
OS Fundamentalism: Using XOmB for fundamental OS research
James Larkby-Lahet, Dave Wilkinson, Daniel Mossé Ahmed Amer

 University of Pittsburgh Santa Clara University

 1a. OS Researchers Want…

Ø A flexible OS that can be extended easily to
experiment with new hardware and algorithms

Ø The ability to radically redesign subsystems without
rewriting most of the OS

Ø A small trusted code base, with a short learning curve

 4. Userspace Resource Management

Ø The XOmB kernel manages all resources as contiguous
regions of virtual memory (segments)
Ø heap, files, shared-memory, memory-mapped devices,

address spaces of child and parent processes
Ø Segments are subtrees of the page table
Ø kernel sets R/W/X permissions on resource mappings

Ø Segments can be shared among processes, with differing
permissions, by editing a single Page Table Entry

 3. Flexibility through Statelessness

Ø Flexibility (for our purposes) means components are in
userspace and untrusted

Ø A stateless kernel simply operates on data for processes
Ø Permission is granted by the resource mapping (an

implicit capability)
Ø We extend microkernel and exokernel migration of OS

abstractions to userspace
Ø use IOMMU to place untrusted drivers in userspace
Ø use self-virtualizing devices (e.g., NICs)
Ø one driver per application

7. Conclusion
Ø XOmB is a stateless kernel providing maximum flexibility
Ø XOmB is practical for industry/research AND simple enough

for education
Ø Flexibility is a first-class OS feature

 1b. Application Developers Want...

Ø To be free from the hindrance of forced OS abstractions
Ø Why use files or sockets? Can we do better?

Ø Control over performance critical paths
Ø To specialize code using application-specific knowledge
Ø E.g., customize network access

 5. Userspace CPU and RAM Allocation

Ø CPU can be scheduled entirely in userspace
Ø Our approach is inspired by CPU Inheritance Scheduling

and Scheduler Activations
Ø Non-blocking system calls and a lack of kernel managed

CPU context simplify our dispatch mechanism
Ø Removing scheduling from the kernel is key to enabling

our stateless, segment based kernel interface
Ø Using the same process hierarchy as CPU allocation we can

also flexibly allocate memory in userspace (DRAM and
Storage Class Memory)

 0. The Problem
Ø OSes are in a constant state of flux
Ø Adapting to new hardware
Ø Meeting the demands of new software
Ø Patching bugs and regressions

Ø Current systems, however, do not optimize for the
continuous redesign all systems must undergo

 1c. OS Educators Want…
Ø a simple and real OS that can illustrate core concepts
Ø to be able to demonstrate various OS architectures
Ø a ‘real world’ system (not a simulation) that can be used

by students for everyday tasks

 2. Rethinking OS Evaluation

Ø Kaashoek’s Law: “There are plenty of good reasons to
design a new OS, but performance is not one of them”

Ø Ganger’s Corollary: “Anything you can do, they can do”

Ø Focusing on Flexibility allows a system to efficiently
achieve any performance goal or feature set

6. Benefits of Statelessness
Ø XOmB’s stateless design and small code base has allowed the

implementation of kernel Hot-Swap
Ø Upgrades kernel without rebooting or patch modifications
Ø Implemented by an undergrad without prior exposure to

XOmB in 2.5 months

