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ABSTRACT
Resource-constrained devices, such as wireless sen-
sor nodes, smart phones, tablet computers, and lap-
tops most notably suffer from the limited amount
of energy they have available. Yet, emerging bat-
tery technologies addressing this issue were unable
to improve the situation significantly. This is well
documented by rates of growth in the various tech-
nology areas. While clock speed, data storage, and
data transfer rates have seen growth rates from fac-
tor 103 to 106 during the last three decades, battery
life could merely be improved by a factor of 101.

At the same time, research efforts led to energy-
aware system software exploiting the available en-
ergy resources in the most efficient way. Static and
dynamic optimizations for energy-aware execution
have been widely explored. Though, writing energy-
efficient programs in the first place has only re-
ceived limited attention. To address this, we present
SEEP, a framework which exploits symbolic execu-
tion and platform-specific energy profiles to provide
the basis for energy-aware programming [1]. SEEP
equips developers with the necessary knowledge to
take energy demand into account during the task of
writing programs.

1. MOTIVATION
Energy efficiency is one of the most important as-

pects of today’s system software running on mobile
and wireless systems. To exploit available energy
resources, distinct approaches have been proposed
over the last years. In general, they are grouped into
run-time driven approaches and static approaches.
Dynamic voltage and frequency scaling [2], sleep
states, and resource accounting [3] belong to the
former. Compiler optimizations, such as loop op-
timizations [4] and architecture-specific instruction
set extensions [5] belong to the latter.

At present, optimizing an application for energy
efficiency requires a developer to analyze the app-
lication’s runtime behavior. This time-consuming
task aims at preventing the program to wake the
CPU and devices from sleep states and is achieved
by adjusting timeouts, batching of periodic system
activities, and the avoidance of polling operations.

A different approach compared to dynamic and
static optimization methods targeting at energy-
aware execution of program code is the option of
energy-aware programming. It supports developers
at implementing energy-efficient applications in the
first place. Cooperative I/O, for example, enables
developers to specify deadlines for I/O operations
in order to permit energy-efficient data access [6].
In contrast to this, recent proposals for program-
ming languages featuring approximation techniques
to gain energy savings [7] are more generic.

In accordance with these recent works we see great
potential in energy-aware programming. However,
as developers are missing appropriate tooling sup-
port, writing energy-efficient programs is still a dif-
ficult task. With SEEP we present a framework to
address this issue. Our approach gives developers an
early insight into the base energy demand of their
code at hand. To respect today’s variety of devices,
SEEP targets to provide energy estimates for het-
erogeneous target platforms quantifying the com-
bined energy demand for CPU, memory access and
I/O operations, even for platforms unavailable to
the developer. These estimates facilitate developers
to resolve energy hotspots and to refactor program
code prior to deployment of their applications.

2. THE SEEP FRAMEWORK
SEEP is a three-tier framework exploiting sym-

bolic execution and platform-specific energy pro-
files to aid energy-aware programming by analyzing
source code at creation time. SEEP is composed
of three main components (see Figure 1) which are
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Figure 1: The SEEP architecture



consecutively executed: a path explorer, a path-
specific complexity explorer, and a profile merger.

Path Explorer. SEEP executes the code un-
der test symbolically using KLEE [8]. Applying
symbolic execution techniques yields two essential
results. First, we extract all possible code paths.
Second, for each of these paths we obtain the corre-
sponding path constraints (i.e., branch conditions).

Complexity Explorer. On basis of the results
returned by the path explorer, SEEP crafts program
code with predefined input data, so-called path en-
tities. Each path entity belongs to exactly one code
path and has a distinct set of predefined path con-
straints. Subsequently, SEEP performs a two-fold
tracing phase. At the beginning of the tracing phase
several distinct compilation runs for each path en-
tity are executed. The code is not only being com-
piled for a powerful test system but also for each tar-
get architecture using a cross compiler. Next, SEEP
generates a runtime execution trace for each path
entity by executing them on the test system. Dur-
ing this execution SEEP increments a block counter
for every basic block (branchless sequence of code)
each time it is executed and stores the final result.

Profile Merger. By means of platform-specific
energy profiles the framework finally calculates the
expected energy demand for each path entity. An
energy profile specifies how much energy is being
consumed for each instruction of the platform’s in-
struction set architecture. As result of the cross-
compilation the structures of the basic blocks are
known for all target architectures. Hence, each ba-
sic block’s energy consumption can be calculated
by adding up the specified energy value of each in-
struction of the basic block and multiplying these
intermediate results with the block counters previ-
ously returned by the complexity explorer.

The final energy estimates are either passed to
the developer or stored for future reference (i.e., off-
line usage). SEEP estimates the energy demand at
function level and provides the same interface as
the characterized function. For concrete input para-
meters it therefore estimates the energy demand for
a specific target platform. For path entities which
were not analyzed earlier, interpolation is used.

3. STATUS AND FUTURE WORK
For evaluating our prototype, we have executed

distinct path entities for different code paths of our
test application on an ARM platform (OMAP3530).
The application has three entirely different code
paths, each of them being a unique composition
of commonly used code fragments (e.g., loops, if-
then-else, and switch statements). Excerpts of the

Path Entity Energy (SEEP) Energy (Measured)

1 2.520 mJ 2.541 mJ

2 0.591 mJ 0.599 mJ

3 2.361 mJ 2.380 mJ

4 0.015 mJ 0.014 mJ

5 1.721 mJ 1.696 mJ

Table 1: Evaluation results

evaluation results are shown Table 1. The energy
estimates varied by 0.089 mJ at the maximum with
an average deviation of 0.017 mJ.

With the presented prototype of SEEP we prove
that it is feasible to exploit symbolic execution for
energy-aware programming. Our initial evaluation
results are promising as SEEP provides accurate
estimates for the base energy demand of a program.
However, we are in progress of extending the frame-
work regarding different aspects in order to make it
generally applicable. First, system-specific aspects
need to be integrated into our energy model. We
especially consider energy consumption caused by
I/O operations and network links to be crucial. Sec-
ond, non-deterministic factors such as memory ef-
fects (e.g., cache misses, page faults, and varying
memory access modes) have substantial impact on
the energy consumption and therefore need to be
considered. Along with continuous improvements
of the existing symbolic execution engines these en-
hancements of our framework allow us to create
real-world scenarios when executing program code
symbolically, resulting in reliable energy base cost
estimations even for complex systems.
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