Oolong: Programming Asynchronous Distributed
Applications with Triggers

Christopher Mitchell
cmitchell@cs.nyu.edu

1 Introduction

With the increased popularity of cloud platforms
such as EC2 and Azure, application programmers are
turning to distributed computation. Existing program-
ming frameworks provide useful abstractions for syn-
chronous computation involving multiple rounds, for
which most of a set of input data is examined in each
round. For example, MapReduce and Dryad target ap-
plications that stream an entire dataset for processing in
each round. Piccolo [10] and Pregel [6] rely on global
barriers to execute applications such as PageRank and
k-means round by round. Asynchronous computation
differs from synchronous computation in that the com-
putation does not proceed in lockstep across rounds. In-
stead, the result of past processing is immediately used
to determine the course of current execution. Many
problems are solved by efficient asynchronous compu-
tation, e.g. single-source shortest path, asynchronous
PageRank, web crawling etc. Unfortunately, such com-
putation does not fit into existing programming frame-
works that enforce global synchronization.

We present Oolong, a framework designed to address
the needs of asynchronous applications. In Oolong,
application kernels running on different nodes modify
shared state stored in distributed in-memory key-value
tables [10]. Since asynchronous applications respond
to state changes with further execution, Oolong offers
a programming abstraction called the trigger, a section
of code that is invoked when data is updated. Triggers
can modify updates, insert or update any other state, and
schedule additional triggers.

Oolong’s design is inspired by database triggers.
However, unlike databases, which use triggers in the
same transaction as the triggering update to maintain
database invariants, Oolong uses triggers to support
asynchronous computation, and faces a different set of
challenges. To ensure prompt updates while still allow-
ing potentially-blocking user code, Oolong offers two
types of triggers that combined provide simple fast up-
dates and complex trigger tasks. Normal triggers are
fired and can run short arbitrary code segments when
any key-value pair is updated, while long-running trig-
gers asynchronously execute code that performs slow or
repeated computations on a per-key basis. To ensure fast
recovery from failed nodes, we propose to implement
message replication that will allow single failed nodes
to be reverted to a previously-saved checkpoint on fail-
ure, rather than rolling the whole cluster back [10, 6].

Russell Power
power@cs.nyu.edu

Jinyang Li
jinyang@cs.nyu.edu

The rest of this WiP explains the design of Oolong in
more detail, followed by a brief slice of related research.

2 Design
Oolong is targeted at distributed applications with the

following characteristics:

e Asynchronous: Many problems are expressed most
cleanly as a running queue of pending data to be pro-
cessed. Data chosen for processing depends on data
previously processed, and the execution terminates
upon reaching some quiescent state. In these prob-
lems, there is no concept of a synchronous round and
reduced need for global synchronization.

e Sparse execution: Instead of streaming and process-
ing the entire dataset in synchronous rounds, the com-
putation continuously examines subsets of data.

e In-memory distributed state The intermediate state
must fit in the aggregate memory of all nodes.

An asynchronous application continuously modifies
intermediate state, processing and generating updates
until convergence. At a high level, Oolong stores such
intermediate state in distributed in-memory tables. An
application initiates the computation by invoking sec-
tions of code called application kernels on one or more
workers. In Oolong, application writers also provide
sections of code called triggers, which are “fired” when
an update to a key-value pair occurs, and allow, deny, or
modify the update. An active application kernel returns
only when all triggers have completed and no new up-
dates are enqueued. In the example of the single-source
shortest-path problem, the computation maintains each
node’s current best path as its intermediate state and
kick-starts the processing with a single update on the
graph’s source vertex. The trigger for shortest-path cal-
culation updates the current best path to a node and gen-
erates new updates to the node’s neighbors.

Oolong offers two types of triggers. Short triggers
execute quickly and can be viewed as a generalization
of accumulators [10]. Short triggers comprise code to
combine old and new values for a key into a new value
so that concurrent updates to a key-value pair can oc-
cur without synchronization. Additionally, these trig-
gers can enqueue new updates to any table. Sample trig-
ger pseudocode is shown below. Long-running triggers

def SSSP_Trigger (node_ID, old_dist, new_dist):
if new_dist < old_dist:
for target in nodes (node_ID).targets:
dists.update (target,l+new_dist)
accept update (new_dist->old_dist)
else reject update

Single-source shortest-path trigger pseudocode

execute code that might otherwise block or delay sub-
sequent triggers. Long triggers run in one or more per-
table threads, are associated with a key, and are period-
ically asynchronously re-triggered. In typical usage, a
short trigger may activate a long-running trigger to per-
form a complex computation or wait for a condition.
For example, a web crawler can use short triggers to en-
queue links to be examined, and long triggers to perform
the crawling. The long trigger could periodically check
for the necessary robots.txt file to be retrieved for a site
before completing or aborting the actual page fetch.

