
Sparrow
Distributed Low-Latency Scheduling

Kay Ousterhout, Patrick Wendell, Matei Zaharia, Ion Stoica

Sparrow schedules tasks in clusters

using a decentralized, randomized approach

support constraints and fair sharing

and provides response times

within 12% of ideal

Scheduling Setting

…

…

Map Reduce/Spark/Dryad

Job

…

Task Task Task
Map Reduce/Spark/Dryad

Job
Task Task

Job Latencies Rapidly Decreasing

10 min. 10 sec. 100 ms 1 ms

2004: MapReduce
batch job

2009:
Hive query

2010: Dremel
Query

2012: Impala
query 2010:

In-memory
Spark query

2013:
Spark

streaming

Scheduling challenges:

Millisecond Latency

Quality Placement

Fault Tolerant

High Throughput

10 min. 10 sec. 100 ms 1 ms

2004: MapReduce
batch job

2009:
Hive query

2010: Dremel
Query

2012: Impala
query 2010:

In-memory
Spark query

2013:
Spark

streaming

1000 16-core machines

26
decisions/

second

Scheduler
throughput

1.6K
decisions/

second

160K
decisions/

second

16M
decisions/

second

Millisecond Latency

Quality Placement

Fault Tolerant

High Throughput

Today: Completely
Centralized

Less centralization

Sparrow:
Completely Decentralized

✗

✗

✓

✗ ✓

✓

✓

?

Millisecond Latency

Quality Placement

Fault Tolerant

High Throughput

Today: Completely
Centralized

Less centralization

Sparrow:
Completely Decentralized

✗

✗

✓

✗ ✓

✓

✓

✓

Sparrow
Decentralized approach

 Existing randomized approaches
 Batch Sampling
 Late Binding
 Analytical performance evaluation

Handling constraints

Fairness and policy enforcement

Within 12% of ideal on 100 machines

Scheduling with Sparrow

Worker

Worker

Worker

Worker

Worker
Scheduler

Scheduler

Scheduler

Scheduler Job

Worker

Worker

Worker

Worker

Worker

Worker
Scheduler

Scheduler

Scheduler

Scheduler Job

Worker

Random

Simulated Results

100-task jobs in 10,000-node cluster, exp. task durations

Omniscient: infinitely
fast centralized

scheduler

!"
!#"
!$""
!$#"
!%""
!%#"
!&""
!&#"

!" !"'% !"'(!"') !"'* !$

+,
-.
/0
-,
!1
23
,!
43
-5

6/78

+708/3
9302-:2,0;

Per-task sampling

Worker

Worker

Worker

Worker

Worker
Scheduler

Scheduler

Scheduler

Scheduler Job

Worker

Power of Two Choices

Per-task sampling

Worker

Worker

Worker

Worker

Worker
Scheduler

Scheduler

Scheduler

Scheduler Job

Worker

Power of Two Choices

Per-task sampling

Worker

Worker

Worker

Worker

Worker
Scheduler

Scheduler

Scheduler

Scheduler Job

Worker

Power of Two Choices

Per-task sampling

Worker

Worker

Worker

Worker

Worker
Scheduler

Scheduler

Scheduler

Scheduler Job

Worker

Power of Two Choices

Simulated Results

100-task jobs in 10,000-node cluster, exp. task durations

!"
!#"
!$""
!$#"
!%""
!%#"
!&""
!&#"

!" !"'% !"'(!"') !"'* !$

+,
-.
/0
-,
!1
23
,!
43
-5

6/78

+708/3
9,:;17-<
=302->2,0?

70% cluster load

!"

!#"

!$""

!$#"

!%""

$ $" $"" $"""

&'
()
*+
('
!,
-.
'!
/.
(0

,1(2(34*5

6'7!,1(2

Response Time Grows with Tasks/Job!

Per-Task Sampling

Worker

Worker

Worker

Worker

Worker
Scheduler

Scheduler

Scheduler

Scheduler Job

Worker

✓

✓

Task 1

Task 2

Per-task

Per-task Sampling

Worker

Worker

Worker

Worker

Worker
Scheduler

Scheduler

Scheduler

Scheduler Job

Worker

Place m tasks on the least loaded of d�m slaves

Per-task

✓

✓

4 probes
(d = 2)

Batch

Per-task Sampling

Worker

Worker

Worker

Worker

Worker
Scheduler

Scheduler

Scheduler

Scheduler Job

Worker

Place m tasks on the least loaded of d�m slaves

Per-task

✓

✓

4 probes
(d = 2)

Batch

Per-task versus Batch Sampling

70% cluster load

!"

!#"

!$""

!$#"

!%""

$ $" $"" $"""

&'
()
*+
('
!,
-.
'!
/.
(0

,1(2(34*5

6'7!,1(2 819:;

Simulated Results

100-task jobs in 10,000-node cluster, exp. task durations

!"
!#"
!$""
!$#"
!%""
!%#"
!&""
!&#"

!" !"'% !"'(!"') !"'* !$

+,
-.
/0
-,
!1
23
,!
43
-5

6/78

+708/3
9,:;17-<
=7>?@
A302-?2,0>

Queue length poor predictor of wait time

Worker

Worker

80 ms
155 ms

530 ms

Poor performance on heterogeneous workloads

Late Binding

Worker

Worker

Worker

Worker

Worker
Scheduler

Scheduler

Scheduler

Scheduler Job

Worker

Place m tasks on the least loaded of d�m slaves

4 probes
(d = 2)

Late Binding

Scheduler

Scheduler

Scheduler

Scheduler Job

Place m tasks on the least loaded of d�m slaves

4 probes
(d = 2)

