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Sparrow schedules tasks in clusters 

using a decentralized, randomized approach 

support constraints and fair sharing 

and provides response times 

within 12% of ideal 
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Job Latencies Rapidly Decreasing 
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Scheduling challenges: 

Millisecond Latency 

Quality Placement 

Fault Tolerant 

High Throughput 
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Sparrow 
Decentralized approach 

 Existing randomized approaches 
 Batch Sampling 
 Late Binding 
 Analytical performance evaluation 

Handling constraints 

Fairness and policy enforcement 

Within 12% of ideal on 100 machines 



Scheduling with Sparrow 
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Simulated Results 

100-task jobs in 10,000-node cluster, exp. task durations 

Omniscient: infinitely 
fast centralized 

scheduler 
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Per-task sampling 
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Simulated Results 

100-task jobs in 10,000-node cluster, exp. task durations 
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70% cluster load 
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Response Time Grows with Tasks/Job! 



Per-Task Sampling 
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Per-task Sampling 
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Per-task versus Batch Sampling 

70% cluster load 
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Simulated Results 

100-task jobs in 10,000-node cluster, exp. task durations 
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Queue length poor predictor of wait time 

Worker 

Worker 

80 ms 
155 ms 

530 ms 

Poor performance on heterogeneous workloads 



Late Binding 
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Simulated Results 

100-task jobs in 10,000-node cluster, exp. task durations 
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What about constraints? 



Job Constraints 
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Restrict probed machines to those that satisfy the constraint 



Per-Task Constraints 
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Technique Recap 
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How does Sparrow perform 
on a real cluster? 



Spark on Sparrow 
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How does Sparrow compare to Spark’s native 
scheduler? 
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100 16-core EC2 nodes, 10 tasks/job, 10 schedulers, 80% load 



TPC-H Queries: Background 

TPC-H: Common benchmark for analytics workloads 

 

Sparrow 

Spark: Distributed in-memory analytics framework 

Shark: SQL execution engine 



TPC-H Queries 

100 16-core EC2 nodes, 10 schedulers, 80% load 
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TPC-H Queries 

100 16-core EC2 nodes, 10 schedulers, 80% load 
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Within 12% of ideal 
Median queuing delay of 9ms 



Fault Tolerance 

Scheduler 1 

Scheduler 2 

Spark Client 1 ✗ 
Spark Client 2 

Timeout: 100ms 
Failover: 5ms 

Re-launch queries: 15ms 
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When does Sparrow not work as well? 

High cluster load 
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Related Work 

Centralized task schedulers: e.g., Quincy 
 
Two level schedulers: e.g., YARN, Mesos 
 
Coarse-grained cluster schedulers: e.g., Omega 
 
Load balancing: single task 
 



Batch sampling 
+ 

Late binding 
+ 

Constraint handling 

www.github.com/radlab/sparrow 

Sparrows provides near-ideal job response 
times without global visibility 
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Backup Slides 



Can we do better without losing simplicity? 

Policy Enforcement 

Slave 
High Priority 

Low Priority Slave 
User A (75%) 

User B (25%) 

Fair Shares 
Serve queues using weighted fair 

queuing 

Priorities 
Serve queues based on strict 

priorities 