Oolong offers standard failure recovery based on dis-
tributed checkpointing [10, 6]. This strategy can be in-
efficient because all nodes must roll back to the saved
state upon a failure. Oolong therefore also provides
finer-grained failure recovery by caching node commu-
nication so that one or few failed nodes can be restarted
without reverting other nodes. We are considering two
designs, one that forwards updates to each worker to a
slave worker, and a second in which workers cache out-
going updates. In both cases, a recovered node can be
brought up-to-date by replaying incoming updates and
discarding duplicated outgoing updates. Such a design
poses several questions about performance, overhead,
and correctness that we are considering.

3 Applications

We have built several applications to demonstrate the
power of Oolong. Oolong has been tested on graph-
derived problems such as bipartite matching and single-
source shortest-paths. The Python web crawler demon-
strated in [10] has been re-written with a simpler Oo-
long implementation. Finally, we have coded an asyn-
chronous PageRank implementation that is more ef-
ficient than standard synchronous iterative PageRank.
Qualitatively, our experience suggests that Oolong’s mix
of traditional synchronous kernels and asynchronous
triggers offers a much more general and expressive
toolset for application writers. Quantitively, code size
between Piccolo and Oolong programs solving the same
problem are similar, and the Oolong programs for bipar-
tite matching and shortest-paths computation achieved
a 2x to 4x speedup over their Piccolo counterparts
by avoiding wasteful reiteration over already-converged
state.

4 Related Work

Oolong builds upon the work done for our previous
project, Piccolo, which offers a framework on which
to build fast, distributed applications centering on the
concepts of data partitioning and locality [10]. Piccolo
compares favorably on many MapReduce tasks to the
Java framework Hadoop, over which it achieves signif-
icant speed benefits; it can process a wide range of par-
allel computation problems that cannot be cleanly or ef-

ficiently adapted for MapReduce. Trigger concepts are
applied extensively in database systems; McCarthy and
Dayal [7] formally define such triggers. The Trigger-
Man project exploits similarities between many closely-
related triggers to reuse trigger code as much as pos-
sible, reducing the storage and overhead necessary for
many duplicates of the same procedure [3]. Recent sys-
tems work has addressed active (event-triggered) proce-
dures in distributed storage [2, 9]. Application-centric
distributed systems have explored some of the problems
that Oolong addresses with more specific approaches.
GraphLab presents a parallel framework for machine
learning applications, facilitating simple parallelization
of such problems [5]. Network Datalog uses triggers
to maintain routing rules in a distributed system, and
is tailored for such problems, while Oolong uses trig-
gers as first-class computation citizens [8]. The Linda
system leaves framework details such as process coor-
dination to be written by application coders but offers
few native features [1]. Mace enables programmers to
write network protocols such as Chord as distributed
state machines, but is lower-level than optimal for a dis-
tributed data-processing framework; Mace allows test-
ing of a failure recovery protocol’s details, for example,
while Oolong exposes functions to save and load check-
points [4].

S5 References

[1] AHUIJA, S., CURRIERO, N., AND GELERNTER, D. Linda and friends.
Computer 19, 8 (1986), 26-34.

[2] GEAMBASU, R., LEVY, A. A., KOHNO, T., KRISHNAMURTHY, A., AND
LEVY, H. M. Comet: An Active Distributed Key-Value Store. In Proceed-
ings of the 9th USENIX Symposium on Operating Systems Design and Im-
plementation (2010).

[3] HANSON, E. N., CARNES, C., HUANG, L., KONYALA, M., NORONHA,
L., PARTHASARATHY, S., PARK, J., AND VERNON, A. Scalable Trigger
Processing. In Proceedings of the 15th International Conference on Data
Engineering (1999).

[4] KILLIAN, C., ANDERSON, J. W., BRAUD, R., JHALA, R., AND VAH-
DAT, A. Mace: Language support for building distributed systems. In
In Proceedings of the ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (2007).

[5] Low, Y., GONZALEZ, J., KYROLA, A., BICKSON, D., GUESTRIN, C.,
AND HELLERSTEIN, J. M. Graphlab: A new framework for parallel ma-
chine learning. CoRR abs/1006.4990 (2010).

[6] MALEWICZ, G., AUSTERN, M. H., BIK, A.J., DEHNERT, J. C., HORN,
I., LEISER, N., AND CZAJKOWSKI, G. Pregel: A System for Large-Scale
Graph Processing. In Proceedings of the 2010 International Conference
on Management of Data (2010).

[71 MCCARTHY, D., AND DAYAL, U. The Architecture of an Active Data
Base Management System. In Proceedings of the 1989 ACM Sigmod In-
ternational Conference on Management of Data (1989).

[8] NIGAM, V., JA, L., Loo, B. T., AND SCEDROV, A. Maintaining dis-
tributed logic programs incrementally. In Proceedings of the 13th Interna-
tional ACM SIGPLAN Symposium on Principles and Practice of Declara-
tive Programming (2011).

[9]1 PENG, D., AND DABEK, F. Large-Scale Incremental Processing Using
Distributed Transactions and Notifications. In Proceedings of the 9th
USENIX Symposium on Operating Systems Design and Implementation
(2010).

[10] POWER, R., AND L1, J. Piccolo: Building Fast, Distributed Programs
with Partitioned Tables. In Proceedings of the 9th USENIX Symposium on
Operating Systems Design and Implementation (2010).

