

OS Fundamentalism: Using XOmB for fundamental OS research

James Larkby-Lahet, Dave Wilkinson, Daniel Mossé

University of Pittsburgh

Ahmed Amer

Santa Clara University

0. The Problem

- > OSes are in a constant state of flux
- >Adapting to new hardware
- > Meeting the demands of new software
- > Patching bugs and regressions
- Current systems, however, do not optimize for the continuous redesign all systems must undergo

1a. OS Researchers Want....

- ➤ A flexible OS that can be extended easily to experiment with new hardware and algorithms
- ➤ The ability to radically redesign subsystems without rewriting most of the OS
- >A small trusted code base, with a short learning curve

1b. Application Developers Want...

- ➤ To be free from the hindrance of forced OS abstractions

 ➤ Why use files or sockets? Can we do better?
- > Control over performance critical paths
- ➤ To specialize code using application-specific knowledge ➤ E.g., customize network access

1c. OS Educators Want...

- > a simple and real OS that can illustrate core concepts
- > to be able to demonstrate various OS architectures
- >a 'real world' system (not a simulation) that can be used by students for everyday tasks

2. Rethinking OS Evaluation

- ➤ Kaashoek's Law: "There are plenty of good reasons to design a new OS, but performance is not one of them"
- ➤ Ganger's Corollary: "Anything you can do, they can do"
- Focusing on Flexibility allows a system to efficiently achieve any performance goal or feature set

3. Flexibility through Statelessness

- ➤ Flexibility (for our purposes) means components are in userspace and untrusted
- > A stateless kernel simply operates on data *for* processes
- ➤ Permission is granted by the resource mapping (an implicit capability)
- ➤ We extend microkernel and exokernel migration of OS abstractions to userspace
 - > use IOMMU to place untrusted drivers in userspace
 - > use self-virtualizing devices (e.g., NICs)
- > one driver per application

Exokernel XOmB Microkernel Kernel Kernel Kernel Trust Required Driver Driver Driver Driver Driver Driver Driver Driver Trust Required Trust Required Application Application Application

4. Userspace Resource Management

- The XOmB kernel manages *all* resources as contiguous regions of virtual memory (*segments*)
- ➤ heap, files, shared-memory, memory-mapped devices, address spaces of child and parent processes
- > Segments are subtrees of the page table
- > kernel sets R/W/X permissions on resource mappings
- > Segments can be shared among processes, with differing permissions, by editing a single Page Table Entry

5. Userspace CPU and RAM Allocation

- > CPU can be scheduled entirely in userspace
- ➤ Our approach is inspired by CPU Inheritance Scheduling and Scheduler Activations
- ➤ Non-blocking system calls and a lack of kernel managed CPU context simplify our dispatch mechanism
- ➤ Removing scheduling from the kernel is key to enabling our stateless, segment based kernel interface
- ➤ Using the same process hierarchy as CPU allocation we can also flexibly allocate memory in userspace (DRAM and Storage Class Memory)

6. Benefits of Statelessness

- >XOmB's stateless design and small code base has allowed the implementation of kernel Hot-Swap
- >Upgrades kernel without rebooting or patch modifications
- ➤Implemented by an undergrad without prior exposure to XOmB in 2.5 months

7. Conclusion

- >XOmB is a stateless kernel providing maximum flexibility
- >XOmB is practical for industry/research AND simple enough for education
- >Flexibility is a first-class OS feature