Worker

Worker

Worker

Worker

Worker

Worker

Late Binding

Scheduler

Scheduler

Scheduler

Scheduler Job

Place m tasks on the least loaded of d�m slaves

4 probes
(d = 2)

Worker

Worker

Worker

Worker

Worker

Worker

Late Binding

Scheduler

Scheduler

Scheduler

Scheduler Job

Place m tasks on the least loaded of d�m slaves

Worker

Worker

Worker

Worker

Worker

Worker

Late Binding

Scheduler

Scheduler

Scheduler

Scheduler Job

Place m tasks on the least loaded of d�m slaves

Worker
requests

task
Worker

Worker

Worker

Worker

Worker

Worker

Worker

Late Binding

Scheduler

Scheduler

Scheduler

Scheduler Job

Place m tasks on the least loaded of d�m slaves

Worker
requests

task
Worker

Worker

Worker

Worker

Worker

Simulated Results

100-task jobs in 10,000-node cluster, exp. task durations

!"
!#"
!$""
!$#"
!%""
!%#"
!&""
!&#"

!" !"'% !"'(!"') !"'* !$

+,
-.
/0
-,
!1
23
,!
43
-5

6/78

+708/3
9,:;17-<
=7>?@
=7>?@A67>,!=20820B
C302-?2,0>

What about constraints?

Job Constraints

Scheduler

Scheduler

Scheduler

Scheduler Job

Worker

Worker

Worker

Worker

Worker

Worker

Restrict probed machines to those that satisfy the constraint

Per-Task Constraints

Scheduler

Scheduler

Scheduler

Scheduler Job

Worker

Worker

Worker

Worker

Worker

Worker

Probe separately for each task

Technique Recap

Scheduler

Scheduler

Scheduler

Scheduler
Batch sampling

+
Late binding

+
Constraint handling

Worker

Worker

Worker

Worker

Worker

Worker

How does Sparrow perform
on a real cluster?

Spark on Sparrow

Worker

Worker

Worker

Worker

Worker

Worker

Query: DAG of Stages

Sparrow
Scheduler

Job

Spark on Sparrow

Worker

Worker

Worker

Worker

Worker

Worker

Query: DAG of Stages

Sparrow
Scheduler

Job

Spark on Sparrow

Worker

Worker

Worker

Worker

Worker

Worker

Query: DAG of Stages

Sparrow
Scheduler

Job

How does Sparrow compare to Spark’s native
scheduler?

!"
!#"""
!$"""
!%"""
!&"""
!'"""
!("""

!"!#"""!$"""!%"""!&"""!'"""!("""

)*
+,
-.
+*
!/
01
*!
21
+3

/4+5!678490-.!21+3

:,485!.490;*!+<=*>7?*8
:,488-@
A>*4?

100 16-core EC2 nodes, 10 tasks/job, 10 schedulers, 80% load

TPC-H Queries: Background

TPC-H: Common benchmark for analytics workloads

Sparrow

Spark: Distributed in-memory analytics framework

Shark: SQL execution engine

TPC-H Queries

100 16-core EC2 nodes, 10 schedulers, 80% load

!"
!#""
!$"""
!$#""
!%"""
!%#""
!&"""
!&#""
!'"""

(& (' () ($%

*+
,-
./
,+
!0
12
+!
32
,4

'%$5!32+674 #&8)!32+674 599$!32+674

*:/6.2
;+<=>:,?!,:2-@1/A
B:>CD!,:2-@1/A

B:>CD!E!@:>+!F1/61/A
G6+:@

95

75

25

50

Percentiles

5

TPC-H Queries

100 16-core EC2 nodes, 10 schedulers, 80% load

!"
!#""
!$"""
!$#""
!%"""
!%#""
!&"""
!&#""
!'"""

(& (' () ($%

*+
,-
./
,+
!0
12
+!
32
,4

'%$5!32+674 #&8)!32+674 599$!32+674

*:/6.2
;+<=>:,?!,:2-@1/A
B:>CD!,:2-@1/A

B:>CD!E!@:>+!F1/61/A
G6+:@!3"!6+@:H4

Within 12% of ideal
Median queuing delay of 9ms

Fault Tolerance

Scheduler 1

Scheduler 2

Spark Client 1 ✗
Spark Client 2

Timeout: 100ms
Failover: 5ms

Re-launch queries: 15ms

!"
!#"""
!$"""
!%"""
!&"""

!" !#" !$" !%" !&" !'" !("
)*+,!-./

!"
!#"""
!$"""
!%"""
!&"""

0
1,
23
!2,
.4
56
.,
!7*
+
,!
-+
./

89*:12,
;492<!=:*,67!#

;492<!=:*,67!$

When does Sparrow not work as well?

High cluster load

!"
!#"
!$"
!%"
!&"
!'""
!'#"
!'$"

!" !"(# !"($!"(% !"(& !'

)*
+,
-.
+*
!/
01
*!
21
+3

4-56

7,588-9
:1.0+;0*.<

Related Work

Centralized task schedulers: e.g., Quincy

Two level schedulers: e.g., YARN, Mesos

Coarse-grained cluster schedulers: e.g., Omega

Load balancing: single task

Batch sampling
+

Late binding
+

Constraint handling

www.github.com/radlab/sparrow

Sparrows provides near-ideal job response
times without global visibility

Scheduler

Scheduler

Scheduler

Scheduler

Worker

Worker

Worker

Worker

Worker

Worker

Backup Slides

Can we do better without losing simplicity?

Policy Enforcement

Slave
High Priority

Low Priority Slave
User A (75%)

User B (25%)

Fair Shares
Serve queues using weighted fair

queuing

Priorities
Serve queues based on strict

priorities

