
InkTag: Secure Applications On An Untrusted Operating System

Owen S. Hofmann, Michael Z. Lee, Alan M. Dunn, Emmett Witchel
The University of Texas at Austin {osh,mzlee,adunn,witchel}@cs.utexas.edu

Problem

OS vulnerablities are shared

•Applications rely on large stack of system software

–OS vulnerabilities become shared vulnerabilities

•Security-critical applications should have a way

to isolate themselves and function without threat

from the OS or other applications

Can applications run without OS trust?

•Most OS services have simple specification

–Read last written data in files and address spaces

•A small hypervisor layer can provide privacy, verify

integrity of OS-provided data

–Previous systems: Overshadow, CHAOS, SP3

– Isolation, privacy, integrity for process address

space and execution

•Many systems issues beyond isolation remain un-

addressed

–Naming (processes and files)

–Access control policy

•Existing systems avoid OS interaction, must repli-

cate OS data structures

–Need memory map to authenticate page table up-

dates

InkTag architecture

The InkTag VMM iso-

lates High-assurance pro-

cesses from the OS. The

untrusted InkTag LKM

tracks important process

state, and communicates

that state to the VMM.

Memory mapping

• InkTag must protect privacy and integrity for ap-

plication address space

–Only map those pages requested by application

at the desired address

–Protect order of pages in address space

• InkTag LKM registers Linux pv ops interface to

receive MMU updates

• InkTag VMM validates and installs address space

updates

At mmap()

When creating new mapping, the

HAP gives a token to the InkTag

LKM to validate future page table

updates. The InkTag LKM is un-

trusted, thus the token must be un-

forgeable.

HMAC(KHAP , fileid, addr, end)

At page fault

When the kernel installs a new

PTE, it calls the InkTag LKM via

the pv ops interface. The LKM

passes the token to the InkTag

VMM, which verifies that the new

mapping is compatible with that re-

quested by the HAP, and installs

the PTE.

Identifying processes

•HAPs must be able to identify other applications

–Cannot trust OS: PID or binary file name

•The distributer or administrator signs a hash of a

HAP’s initial state along with a canonical name

(e.g. “/sbin/login”)

•HAP passes signature to InkTag VMM at init

•VMM replies with signature of name and applica-

tion instance id (a secure PID)

Access control

•OS information about access control state

(user/group id) is untrusted

–Do not want to import access control policy into

hypervisor

•Delegate access control to HAPs: Access control

daemons (ACDs)

When a HAP wishes to change princi-

pal (e.g. at login), it contacts an ACD.

The ACD validates the request (pos-

sibly based on the canonical id) and

passes the HAP a token for the HAP

to prove to the VMM that the principal

change is valid.


