
How Big Hadoop Clusters Break in the Real World
Ariel Rabkin (student) and Randy Katz

{asrabkin,randy}@cs.berkeley.edu
UC Berkeley/Cloudera, inc.

1 Introduction
Hadoop is among today’s most widely deployed “big
data” systems. Cloudera is a company offering paid
Hadoop services and support. This poster abstract de-
scribes lessons from examining a sample of 293 sup-
port tickets, from February through July of 2011. We
manually labelled the tickets in our sample with the
established root cause and the specific system compo-
nent being worked on. Tickets cover not only the core
Hadoop filesystem and MapReduce implementation, but
other services, such as HBase, a BigTable clone, and the
Zookeeper coordination service.

2 Observations

m
is

co
nf

ig
ur

at
io

n

 b

ug

 o
pe

ra
tio

na
l

 s
ys

te
m

 p
ro

bl
em

 u
se

r
bu

g

in
st

al
l

ha
rd

w
ar

e
pr

ob
le

m

0
5

10
15
20
25
30
35
40

Pe
rc

en
ta

g
e

time

tickets

Figure 1: Breakdown of support tickets and support time
by issue category. The ratio of “time” to “tickets” is the
average time spent resolving an issue.

Figure 1 breaks down the number of tickets and sup-
porter time by root cause. (Supporter time is the esti-
mated time spent by a supporter working on the ticket.
For confidentiality reasons, we show only percentages,
rather than absolute numbers.) Purely informational or
administrative tickets have been excluded. Tickets were
classified based on the required action to resolve the is-
sue, after diagnosis. Bugs are those that required a patch
to the Hadoop platform. User bugs required changes to

user code. A system problem required a change to the
underlying operating system in a non-Hadoop-specific
way. Operational issues are cases where the user is op-
erating the system wrongly, e.g. using the wrong start
scripts or shutting down the system abruptly in ways that
prevent it from restarting. Install problems are those
caused by a faulty installation, whether they manifest
at installation time or later. Misconfiguration includes
Hadoop configuration as well as Hadoop-specific per-
missions and OS-imposed resource limits.

Diagnosis time varies significantly across different
types of problems. Install issues tend to be particularly
quick to diagnose and fix. They are often deterministic
and often manifest at startup, leading to quick debug cy-
cles. Bugs and misconfigurations are both comparatively
difficult, since they can require days or weeks of testing
to verify if a problem has been fixed. There may also
be correlations between a user’s level of expertise, the
problems they encounter and mistakes they make, and
the time required to diagnose an issue.

Misconfiguration represents the largest category of
both tickets and of reported supporter time. In Figure
2, we break down the misconfiguration category. There
are resource-allocation problems, where some system
resource, such as memory, file-handles, or disk-space is
being mismanaged or exhausted. There are permissions
issues. Malformed or misplaced configuration files are
also a significant root cause.

In addition to memory, Hadoop and HBase require
the administrator to allocate the number of threads for
various purposes, including the sending and receiving
sides of the MapReduce shuffle. If there are too many
receivers for the number of senders, the receivers will
experience frequent timeouts, sometimes leading to jobs
aborting. These thread-allocation issues are marked as
“threads” in Figure 2.

Most resource misallocation problems are about
memory mismanagement. Hadoop has many options for
controlling memory allocation and usage, at several lev-
els of granularity. Working from the bottom up, there are
various configurable buffers, for things like the MapRe-
duce sort or the Job history maintained in RAM by the
Job Tracker. Each Java process itself has a configured
maximum heap size. For each daemon, there is an OS-
imposed limit on the maximum amount of RAM to be

 R
A
M

 a
llo

ca
tio

n

th
re

ad
 a

llo
c.

 p

er
m

is
si

on
s

 o
th

er
 r

es
ou

rc
es

 o

th
er

ab
se

nt
/m

al
fo

rm
ed

0

2

4

6

8

10

12

14

Pe
rc

en
ta

g
e

time

tickets

Figure 2: Breakdown of misconfiguration types.

used, the ulimit. For MapReduce, the user can tune
how many concurrent tasks to execute on each host. And
all tasks must fit into physical memory.

Hadoop does not check that these options form a sen-
sible hierarchy. It is possible for the combined MapRe-
duce Task heaps to exceed physical memory, or for the
JVM to request more than the OS-imposed limit. De-
pending whether the JVM heap size, OS limit, or phys-
ical memory, this will cause an OutOfMemoryError,
JVM exit, or swapping leading to timeouts, respectively.

3 Lessons for System Design
Prune mutually-dependent options Many Hadoop
configuration options have well-defined and docu-
mented dependencies on one another. This commonly
happens with memory allocation, where Hadoop does
not check that containment constraints are enforced, and
with threading, where the number of senders and re-
ceivers can be unbalanced. Closely-coupled options
with incompatible settings caused nearly all thread al-
location problems and most memory allocation ones as
well; this is most misconfigurations and about 20% of
all failures.

One way to handle this would be an explicit configura-
tion checker; Cloudera and other vendors have built such
tools. This poses some deployment problems, since the
checker needs to be kept synchronized with the code and
with the best-practices for configuration. A design-time
fix would have been to parameterize the configuration
space in such a way that one option corresponds to scal-
ing along the best practices dimension, while a second
knob allows for workload-specific or “expert” tuning.

Pay attention to memory management Java
provides programmers with powerful automatically-
growable data structures. This makes it easy to lose

track of the size of a given allocation. Problems
can arise if a change in workload results in some
usually-small data structure becoming too large.

Clearer tracking of credentials Permissions prob-
lems arise when users or developers misunderstand what
authority a given code region will have. Making permis-
sions more explicit may reduce such errors. Logs should
specify what credentials each process has at every point.

Design for [Configuration] change As systems
evolve, options are added and removed. Flexible
configuration-file formats allow users to set options that
appear in a different (past or future) version. Users will
be puzzled when setting the option doesn’t do anything.
Have a strategy in place to look for and flag undefined
or obsolete options. (These errors are classified as ’ab-
sent’ in Figure 2.) Having a narrow XML schema for
configuration would help.

4 Related Work
Several previous publications have discussed real-world
failure causes. Jim Gray’s “Why do computers stop
and what can be done about it” is a prominent exam-
ple, discussing failure data of Tandem computer de-
ployments [1]. Huang et al include data about failures
seen in production by IBM [2]. Oppenheimer et al.
looked at failure data from Internet services in the early
2000s [3]. Vishwanath and Nagappan present real-world
failure data, although their focus is on hardware, while
ours is on software [4].

Our results differ from these previous studies. We
found resource and thread allocation to be major issues,
while they are barely mentioned in past studies. We sus-
pect that Hadoop deployments are resource-intensive, in
ways that Tandem systems were not: Hadoop users are
trying to exploit all system resources in a way that Tan-
dem operators were not. The price of this more aggres-
sive usage is new failures.

References
[1] J. Gray. Why do computers stop and what can be

done about it. In Symposium on reliability in dis-
tributed software and database systems, 1986.

[2] H. Huang, R. Jennings, III, Y. Ruan, R. Sahoo,
S. Sahu, and A. Shaikh. PDA: a tool for automated
problem determination. In LISA, 2007.

[3] D. Oppenheimer, A. Ganapathi, and D. A. Patter-
son. Why do internet services fail, and what can be
done about it? In USENIX Symposium on Internet
Technologies and Systems, 2003.

[4] K. V. Vishwanath and N. Nagappan. Characteriz-
ing cloud computing hardware reliability. In SOCC,
2010.

