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1 Introduction
Today massively-parallel processors are becoming in-

creasingly popular and cost-effective. Future high per-
formance networking systems design should harness the
full computation power of such massively-parallel pro-
cessors effecitvely for various types of workloads, be-
yond simple multi-threading on homogeneous fat-core
processors. Software routers are no exception. Better
yet, parallelism in packet-level processing offers soft-
ware routers a great opportunity to benefit from paral-
lel SIMT (single instruction multiple threads) processors
such as GPUs. We have chosen GPUs among a variety
of massively-parallel processors since they are widely
available in the market and major vendors provide ma-
ture software development kits for free.

Data batching is vital to fully exploit massive par-
allelism in hardware. Software routers should employ
batching at every opportunity and take full advantage
of massively-parallel processors. Batching cuts down
the per-packet processing cost by removing function call
overheads, user/kernel context switching, and expensive
I/O interactions. RouteBricks has demonstrated that batch-
ing in packet I/O brings much performance improvement
in Click [2]. PacketShader shows that batch processing
of packets could potentially bring huge performance im-
provement [3].

Our goal is to build a framework for high-performance
software routers. Our framework should make it easy to
accommodate technology advances in computing hard-
ware and thus help software routers to scale along. Click
is a popular modular software router that implements packet
processing in units of modules [5]. Its success has demon-
strated the importance of modularity in software router
design. Incorporating modularity for programmability
and batching for high performance together is a major
challenge, for path diversity in per-packet processing in-
terferes with batching. In this work we outline the tech-
nical challenges and present our design approaches.

2 Motivating Example
We start with a generic design as in Figure 1. It em-

ploys batching at the interface to and from the NICs (net-
work interface card) using the I/O engine from Packet-
Shader in packs of packets (a sequential batch of multi-
ple packets). The example configuration has IPv4, IPv6,
and IPsec functions and shows packet processing paths
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Figure 1: An example of a modular router configuration
with batched and non-batched packet flows.

among them. Using Figure 1 we elaborate on the techni-
cal challenges for our framework:

• Per-packet path diversity within a pack of pack-
ets. Packets arrive at a NIC and the I/O engine ag-
gregates them by the order of arrival. The Receive-
Side Scaling (RSS) technique spreads packets evenly
over multiple cores. A pack contains one or more
flows of packets and they are mixed. Flows may
take diverse processing paths and corresponding
packets have to be split at output and merged into a
pack at input of a module. Here we refer to a mod-
ule as a unit of packet processing without inter-
nal path diversity. Splitting and merging between
modules incurs performance overhead.

• Copy overhead between the host and GPU de-
vice memory. Modules can off-load their com-
putations to GPUs. The same portion of a packet
could be copied multiple times between disjoint
memory spaces, exhausting the very limited PCIe
bus bandwidth. We should prevent unnecessary
data transfers between GPU and CPU memories.



• Load balancing and scheduling for overloaded
situations. In general batching increases the aver-
age latency. The system should determine whether
to process packets immediately or wait for more
packets depending on the predicted performance
gain. Also a module should decide when to off-
load computations to a GPU. If one processor (ei-
ther CPU or GPU) becomes a hotspot while others
are idle, the framework should distribute the work-
load.

3 Preliminary Design
We discuss how the framework design copes with the

technical challenges respectively, as follows:

• Efficient pack split-and-merge mechanisms. Copy-
ing from or to the I/O buffer (DMA area) causes
about 40% performance degradation for packets
larger than 256 bytes in packs with more than 2048
packets/pack. Our implementation in progress ad-
dresses this problem by a zero-copy approach us-
ing pointer-of-array packet queues and packs sim-
ilar to buffer aggregates of IO-Lite [6].
• Abstraction of memory resources. Unnecessary

copy prevention requires versioning and version-
aware updating mechanisms. We are going to pro-
vide two abstractions of data shared with GPUs,
packet buffer and table buffer, differentiated by up-
dating mechanisms and usage. Packet buffers have
per-packet states (e.g., version) to keep track of
modifications and allow selective copying of only
those modified. Table buffers (e.g., used as for-
warding tables) provide double-buffering at the GPU
side to prevent blocking due to updates.
• Load-balancing techniques. (i) Opportunistic off-

loading. Under a light load, CPUs alone are enough
to handle all packets. When load increases, packet
processing can be off-loaded to GPUs. The frame-
work should decide when to off-load and when not
to automatically. (ii) Dynamic module-to-processor
assignment. If a CPU core or a GPU is overloaded
due to imbalance in traffic or computation needs
by multiple flows, the framework may steal the
processing time of other idle processors to disperse
workloads.

While we focus on batching for packet forwarding,
we should also consider the control-plane integration to
manage a router’s internal states. We let all control-plane
packets bypass the forwarding framework and have the
Linux kernel or other user-level applications such as XORP
and BIRD handle them [1, 4]. They can access the table
buffer in order to propagate their internal state changes.
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Figure 2: The overhead of preliminary implementation of
a packet classifier and input queuing with IPv4 forward-
ing. About 26% lower performance with 64B packets.

4 Discussion
We have discussed the technical challenges in em-

bracing modularity and batching together and our de-
sign approaches. In order to demonstrate the severity of
performance degradation we have implemented a sim-
ple packet classifier and an input queue for IPv4 route
lookup on top of PacketShader. Figure 2 plots the per-
formnace of our preliminary implementation against Pack-
etShader’s. Despite that our preliminary implementation
of the framework has only added minor changes to Pack-
etShader, we see performance degradation of 26% when
the packet size is 64 B.

Figure 2 suggests that modularizing along with batch-
ing is a non-trivial job even for a single module and presents
more research questions than answered. Will batching
keep up with more complex configurations? What is
the optimal granularity of modules for both batching and
programmability? How far can software routers scale
in performance along the modern hardware technology?
We plan to continue this work to find the answers by an-
alyzing and refining the design choices.
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