOSP ’11), pages
327–336, Oct. 2011.

[49] S. Lu, J. Tucek, F. Qin, and Y. Zhou. AVIO: detecting atomicity violations via access interleaving
invariants. In Twelfth International Conference on Architecture Support for Programming
Languages and Operating Systems (ASPLOS ’06), pages 37–48, Oct. 2006.

[50] S. Lu, S. Park, C. Hu, X. Ma, W. Jiang, Z. Li, R. A. Popa, and Y. Zhou. Muvi: automatically
inferring multi-variable access correlations and detecting related semantic and concurrency
bugs. In Proceedings of the 21st ACM Symposium on Operating Systems Principles (SOSP
’07), pages 103–116, 2007.

[51] Y. Mao, F. P. Junqueira, and K. Marzullo. Mencius: building efficient replicated state machines
for wans. In Proceedings of the 8th USENIX conference on Operating systems design and
implementation, volume 8, pages 369–384, 2008.

[52] D. Mazieres. Paxos made practical. Technical report, Technical report, 2007. http://www. scs.
stanford. edu/dm/home/papers, 2007.

[53] mencoder. Mencoder. https://www.mplayerhq.hu/, 2015.

[54] Mongoose. https://code.google.com/p/mongoose/.

[55] I. Moraru, D. G. Andersen, and M. Kaminsky. There is more consensus in egalitarian parlia-
ments. In Proceedings of the 13th ACM Symposium on Operating Systems Principles (SOSP
’91), Nov. 2013.

http://research.microsoft.com/en-us/um/people/lamport/pubs/paxos-simple.pdf
http://research.microsoft.com/en-us/um/people/lamport/pubs/paxos-simple.pdf
libevent.org/
https://www.mplayerhq.hu/
https://code.google.com/p/mongoose/

[56] M. Olszewski, J. Ansel, and S. Amarasinghe. Kendo: efficient deterministic multithreading in
software. In Fourteenth International Conference on Architecture Support for Programming
Languages and Operating Systems (ASPLOS ’09), pages 97–108, Mar. 2009.

[57] D. Ongaro and J. Ousterhout. In search of an understandable consensus algorithm. In
Proceedings of the USENIX Annual Technical Conference (USENIX ’14), June 2014.

[58] C.-S. Park and K. Sen. Randomized active atomicity violation detection in concurrent programs.
In Proceedings of the 16th ACM SIGSOFT International Symposium on Foundations of Software
Engineering (SIGSOFT ’08/FSE-16), pages 135–145, Nov. 2008.

[59] S. Park, S. Lu, and Y. Zhou. CTrigger: exposing atomicity violation bugs from their hiding
places. In Fourteenth International Conference on Architecture Support for Programming
Languages and Operating Systems (ASPLOS ’09), pages 25–36, Mar. 2009.

[60] M. Primi. LibPaxos. http://libpaxos.sourceforge.net/.

[61] J. Rao, E. J. Shekita, and S. Tata. Using paxos to build a scalable, consistent, and highly available
datastore. Proc. VLDB Endow., Jan. 2011.

[62] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. E. Anderson. Eraser: A dynamic data
race detector for multithreaded programming. ACM Transactions on Computer Systems, pages
391–411, Nov. 1997.

[63] F. B. Schneider. Implementing fault-tolerant services using the state machine approach: A
tutorial. ACM Computing Surveys (CSUR), 22(4):299–319, 1990.

[64] K. Sen. Race directed random testing of concurrent programs. In Proceedings of the ACM
SIGPLAN 2008 Conference on Programming Language Design and Implementation (PLDI ’08),
pages 11–21, June 2008.

[65] R. Van Renesse and D. Altinbuken. Paxos made moderately complex. ACM Computing Surveys
(CSUR), 47(3):42:1–42:36, 2015.

[66] VTune. http://software.intel.com/en-us/intel-vtune-amplifier-xe/.

[67] Y. Wang, T. Kelly, M. Kudlur, S. Lafortune, and S. Mahlke. Gadara: Dynamic deadlock
avoidance for multithreaded programs. In Proceedings of the Eighth Symposium on Operating
Systems Design and Implementation (OSDI ’08), pages 281–294, Dec. 2008.

[68] J. Wu, H. Cui, and J. Yang. Bypassing races in live applications with execution filters. In
Proceedings of the Ninth Symposium on Operating Systems Design and Implementation (OSDI
’10), Oct. 2010.

[69] Y. Yu, T. Rodeheffer, and W. Chen. RaceTrack: efficient detection of data race conditions via
adaptive tracking. In Proceedings of the 20th ACM Symposium on Operating Systems Principles
(SOSP ’05), pages 221–234, Oct. 2005.

[70] D. Zhang, A. Askarov, and A. C. Myers. Predictive mitigation of timing channels in interactive
systems. In Proceedings of the 18th ACM conference on Computer and communications security
(CCS ’11), Oct. 2011.

[71] W. Zhang, C. Sun, and S. Lu. ConMem: detecting severe concurrency bugs through an
effect-oriented approach. In Fifteenth International Conference on Architecture Support for
Programming Languages and Operating Systems (ASPLOS ’10), pages 179–192, Mar. 2010.

http://libpaxos.sourceforge.net/
http://software.intel.com/en-us/intel-vtune-amplifier-xe/

	1 Introduction
	2 Crane Overview
	2.1 Architecture
	2.2 Example

	3 Crane's Synchronization Wrappers for a Server
	3.1 Background: the Parrot Scheduler
	3.2 Crane' Synchronization Wrappers for a Server

	4 The Time Bubbling Technique
	5 Implementation Details
	5.1 The Paxos Protocol
	5.2 Checkpoint and Restore

	6 Discussions
	6.1 Limitation
	6.2 Applications

	7 Evaluation
	7.1 Ease of Use
	7.2 Consistency of Network Outputs
	7.3 Performance Overhead in Normal Case
	7.4 Optimization of Parrot's Performance Hints
	7.5 Sensitivity of Time Bubble Parameters
	7.6 Checkpoint and Recovery

	8 Related Work
	9 Conclusion

